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1 INTRODUCTION 

 

Large amounts of geographic data have been used more and more in many areas in 
different application domains such as urban planning, transportation, telecommunication, 
marketing, etc. These data are stored under Geographic Database Management Systems 
(GDBMS), and manipulated by Geographic Information Systems (GIS). The latter is the 
technology which provides a set of operations and functions for geographic data analysis. 
However, within the large amount of data stored in geographic databases there is implicit, 
non-trivial and previously unknown knowledge that cannot be discovered by GIS. Specific 
techniques are necessary to find this kind of knowledge, which is the objective of 
Knowledge Discovery in Databases (KDD).  

KDD is an interactive process which according to (FAYYAD, 1996) consists of five 
main steps: selection, preprocessing, transformation, data mining and 
evaluation/interpretation. Selection, preprocessing and transformation are data 
preparation steps in which data are rearranged to the format required by data mining 
algorithms. It is stated that between 60 and 80 percent of the time and effort in the whole 
KDD process is required for data preparation (ADDRIANS, 1996). For geographic 
databases this problems increases significantly because of the complexity of geographic 
data that must be considered. We have addressed this problem proposing an interoperable 
framework for geographic data preprocessing (Bogorny, 2005a) and the use of ontologies 
to improve the spatial join computation (Bogorny, 2005b).  

Data Mining (DM) is the step of applying discovery algorithms that produce an 
enumeration of patterns over the data.  Most of these algorithms were created to deal with 
small amounts of data and with a restrictive single table input format. This limitation 
causes a gap between geographic databases and data mining algorithms.   

Many solutions for spatial data mining have been proposed in the literature, but only a 
few consider data preparation aspects. Most approaches extend query languages with new 
functions and operations for data mining. Han (1997) proposed a geo mining query 
language (GMQL) implemented in the GeoMiner software prototype (Han, 1997). Ester 
(2000) defined a set of new operations such as get_nGraph, get_neighborhood and 
create_nPaths to compute geographic neighbors. Sattler (2001) proposed a multi-database 
language to support the KDD steps. Malerba (2000) proposed an object-oriented data 
mining query language named SDMOQL, implemented in the INGENS software 
prototype. In these approaches it is expected that the GDBMS will implement the 
proposed languages and operations. However, most GDBMS follow the Structured Query 
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Language (SQL), which became the standard language to manipulate databases, and do 
not implement data mining languages or operations to automate or semi-automate 
geographic data preprocessing. Indeed, most geographic data mining software prototypes 
are no longer available outside academic institutions. Aiming to make a contribution for 
the spatial data mining field and facilitate the practice of knowledge discovery in 
geographic databases, we propose an interoperable framework to prepare geographic data 
for DM. The objective is to automate part of the KDD steps in order to reduce data 
preparation effort and time. For this purpose we propose to extend the Weka (WITTEN, 
2005) data mining toolkit to support geographic data preprocessing. Weka is a well known 
open source data mining tool which provides friendly graphical user interface for data 
mining and pattern interpretation. 

1.1 Objective and Contributions 
The main objective of this work is to automate the geographic data preprocessing steps 

into the Weka data mining toolkit, aiming to facilitate the practice of spatial data mining. 
The main contributions include: 

• Interoperability with any GDBMS constructed under OpenGIS Simple Features 
Implementation Specification (OGC 1999a). 

• Generate new datasets with more or less information automatically and very easily. 
• Different classical data mining algorithms can be applied in the data mining step. The 

output results can be easily visualized.   
• The user can define the relevant spatial features, the target feature type, different 

spatial relations, as well as different granularity levels. 
• Spatial as well as non-spatial data are considered. 
• The feature’s spatial representation is independent of geometric type. While most 

spatial data mining algorithms have as an input a set of points, our framework 
supports any geometric primitive. 

• Geographic dependences can be specified and are eliminated between the target 
feature type and any relevant feature type. This results in more efficient spatial join 
and the generation of less well known geographic domain patterns, as explained in 
(Bogorny, 2006a). 

1.2 Scope and Outline  
This work is limited to provide into the Weka data mining toolkit a module that 

supports geographic data preprocessing, named GDPM. The remaining of this report is 
organized as follows: Section 2 presents background knowledge about geographic data. 
Section 3 presents the extension of Weka, and Section 4 concludes the report and suggests 
directions of future improvements. 
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2 BACKGROUND 

Geographic databases (GDB) store real world objects, also called spatial features, 
located in a specific region (OGC, 1999a). Spatial features (e.g. Canada, France) belong to 
a feature type (e.g. country), and have both non-spatial attributes (e.g. name, population) 
and spatial attributes (geographic coordinates x,y). 

The number of geographic feature types in geographic databases is normally large, and 
every different feature type is usually stored in a different relation, because most 
geographic databases follow the relational (SHEKHAR, 2003) (RIGAUX, 2000) or 
object-relational approach. Figure 1 shows an example of geographic data stored in 
relational databases, where the feature types street, water resource, and gas station are 
different relations with geographic (shape) and non-geographic attributes. 

(a) Street 
Gid Name Shape 
1 Erie ST Multiline [(x1,y1),(x2,y2),..] 
2 Oak ST Multiline [(x1,y1),(x2,y2),..] 

 
 (b) WaterResource 

Gid Name Shape 
1 Jacui Multiline [(x1,y1),(x2,y2),..] 
2 Guaiba Multiline [(x1,y1),(x2,y2),..] 
3 Uruguai Multiline [(x1,y1),(x2,y2),..] 

 
 (c) GasStation 

Gid Name VolDiesel VolGas Shape  
1 BR 20000 85000 Point[(x1,y1)] 
2 IPF 30000 95000 Point[(x1,y1)] 
3 Elf 25000 120000 Point[(x1,y1)] 

 
 (d) GEOMETRY_COLUMNS 

F_table_schema F_table_name F_geometry_column Type SRID 
Public Street The_geom Multiline  -1 
Public WaterResource The_geom Multiline -1 
Public  GasStation The_geom Point -1 

Figure 1 – Geographic data storage structure in OGC based GDB 

The spatial attributes of geographic object types, represented by shape in Figure 1, 
have intrinsic spatial relationships (e.g. close, far, contains, intersects). Because of these 
relationships real world entities can affect the behavior of other features in the 
neighborhood. This makes spatial relationships be the main characteristic of geographic 
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data to be considered for data mining and knowledge discovery (LU, 1993) and the main 
characteristic which differs geographic/spatial data mining from transactional data mining.   

Spatial relationships are usually not explicitly stored in geographic databases, so they 
have to be computed with geographic operations. There are basically 3 spatial relations to 
consider (GUTTING, 1994): topological, distance and order. Topological relations 
characterize the type of intersection between two spatial features and they can be classified 
in Equal, Disjoint, Touches, Within, Overlaps, Crosses, Contains and Covers. Figure 2 (a) 
shows an example of the topological relationships Touches, Contains and Crosses. 

Distance relations are based on the Euclidean distance between two spatial features, as 
shown in Figure 2(b).  

Direction relations deal with the order as spatial features are located in space. Figure 2 
(c) shows an example of direction/order relations. 

 

 

 

 

 

 

Figure 2 – Spatial relationships 

GIS implement specific operations and functions to manipulate and visualize 
geographic data. The OGC(Open GIS Consortium) is an organization dedicated to develop 
standards for spatial operations and spatial data integration, aiming to provide 
interoperability for GIS. Among many specifications established by the OGC, there are 
two of fundamental importance for this work: operations to compute spatial relationships 
and the database schema metadata, introduced in the following section. 

2.1 OGC Spatial Operations and Database Schema 
The OGC is a not-for-profit organization dedicated to provide interoperability for 

Geographic Information Systems.  It defines a standard set of operations to compute 
spatial relations for SQL (OGC, 1999b), which are implemented by most GDBMS.  These 
operations are sufficient enough to compute relations among spatial features. Standard 
functions and operations including intersection, buffer, convex hull, topological and 
distance are provided (see (OGC, 1999) to have an overview of the list of operations).   

The database schema metadata are stored in a database table named 
GEOMETRY_COLUMNS, which is created during the database creation and is 
instantiated automatically when geographic data are loaded the first time. This table stores 
all database characteristics, including the database schema name, all geographic table 
names (which is for data mining the geographic feature types), the name of the geometric 
column, and its type (e.g. point, line). An example is illustrated in Figure 1(d). This table 
consists of a row for each feature type in the geographic database with geometric 
attributes.   

Figure 3 shows the storage schema where Feature Table/View corresponds to a 
database table or view, which contains geometric attributes. Each table name is associated 
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with a particular spatial reference system in table Spatial_Reference_Systems. Each 
geometry in the database is identified by a key (GID), which consists of a collection of 
elements numbered by an element sequence (ESEQ). 

Each Feature Table/View with geometric attributes is related to 
GEOMETRY_COLUMNS. This table consists of a row for each Feature Table/View with 
geometric attributes in the geographic database. The data stored for each database table or 
view with geometry columns include: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – OGC model for feature tables under SQL92 [18] 

• F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME – fully 
qualified name of the feature table containing the geometry column; 

• F_GEOMETRY_COLUMN— name of the geometric column in the feature table  

Figure 3 – OpenGIS geographic database schema 

• G_TABLE_CATALOG, G_TABLE_SCHEMA, G_TABLE_NAME— name of 
the geometry table and its schema and catalog. The geometry table implements the 
geometry column. 

• STORAGE_TYPE— type of storage being used for this geometry column. 

• GEOMETRY_TYPE—the type of geometry values stored in this column (point, 
curve,polygon, etc..)   

• COORD_DIMENSION—corresponds to the number of dimensions in the spatial 
reference system. 

• MAX_PPR— number of points stored as ordinate columns in the geometry table. 

• SRID—the ID of the spatial reference system used for the coordinate geometry in 
this table. It is a foreign key reference to the SPATIAL_REF_SYS table. 

 

 

(a) Feature Table/View characteristics

(b) geometric column implementation
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2.2 Query Language and Database Connectivity 
The SQL became the standard data definition and manipulation language for relational 

databases (ELMASRI, 2003). This language is implemented by most commercial and 
open source GDBMS and was extended with spatial functions and operations to 
manipulate geographic data. With this standard, it is possible to write queries to access 
data stored in different databases, without changing the statements.  

JDBC is the industry standard for database-independent connectivity between the Java 
programming language and a wide range of databases. The JDBC API provides a call-
level API for SQL database access. With a JDBC API it is possible to establish a 
connection with a geographic database, to send SQL statements to manipulate data, and to 
process the results. 
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3 GDPM: INTO THE WEKA DATA MINING TOOLKIT 

Many classical DM algorithms are implemented in toolkits, while spatial data mining 
toolkits are rare. Weka, for example, implements more than twenty different algorithms for 
classification, clustering and association rules. The algorithms implemented in toolkits 
share the same single table input format, which can vary a little among different toolkits, 
but can easily be adapted. When organized into the single table format, different 
techniques and algorithms can be applied to the same dataset. Figure 4 shows an example 
of a spatial dataset preprocessed and transformed into the single table format to be mined 
with Weka. 

 
Figure 4 – Weka input format (arff file) 

@relation 'geographic_data' 
 
@attribute f_code_des 
{null,Cropland,Grassland,Land_Subject_to_Inundation,Rice_Field,Scrub_Brush} 
@attribute road_OVERLAPS {yes} 
@attribute river_CROSSES {yes} 
@attribute river_CONTAINS {yes} 
@attribute tunel_CROSSES {yes} 
@attribute river_OVERLAPS {yes} 
@attribute road_CROSSES {yes} 
@attribute bridge_WITHIN {yes} 
@attribute river_WITHIN {yes} 
@attribute river_TOUCHES {yes} 
@attribute bridge_CONTAINS {yes} 
@attribute tunel_TOUCHES {yes} 
@attribute road_CONTAINS {yes} 
@attribute tunel_CONTAINS {yes} 
@attribute bridge_OVERLAPS {yes} 
@attribute road_TOUCHES {yes} 
@attribute tunel_OVERLAPS {yes} 
@attribute bridge_CROSSES {yes} 
@attribute tunel_WITHIN {yes} 
@attribute road_WITHIN {yes} 
@attribute bridge_TOUCHES {yes} 
 
@data 
 
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,?,?,yes,yes,?,?,yes,?,?,?,? 
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,? 
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,? 
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,? 
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,? 
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,?,?,?,yes,?,?,yes,?,?,?,? 
Cropland,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,yes,?,?,?,? 
Cropland,yes,?,?,?,yes,?,?,?,?,yes,?,?,?,?,?,yes,?,?,?,? 
Cropland,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,? 
Cropland,yes,?,?,?,yes,?,?,?,?,?,?,?,?,?,?,yes,?,?,?,? 
Rice_Field,yes,?,yes,?,yes,?,?,?,?,yes,?,?,?,?,?,yes,?,?,yes,? 
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For spatial DM, the single table represents the target feature type on which discovery 
will be performed. Each row in the single table is an independent unit, i.e. a different 
instance of target feature type and each column is an item characterizing this unit. In the 
example in Figure 4 the target feature type is city, such that each row of the single table is 
a different city. The attributes are spatial predicates related to city. 

To generate this file in Weka the user has to open the Weka Explorer interface, shown 
in Figure 5. This interface has not received any modification. 

 
Figure 5 – Weka Explorer GUI 

The second step is to click on the button OpenDB, which opens the window shown in 
Figure 6. In the window shown in Figure 6 the user has to provide the database url, user 
name, and password. This window reads the DatabaseUtils.props file to set the default 
information to connect the database. From this window, Weka connects to PostGIS 
through JDBC and opens a new window already connected to the database provided by the 
url when the button Geographic Data (which we included in order to call the geographic 
data preprocessing module GDPM) is clicked, as shown in Figure 7.  

GDPM is a new java class completely independent, named GeographicData.java, 
stored into the weka/gui/gdpm directory. 
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Figure 6 – Interface to access geographic databases  

 

 
Figure 7 – Geographic data preprocessing interface 
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To start the preprocessing tasks, the database schema must be provided, and the button 
Load pressed to retrieve all spatial feature types from the database table 
geometry_columns. Since the spatial feature types are loaded, the user chooses the target 
feature type and all relevant feature types. To define geographic dependences, the user has 
to mark the check box, which enables the button to specify geographic dependences. After 
clicking on the dependence definition button the interface shown in Figure 8 is called. 

 In the dependence definition windows appear two combos that contain all database 
spatial feature types with an instance in the table geometry_columns. The user may choose 
one spatial feature type in each combo, and by pressing the add button, a new dependence 
will be created with the respective selected pair. The pair will than appear in the list of 
dependences in the same window. To remove any dependence already defined, the user 
must select the pair and click on the button remove. 

After dependences have been defined, the button OK must be clicked in order to store 
the dependences into a database table named knowledgeConstrains.   

 
Figure 8 – Geographic dependence definition interface 

The following step is to provide the type of spatial relationships and the granularity 
level in the window shown in Figure 7. Our prototype automatically generates data at two 
granularity levels (feature instance and feature type), for distance, topological, and high 
level topological relationships (intersects), without any concept hierarchy, as will be 
explained in the following section. For distance relationships one or two distance 
parameters must be provided. 

Since all parameters have been provided to the window shown in Figure 7 and button 
OK is pressed, the first step performed is the dependence elimination. Before perform the 
spatial join step between the target feature type and each relevant feature type, GDPM 
searches for a dependence in the table knowledgeConstraints. When a dependence is 
found, the relevant feature type is removed from the set and the next relevant feature type 
is tested. After all dependences have been removed the spatial join and transformation 
modules start. 
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3.1.1 The Spatial Join and Transformation Process 

3.1.1.1 Topological Relationships 

Topological relationships are mutually exclusive, i.e., only one topological relationship 
holds between to spatial feature instances (e.g. Porto Alegre city and Canoas city). At the 
feature instance granularity level, i.e., when both type and instances of the relevant feature 
types are considered in the mining process, every instance of the target feature type may 
have one and only one topological relationship with an instance of a relevant feature type. 
Table 1 (left) illustrates an example of the spatial join computation where city 1 has the 
relationship contains with River_1, crosses with River_2, and contains with Slum_1. The 
spatial join output (Table 1 left) at the feature instance granularity level when transformed 
to the Weka input format (Table 1 right), the relevant feature type name with the 
respective instance is transformed in an attribute, while its value receives the respective 
topological relationship. For the relevant feature instances that have no relationship with 
the instance of the target feature (e.g. River_3 and city_1, River_1 and city_3), the 
attribute value is filled with “?”, which is the symbol used by Weka to represent the 
absence of an attribute. 

Table 1 - Feature Instance Granularity Level for topological relationships 
TargetF_id 
(city) 

RelevantF 
Instance 

Relationship  

1 River_1 Contains 
1 River_2 Crosses 
2 River_3 Contains  
2 River_4 Crosses 
3 River_2 Crosses 
1 Slum_1 Contains 
2 Slum_2 Contains 

At a higher granularity level (feature type), as shown in Table 2 (left), notice that the 
relevant feature instance is not stored in the spatial join output. For example, city 1 has 
two topological relationships with the relevant feature type River, contains and crosses. At 
this granularity, to preserve the type of the topological relationship, we cannot simply 
convert the relevant feature type River to an attribute in the transformation process 
because attributes with same names are not allowed. For example, the final table cannot 
have two attributes River with two different relationships (contains and crosses). Indeed, it 
would be difficult to specify dominance between topological relationships in order to 
choose the strongest relationship. 

To preserve the relationship type, the attribute name in the final table (Table 2 right) is 
the feature type and the relationship type, while the attribute value receives the string 
“yes” when the relationship holds and “ ?”  if there is no topological relationship. 

 Table 2 - Feature Type Granularity Level for topological relationships 
TargetF_id 
(city) 

RelevantF 
Type 

Relationship  

1 River Contains 
1 River Crosses 
2 River Contains  
2 River Crosses 
3 River Crosses 
1 Slum Contains 
2 Slum Contains 
 

TargetF_id 
(city) 

River_1 River_2 River_3 River_4 Slum_1…. 

1 contains crosses ? ? Contains 
2 ? ?  Contains  Crosses Contains 
3 ? Crosses ? ? ? 

 

TargetF_id 
(city) 

Contains_River Crosses_River Contains_Slum 

1 Yes Yes Yes 
2 Yes Yes Yes 
3 ? Yes ? 
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According to the objective of the discovery sometimes topological relationships may 
generate some problems. Let us evaluate these problems in practice analyzing Figure 9 
which shows part of a geographic map where the small polygons are slums, large polygons 
are districts, and lines are water bodies of the city of Porto Alegre. Let us suppose that 
district is the target feature type and slums and water bodies are the relevant feature types. 

 
Figure 9 – Part of a geographic map of the Porto Alegre city representing districts, slums, 

and water bodies 

In Figure 9 we can observe the different topological relationships that districts may 
have with both slums and water bodies. The district Nonoai, for example, “contains” 
slums (e.g. 159 and 183), “touches” slums (e.g. 180), and “overlaps” slums (e.g. 174). 
The district Teresopolis, for example, “contains” water bodies (e.g. 93, 338) and is 
“crossed” by water body (e.g. 339). Different topological relationships may not generate 
patterns when mining data at the feature instance granularity level if thresholds such as 
minimum support for mining spatial association rules are not very low. 

For example, the predicates touches(slum_183) for district Santa Tereza will be 
considered different from the predicate contains(slum_183) for the district Nonoai. The 
same occurs for slum_180 which is within district Cristal and touched by district Nonoai. 
When the objective is to investigate high criminal incidence, for example, and either slum 
180 or 183 are responsible for high criminal incidence in districts Nonoai and Cristal, this 
might not be discovered by data mining algorithms. The same problem may occur when 
mining data at the feature type granularity level.  

As one solution for this problem we propose to consider general topological 
relationships intersects and non-intersects. When different instances of the target feature 
(e.g. district Cristal and district Nonoai, or district Nonoai and district Santa Teresa) have 
topological relationships with the same instance of a relevant feature type (e.g.slum_180 
and slum_183), instead of touches(slum_180) and contains(slum_180), for example, a 
predicate intersects(slum_180) is generated.   

  Slums 

   Districts 

   WaterBody 
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Table 3 (left) shows two tables with the feature instance (top) and feature type 
granularity level (bottom) for the intersects relationship, and Table 3 (right) shows the 
respective transformation for the Weka input format.  

Table 3 – (left) Feature instance and feature type granularity for high level topological 
relationships (intersects and non-intersects) and (right) Weka input format 

TargetF_id  
(city) 

RelevantF 
Instance 

Relationship  

1 River_1 Intersects 
1 River_2 Intersects 
2 River_3 Intersects 
2 River_4 Intersects 
3 River_2 Intersects 
1 Slum_1 Intersects 
2 Slum_2 Intersects 

 
TargetF_id 
(city) 

RelevantF 
Type 

Relationship  

1 River Intersects 
2 River Intersects  
3 River Intersects 
1 Slum Intersects 
2 Slum Intersects 

 

3.1.1.2 Distance Relationships 

Distance relationships are computed according to the distance parameters provided by 
the user. If only one distance parameter is provided, neighborhoods are considered very 
close if their distance from the target feature is less or equal to dist1. When two distance 
measures are informed, than neighborhoods are considered very close if their distance 
from the target feature is less or equal to dist1 and close if their distance is higher than 
dist1 and smaller than dist2, as shown in the example in Table 4 (left) for the feature 
instance and feature type granularity level.  

It is important to emphasize that GDPM does not materialize the far relationship, 
because all relevant feature types that are neither close nor very close from the target 
feature will be far. This would produce and enormous amount of non-interesting patterns. 
For example, the city 1 is very close to river 1 and close to river 2, but far from all other 
rivers. The materialization of the relationship far would generate, for example, patterns for 
all relevant feature types far from the target feature. For distance relationships we can say 
that close relationships are dominant over far, because all objects are not close will be far. 
Examples of patterns generated at lower granularities include as River_1=VeryClose  
River_3=far, and contradictory/negative rules at higher granularities, such as 
VeryClose_River=yes FarFrom_River=yes. 

To better understand this process, let us observe the map shown in Figure 9. Slum 159, 
for example, is very close to district Nonoai, but it would be far from all other districts for 
very low distance threshold. At the feature type granularity level, the district Nonoai 
would be very close to slums (that are within Nonoai), close to slums (that are within 
districts that share boundaries with Nonoai such as Cristal, Santa Tereza, and Teresopolis), 
but far from all other slums related to all other districts (e.g. slum 124 in district 
Camaqua) far from Nonoai which do not appear in the map. 

TargetF_id 
(city) 

Intersects_River Intersects_Slum 

1 Yes Yes 
2 Yes Yes  
3 yes ? 

TargetF_id 
(city) 

River_1 River_2 River_3 River_4 Slum_1…. 

1 intersects intersects ? ? intersects 

2 ? ?  intersects  intersects intersects 

3 ? intersects ? ? ? 
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Table 4 - (left) Feature instance and feature type granularity for high level for distance 
relationships and (right) Weka input format 

TargetF_id  
(city) 

RelevantF   
Instance 

Relationship  

1 River_1 VeryClose 
1 River_2 Close 
2 River_3 Close 
2 River_4 Close 
3 River_2 VeryClose 
1 Slum_1 Close 
2 Slum_2 VeryClose 

 
TargetF_id 
(city) 

RelevantF 
Type 

Relationship  

1 River VeryClose 
1 River Close 
2 River Close  
3 River VeryClose 
1 Slum Close 
2 Slum VeryClose 

 

Just in case someone would like to consider things that are far, the value of the 
distance metric dist2 can be increased in order to cover the relationship far. 

In the previous sections we described the details to be considered for preprocessing 
geographic data. In the following sections we describe implementation details. 

3.1.2 Implementation details 

3.1.2.1 Spatial Join 

The spatial join step is performed among the target feature type and all selected 
relevant feature types that have no dependence with the target feature. This is performed in 
the geographic database, with the spatial operations implemented by PostGIS, which 
follows the OGC approach.  

The spatial join result is stored in a database temporary table called 
target_feature_type_name_temp. This table contains the attributes 
gid_target_feature_type, relevantF (which is the name of the relevant feature type), and 
relationship, as described in the previous sections. 

In case there are no spatial relationships between the target feature type and relevant 
feature types, the window shown in Figure 10 is presented to the user. 

TargetF_id 
(city) 

River_1 River_2 River_3 River_4 Slum_1…. 

1 VeryClose Close ? ? Close 
2 ? ?  Close Close VeryClose 
3 ? VeryClose ? ? ? 

 

TargetF_id 
(city) 

VeryClose_River Close_River Close_Slum VeryClose_Slum 

1 Yes ? Yes ? 
2 ? Yes ? Yes 
3 Yes ? ? ? 
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Figure 10 – Error message when no relationships are found 

3.1.2.2 Transformation 

The transformation module is performed in memory and generates an arff 1file in the 
directory weka/data, named geographic_data.arff. As the arff file may contain a large 
number of attributes, mainly when mining data at the feature instance granularity level, the 
transformation step cannot store the result in a database table, since PostGIS only allows 
database tables with less than 1500 columns.  

By implementing the transformation step in memory makes the process run much 
faster. Going into detail about the implementation, the transformation step implies in 
obtain the non-spatial attributes of the target feature type (obtained from the database table 
target_feature_type), and the spatial predicates, which are all different predicates 
generated by the spatial join step.   

The transformation step starts reading from the database the table 
target_feature_type_temp, in order to find the spatial attributes (spatial predicates) that 
will be part of the header of the arff file. To find the new attributes the system checks 
which granularity level is selected in the interface. At the feature instance granularity 
level, every different value of the column RelationF in table target_feature_type_temp 
will result in a new attribute in the arff file.  

The possible values of these attribute are stored in the column relationships in the table 
target_feature_type_name_temp. For topological relationships, possible values of the 
relevantF collumn are:  "CONTAINS", "TOUCHES", "WITHIN", "OVERLAPS", 
"CROSSES", as shown in the example in Table 1. For the high level topological 
relationships, the possible value is "INTERSECTS", as shown in Table 3. For distance 
relationships the possible attribute values are "VERY_CLOSE" and "CLOSE". 

                                                 
1 .arff is the input format required by Weka. 
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At the feature type granularity level, where relevant feature types may have different 
topological relationships with the target feature type, the attribute names in the arff file 
will be the different values of the column relevantF concatenated with the value of the 
column relationship stored in the temporary table target_feature_type_temp. For the 
feature type granularity level, the values of the attributes in the matrix will be “YES” 
when the relationship holds in the respective value of column relationship in the table 
target_feature_type_temp. 

After discovering the attribute names that will be the header of the arff file, a matrix is 
created. There will be exactly one row in the matrix for every different instance of the 
target feature type, i.e., for every different gid (geographic identifier). The columns of the 
matrix will be the attribute names discovered in the previous step. The matrix is initialized 
with "?" strings, to fill the attribute values if there is no relationship between an instance of 
the target feature type and a relevant feature (instance or type). 

To filling the matrix with the respective relationships, the temporary table is scanned 
again. Then the matrix is updated with all records that have a relationship (different from 
"?"). Having the matrix matched the temporary table, finally the arff file will be created.  

To create the arff file GDPM starts looking for the non-spatial attributes of the target 
feature type in the database, saving their names into a vector, named columns. The header 
of the file I then created writing each column in columns as an attribute name. The type to 
be created in the arff file depends on the respective attribute type in the database. For the 
type string we need to select all distinct values that the attribute may have in order to 
create the header of a string attribute with all its possible values. For this purpose a SQL 
query is performed over the string attributes of the target feature type. After that, GDPM 
enumerates these values in the arff file, additionally including the value null to catch the 
null values in the database. 

Since non-spatial attributes have already been created, GDPM writes the spatial 
predicates (which are columns in the matrix generated above) as attribute names in the arff 
file. In the sequence, the different values that  each of this attributes may have is written in 
an enumeration of values. 

To filling the body of the file (@data), GDPM starts executing a SQL query that 
returns all instances of the target feature type with its respective non-spatial attribute 
values. For every instance, the respective non-spatial attribute values returned by the query 
as well as the spatial predicates (in the matrix) are added to the file. 

In order to avoid errors in the  arff  file all characters that are not in the sets [A-Z,a-z,0-
9]), are replaced in both attributes and values to the character '_'. 

Since the arff file is created, a message is shown to the user, as shown in Figure 11.  
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Figure 11 – Finishing message when the arff file is successfully created  

3.1.2.3 Database auxiliary functions to improve performance 

Spatial join is the processing bottleneck in spatial data analysis and knowledge 
discovery. In order to improve the spatial join computation aiming to make spatial queries 
both easier and faster, some auxiliar database functions were created. These functions are 
written in the plpgsql language, and are described in the auxFunctions.txt, that have to be 
placed into the Weka installation directory.  

Weka tries to create these functions automatically in a PostGreSQL database after 
clicking the geographic data button shown in Figure 6. The functions are very simple and 
are basically a switch that selects the appropriate label given two geometric attributes. The 
switchIntersection chooses the suitable topological relationship. The fHowDistance 
determines among "CLOSE" and "VERY_CLOSE" given two geometric attributes and 
two distance parameters. 

3.1.2.4 Weka modifications 

The Weka Toolkit was projected to work with JavaBeans. As a consequence, the 
correct point to insert the new code is not a trivial task. The PropertySheetPanel class is 
responsible to create the panels with their respective properties. One of these panels is the 
one shown in Figure 6, where the new button called Geographic Data was added.  

Weka creates all instances dynamically at the beginning when it is loaded, calling the 
PropertySheetPanel class for each instance. To create the new button only in the specific 
panel called weka.Explorer, in the DataPreprocessing interface, we added an if command 
that asks for an InstanceQuery object. The InstanceQuery is the bean used to mount the 
panel, and it contains all information necessary to connect to the database. When the 
InstanceQuery is found, the new button is created. 



 

 

23 

 

Additionally, it needed to know the InstanceQuery object, because the new module 
GDPM (Geographic Database Preprocessing Module) need to get the information about 
the user´s connection of this object. Thus, a listener adapter inner class was created to 
mantain this object. The adapter class calls the GDPM module with the information of its 
InstanceQuery object. The adapter class is at the end of the file PropertySheetPanel.java, 
and is named instanceQueryAdapter. 

3.1.2.5 New classes and Methods 

A new class named GeographicData.java is created into the weka/data/gdpm 
directory. It is independent and does not affect any other class or the Weka original code. 
The main methods of this class are: topology, intersects, distance, and transformation, 
which respectively implement all aspects mentioned before. 

The dependence elimination is implemented in another class, named Dependences.  

Implementation details my be found in Apendix 1. 
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4 CONCLUSIONS AND FUTURE WORKS 

  

This work presented a solution for the problem of automatic geographic data 
preprocessing addressed in (Bogorny, 2005a) and (Bogorny, 2005b). The dependence 
elimination between the target feature type and relevant feature types reported in 
(Bogorny, 2006a) has also been addressed and solved into GDPM 1.1. 

The next steps include the implementation of the algorithms Apriori-KC (Bogorny, 
2006b) and Max-FGP (Bogorny, 2006c) in Weka to eliminate geographic dependences 
among relevant feature types. 

 



 

 

25 

 

5 REFERENCES 

 

(a) BOGORNY, V.; ENGEL, P. M.; ALVARES, L.O.: A Reuse-Based Spatial Data 
Preparation Framework for Data Mining. In Proceedings of the 17 th International 
Conference on Software Engineering and Knowledge Engineering, (SEKE'05). 14-16 July, 
2005. Taipei, Taiwan, Republic of China, 2005, 649-652. 

(b) BOGORNY, V.; ENGEL, P. M.; ALVARES, L.O.: Towards the Reduction of Spatial 
Join for Knowledge Discovery in Geographic Databases using Geo-Ontologies and Spatial 
Integrity Constraints. In: Second Workshop on Knowledge Discovery and Ontologies 
(KDO’2005), Porto, Portugal, 2005, 51-58. 

(a) BOGORNY, V.; CAMARGO, S.; ENGEL, P. M.; ALVARES, L.O. Towards 
elimination or well known geographic domain patterns in spatial association rule mining. 
In: Proceedings of the 3th IEEE (IS’2006) International Conference on Intelligent 
Systems, London, September 4-6, 2006 (to appear). 

(b) BOGORNY, V.; ENGEL, P. M.; ALVARES, L.O. GeoARM – an interoperable 
framework to improve geographic data preprocessing and spatial association rule mining. 
In: Proceedings of the 18th SEKE (SEKE’2006) International Conference on Software 
Engineering and Knowledge Engineering.  
ADRIAANS, P. AND ZANTINGE, D (1996). Data mining. Addison Wesley Longman, 
Harlow, England. 

ESTER M, KRIEGEL H-P, SANDER J (1997). Geographic Data Mining: A Database 
Approach. In Proceedings 5th Int. Symposium on Large Geographic Databases (SSD), 
Berlin, Germany, pp. 47-66. 

ELMASRI R, NAVATHE S (2003). Fundamentals of Database Systems. (4) Addison-
Wesley. 

FAYYAD U, PIATETSKY-SHAPIRO G AND SMYTH, P (1996). From data mining to 
discovery knowledge in databases. AI Magazine, 3(17): 37-54. 

GUTING, R. H. An Introduction to Spatial Database Systems. The International Journal 
on Very Large Data Bases, V3 (4), (October) , pp. 357 - 399  (1994) 

HAN J, KOPERSKI K., STEFANVIC N (1997) GeoMiner: a system prototype for 
geographic data mining. In Proceedings of the ACM-SIGMOD international conference on 



 

 

26 

 

Management Of Data (SIGMOD’97) (May 13-15,1997). ACM Press, Tucson, AR,  553-
556. 

LU, W.; HAN, J.; OOI, B. C. Discovery of general knowledge in large spatial databases. 
In Proceedings… Far East Workshop on Geographic Information Systems, 275-289, 
Singapura, 1993. 
MALERBA D, ESPOSITO F, LANZA A, ET AL (2000). Discovering geographic 
knowledge: the INGENS system. In Foundations of Intelligent Systems, 12th International 
Symposium, (ISMIS), Lecture Notes in Artificial Intelligence, 1932, 40-48, Springer, 
Berlin, Germany.  

OGC (1999a). Topic 5, the OpenGIS abstract specification – OpenGIS features – Version 
4. Available at <http://www.OpenGIS.org/techno/specs.htm>. Retrieved August 2005. 

OGC (1999b). OpenGIS simple features specification for SQL. In URL: 
http://www.opengeogeographic.org/docs/99-054.pdf 

RIGAUX, P.; SCHOLL, M., VOISARD, A. Spatial Databases: With Application To 
GIS. San Francisco:  Morgan Kaufmann Publishers,  2002. 
SATTLER K, SCHALLEHN E (2001). A Data Preparation Framework based on a 
Multidatabase Language. In Proceedings of International Database Engineering and 
Applications Symposium (IDEAS).  

SHEKHAR, S., CHAWLA, S. Spatial databases: a tour. Prentice Hall, Upper Saddle 
River, NJ, 2003. 

IAN H. WITTEN AND EIBE FRANK (2005) "Data Mining: Practical machine learning 
tools and techniques", 2nd Edition, Morgan Kaufmann, San Francisco, 2005.  

 
 
 

 


