
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VANIA BOGORNY

And

ANDREY TIETBÖHL

Extending the Weka Data Mining Toolkit to
support Geographic Data Preprocessing

Technical Report – RP 354

Prof. Dr. Luis Otavio Alvares
Advisor

Porto Alegre, July 2006

TABLE OF CONTENTS

1 Introduction .. 6
1.1 Objective and Contributions .. 7
1.2 Scope and Outline.. 7
2 Background... 8
2.1 OGC Spatial Operations and Database Schema .. 9
2.2 Query Language and Database Connectivity... 11
3 GDPM: into the Weka data mining toolkit.. 12
3.1.1 The Spatial Join and Transformation Process... 16
3.1.1.1 Topological Relationships ... 16
3.1.1.2 Distance Relationships... 18
3.1.2 Implementation details.. 19
3.1.2.1 Spatial Join... 19
3.1.2.2 Transformation... 20
3.1.2.3 Database auxiliary functions to improve performance .. 22
3.1.2.4 Weka modifications ... 22
3.1.2.5 New classes and Methods .. 23
4 Conclusions and Future Works .. 24
5 References ... 25

LIST OF ABREVIATIONS

KDD Knowledge Discovery in Databases

KDGD Knowledge Discovery in Geographic Databases

GDBMS Geographic Database Management System

DM Data Mining

SQL Structure Query Language

CBM Calculus Based Method

DEM Dimension Extended Method

GIS Geographic Information Systems

GDB Geographic Databases

OGC Open GIS Consortium

GKB Geographic Knowledge Base

MBR Minimum Boundary Rectangle

SAR Geographic Association Rule Mining

FGP Frequent Geographic Patterns

LIST OF FIGURES

Figure 1 – Geographic data storage structure in OGC based GDB.................................. 8
Figure 2 – Spatial relationships .. 9
Figure 3 – OpenGIS geographic database schema ... 10
Figure 4 – Weka input format (arff file)... 12
Figure 5 – Weka Explorer GUI .. 13
Figure 6 – Interface to access geographic databases .. 14
Figure 7 – Geographic data preprocessing interface .. 14
Figure 8 – Geographic dependence definition interface... 15
Figure 9 – Part of a geographic map of the Porto Alegre city representing districts,
slums, and water bodies.. 17
Figure 10 – Error message when no relationships are found ... 20
Figure 11 – Finishing message when the arff file is created successfully...................... 22

5

LIST OF TABLES

Table 1 - Feature Instance Granularity Level for topological relationships.................. 16
Table 2 - Feature Type Granularity Level for topological relationships........................ 16
Table 3 – (left) Feature instance and feature type granularity for high level topological
relationships (intersects and non-intersects) and (right) Weka input format.................. 18
Table 4 - (left) Feature instance and feature type granularity for high level for distance
relationships and (right) Weka input format... 19

1 INTRODUCTION

Large amounts of geographic data have been used more and more in many areas in
different application domains such as urban planning, transportation, telecommunication,
marketing, etc. These data are stored under Geographic Database Management Systems
(GDBMS), and manipulated by Geographic Information Systems (GIS). The latter is the
technology which provides a set of operations and functions for geographic data analysis.
However, within the large amount of data stored in geographic databases there is implicit,
non-trivial and previously unknown knowledge that cannot be discovered by GIS. Specific
techniques are necessary to find this kind of knowledge, which is the objective of
Knowledge Discovery in Databases (KDD).

KDD is an interactive process which according to (FAYYAD, 1996) consists of five
main steps: selection, preprocessing, transformation, data mining and
evaluation/interpretation. Selection, preprocessing and transformation are data
preparation steps in which data are rearranged to the format required by data mining
algorithms. It is stated that between 60 and 80 percent of the time and effort in the whole
KDD process is required for data preparation (ADDRIANS, 1996). For geographic
databases this problems increases significantly because of the complexity of geographic
data that must be considered. We have addressed this problem proposing an interoperable
framework for geographic data preprocessing (Bogorny, 2005a) and the use of ontologies
to improve the spatial join computation (Bogorny, 2005b).

Data Mining (DM) is the step of applying discovery algorithms that produce an
enumeration of patterns over the data. Most of these algorithms were created to deal with
small amounts of data and with a restrictive single table input format. This limitation
causes a gap between geographic databases and data mining algorithms.

Many solutions for spatial data mining have been proposed in the literature, but only a
few consider data preparation aspects. Most approaches extend query languages with new
functions and operations for data mining. Han (1997) proposed a geo mining query
language (GMQL) implemented in the GeoMiner software prototype (Han, 1997). Ester
(2000) defined a set of new operations such as get_nGraph, get_neighborhood and
create_nPaths to compute geographic neighbors. Sattler (2001) proposed a multi-database
language to support the KDD steps. Malerba (2000) proposed an object-oriented data
mining query language named SDMOQL, implemented in the INGENS software
prototype. In these approaches it is expected that the GDBMS will implement the
proposed languages and operations. However, most GDBMS follow the Structured Query

7

Language (SQL), which became the standard language to manipulate databases, and do
not implement data mining languages or operations to automate or semi-automate
geographic data preprocessing. Indeed, most geographic data mining software prototypes
are no longer available outside academic institutions. Aiming to make a contribution for
the spatial data mining field and facilitate the practice of knowledge discovery in
geographic databases, we propose an interoperable framework to prepare geographic data
for DM. The objective is to automate part of the KDD steps in order to reduce data
preparation effort and time. For this purpose we propose to extend the Weka (WITTEN,
2005) data mining toolkit to support geographic data preprocessing. Weka is a well known
open source data mining tool which provides friendly graphical user interface for data
mining and pattern interpretation.

1.1 Objective and Contributions
The main objective of this work is to automate the geographic data preprocessing steps

into the Weka data mining toolkit, aiming to facilitate the practice of spatial data mining.
The main contributions include:

• Interoperability with any GDBMS constructed under OpenGIS Simple Features
Implementation Specification (OGC 1999a).

• Generate new datasets with more or less information automatically and very easily.
• Different classical data mining algorithms can be applied in the data mining step. The

output results can be easily visualized.
• The user can define the relevant spatial features, the target feature type, different

spatial relations, as well as different granularity levels.
• Spatial as well as non-spatial data are considered.
• The feature’s spatial representation is independent of geometric type. While most

spatial data mining algorithms have as an input a set of points, our framework
supports any geometric primitive.

• Geographic dependences can be specified and are eliminated between the target
feature type and any relevant feature type. This results in more efficient spatial join
and the generation of less well known geographic domain patterns, as explained in
(Bogorny, 2006a).

1.2 Scope and Outline
This work is limited to provide into the Weka data mining toolkit a module that

supports geographic data preprocessing, named GDPM. The remaining of this report is
organized as follows: Section 2 presents background knowledge about geographic data.
Section 3 presents the extension of Weka, and Section 4 concludes the report and suggests
directions of future improvements.

8

2 BACKGROUND

Geographic databases (GDB) store real world objects, also called spatial features,
located in a specific region (OGC, 1999a). Spatial features (e.g. Canada, France) belong to
a feature type (e.g. country), and have both non-spatial attributes (e.g. name, population)
and spatial attributes (geographic coordinates x,y).

The number of geographic feature types in geographic databases is normally large, and
every different feature type is usually stored in a different relation, because most
geographic databases follow the relational (SHEKHAR, 2003) (RIGAUX, 2000) or
object-relational approach. Figure 1 shows an example of geographic data stored in
relational databases, where the feature types street, water resource, and gas station are
different relations with geographic (shape) and non-geographic attributes.

(a) Street
Gid Name Shape
1 Erie ST Multiline [(x1,y1),(x2,y2),..]
2 Oak ST Multiline [(x1,y1),(x2,y2),..]

 (b) WaterResource

Gid Name Shape
1 Jacui Multiline [(x1,y1),(x2,y2),..]
2 Guaiba Multiline [(x1,y1),(x2,y2),..]
3 Uruguai Multiline [(x1,y1),(x2,y2),..]

 (c) GasStation

Gid Name VolDiesel VolGas Shape
1 BR 20000 85000 Point[(x1,y1)]
2 IPF 30000 95000 Point[(x1,y1)]
3 Elf 25000 120000 Point[(x1,y1)]

 (d) GEOMETRY_COLUMNS

F_table_schema F_table_name F_geometry_column Type SRID
Public Street The_geom Multiline -1
Public WaterResource The_geom Multiline -1
Public GasStation The_geom Point -1

Figure 1 – Geographic data storage structure in OGC based GDB

The spatial attributes of geographic object types, represented by shape in Figure 1,
have intrinsic spatial relationships (e.g. close, far, contains, intersects). Because of these
relationships real world entities can affect the behavior of other features in the
neighborhood. This makes spatial relationships be the main characteristic of geographic

9

data to be considered for data mining and knowledge discovery (LU, 1993) and the main
characteristic which differs geographic/spatial data mining from transactional data mining.

Spatial relationships are usually not explicitly stored in geographic databases, so they
have to be computed with geographic operations. There are basically 3 spatial relations to
consider (GUTTING, 1994): topological, distance and order. Topological relations
characterize the type of intersection between two spatial features and they can be classified
in Equal, Disjoint, Touches, Within, Overlaps, Crosses, Contains and Covers. Figure 2 (a)
shows an example of the topological relationships Touches, Contains and Crosses.

Distance relations are based on the Euclidean distance between two spatial features, as
shown in Figure 2(b).

Direction relations deal with the order as spatial features are located in space. Figure 2
(c) shows an example of direction/order relations.

Figure 2 – Spatial relationships

GIS implement specific operations and functions to manipulate and visualize
geographic data. The OGC(Open GIS Consortium) is an organization dedicated to develop
standards for spatial operations and spatial data integration, aiming to provide
interoperability for GIS. Among many specifications established by the OGC, there are
two of fundamental importance for this work: operations to compute spatial relationships
and the database schema metadata, introduced in the following section.

2.1 OGC Spatial Operations and Database Schema
The OGC is a not-for-profit organization dedicated to provide interoperability for

Geographic Information Systems. It defines a standard set of operations to compute
spatial relations for SQL (OGC, 1999b), which are implemented by most GDBMS. These
operations are sufficient enough to compute relations among spatial features. Standard
functions and operations including intersection, buffer, convex hull, topological and
distance are provided (see (OGC, 1999) to have an overview of the list of operations).

The database schema metadata are stored in a database table named
GEOMETRY_COLUMNS, which is created during the database creation and is
instantiated automatically when geographic data are loaded the first time. This table stores
all database characteristics, including the database schema name, all geographic table
names (which is for data mining the geographic feature types), the name of the geometric
column, and its type (e.g. point, line). An example is illustrated in Figure 1(d). This table
consists of a row for each feature type in the geographic database with geometric
attributes.

Figure 3 shows the storage schema where Feature Table/View corresponds to a
database table or view, which contains geometric attributes. Each table name is associated

B1

B2A1

B1 north A1

B2 southeast A1

(b) Distance relations (c) Direction/Order relations

A2

A2

A1
B3

A1

B1

B2

d

d

d

B4
A3

(a) Topological relations

B4

10

with a particular spatial reference system in table Spatial_Reference_Systems. Each
geometry in the database is identified by a key (GID), which consists of a collection of
elements numbered by an element sequence (ESEQ).

Each Feature Table/View with geometric attributes is related to
GEOMETRY_COLUMNS. This table consists of a row for each Feature Table/View with
geometric attributes in the geographic database. The data stored for each database table or
view with geometry columns include:

Figure 8 – OGC model for feature tables under SQL92 [18]

• F_TABLE_CATALOG, F_TABLE_SCHEMA, F_TABLE_NAME – fully
qualified name of the feature table containing the geometry column;

• F_GEOMETRY_COLUMN— name of the geometric column in the feature table

Figure 3 – OpenGIS geographic database schema

• G_TABLE_CATALOG, G_TABLE_SCHEMA, G_TABLE_NAME— name of
the geometry table and its schema and catalog. The geometry table implements the
geometry column.

• STORAGE_TYPE— type of storage being used for this geometry column.

• GEOMETRY_TYPE—the type of geometry values stored in this column (point,
curve,polygon, etc..)

• COORD_DIMENSION—corresponds to the number of dimensions in the spatial
reference system.

• MAX_PPR— number of points stored as ordinate columns in the geometry table.

• SRID—the ID of the spatial reference system used for the coordinate geometry in
this table. It is a foreign key reference to the SPATIAL_REF_SYS table.

(a) Feature Table/View characteristics

(b) geometric column implementation

11

2.2 Query Language and Database Connectivity
The SQL became the standard data definition and manipulation language for relational

databases (ELMASRI, 2003). This language is implemented by most commercial and
open source GDBMS and was extended with spatial functions and operations to
manipulate geographic data. With this standard, it is possible to write queries to access
data stored in different databases, without changing the statements.

JDBC is the industry standard for database-independent connectivity between the Java
programming language and a wide range of databases. The JDBC API provides a call-
level API for SQL database access. With a JDBC API it is possible to establish a
connection with a geographic database, to send SQL statements to manipulate data, and to
process the results.

12

3 GDPM: INTO THE WEKA DATA MINING TOOLKIT

Many classical DM algorithms are implemented in toolkits, while spatial data mining
toolkits are rare. Weka, for example, implements more than twenty different algorithms for
classification, clustering and association rules. The algorithms implemented in toolkits
share the same single table input format, which can vary a little among different toolkits,
but can easily be adapted. When organized into the single table format, different
techniques and algorithms can be applied to the same dataset. Figure 4 shows an example
of a spatial dataset preprocessed and transformed into the single table format to be mined
with Weka.

Figure 4 – Weka input format (arff file)

@relation 'geographic_data'

@attribute f_code_des
{null,Cropland,Grassland,Land_Subject_to_Inundation,Rice_Field,Scrub_Brush}
@attribute road_OVERLAPS {yes}
@attribute river_CROSSES {yes}
@attribute river_CONTAINS {yes}
@attribute tunel_CROSSES {yes}
@attribute river_OVERLAPS {yes}
@attribute road_CROSSES {yes}
@attribute bridge_WITHIN {yes}
@attribute river_WITHIN {yes}
@attribute river_TOUCHES {yes}
@attribute bridge_CONTAINS {yes}
@attribute tunel_TOUCHES {yes}
@attribute road_CONTAINS {yes}
@attribute tunel_CONTAINS {yes}
@attribute bridge_OVERLAPS {yes}
@attribute road_TOUCHES {yes}
@attribute tunel_OVERLAPS {yes}
@attribute bridge_CROSSES {yes}
@attribute tunel_WITHIN {yes}
@attribute road_WITHIN {yes}
@attribute bridge_TOUCHES {yes}

@data

Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,?,?,yes,yes,?,?,yes,?,?,?,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,yes,?,yes,yes,?,?,yes,?,?,?,?
Land_Subject_to_Inundation,yes,?,yes,?,yes,?,?,?,?,?,?,?,yes,?,?,yes,?,?,?,?
Cropland,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,yes,?,?,?,?
Cropland,yes,?,?,?,yes,?,?,?,?,yes,?,?,?,?,?,yes,?,?,?,?
Cropland,?
Cropland,yes,?,?,?,yes,?,?,?,?,?,?,?,?,?,?,yes,?,?,?,?
Rice_Field,yes,?,yes,?,yes,?,?,?,?,yes,?,?,?,?,?,yes,?,?,yes,?

13

For spatial DM, the single table represents the target feature type on which discovery
will be performed. Each row in the single table is an independent unit, i.e. a different
instance of target feature type and each column is an item characterizing this unit. In the
example in Figure 4 the target feature type is city, such that each row of the single table is
a different city. The attributes are spatial predicates related to city.

To generate this file in Weka the user has to open the Weka Explorer interface, shown
in Figure 5. This interface has not received any modification.

Figure 5 – Weka Explorer GUI

The second step is to click on the button OpenDB, which opens the window shown in
Figure 6. In the window shown in Figure 6 the user has to provide the database url, user
name, and password. This window reads the DatabaseUtils.props file to set the default
information to connect the database. From this window, Weka connects to PostGIS
through JDBC and opens a new window already connected to the database provided by the
url when the button Geographic Data (which we included in order to call the geographic
data preprocessing module GDPM) is clicked, as shown in Figure 7.

GDPM is a new java class completely independent, named GeographicData.java,
stored into the weka/gui/gdpm directory.

14

Figure 6 – Interface to access geographic databases

Figure 7 – Geographic data preprocessing interface

15

To start the preprocessing tasks, the database schema must be provided, and the button
Load pressed to retrieve all spatial feature types from the database table
geometry_columns. Since the spatial feature types are loaded, the user chooses the target
feature type and all relevant feature types. To define geographic dependences, the user has
to mark the check box, which enables the button to specify geographic dependences. After
clicking on the dependence definition button the interface shown in Figure 8 is called.

 In the dependence definition windows appear two combos that contain all database
spatial feature types with an instance in the table geometry_columns. The user may choose
one spatial feature type in each combo, and by pressing the add button, a new dependence
will be created with the respective selected pair. The pair will than appear in the list of
dependences in the same window. To remove any dependence already defined, the user
must select the pair and click on the button remove.

After dependences have been defined, the button OK must be clicked in order to store
the dependences into a database table named knowledgeConstrains.

Figure 8 – Geographic dependence definition interface

The following step is to provide the type of spatial relationships and the granularity
level in the window shown in Figure 7. Our prototype automatically generates data at two
granularity levels (feature instance and feature type), for distance, topological, and high
level topological relationships (intersects), without any concept hierarchy, as will be
explained in the following section. For distance relationships one or two distance
parameters must be provided.

Since all parameters have been provided to the window shown in Figure 7 and button
OK is pressed, the first step performed is the dependence elimination. Before perform the
spatial join step between the target feature type and each relevant feature type, GDPM
searches for a dependence in the table knowledgeConstraints. When a dependence is
found, the relevant feature type is removed from the set and the next relevant feature type
is tested. After all dependences have been removed the spatial join and transformation
modules start.

16

3.1.1 The Spatial Join and Transformation Process

3.1.1.1 Topological Relationships

Topological relationships are mutually exclusive, i.e., only one topological relationship
holds between to spatial feature instances (e.g. Porto Alegre city and Canoas city). At the
feature instance granularity level, i.e., when both type and instances of the relevant feature
types are considered in the mining process, every instance of the target feature type may
have one and only one topological relationship with an instance of a relevant feature type.
Table 1 (left) illustrates an example of the spatial join computation where city 1 has the
relationship contains with River_1, crosses with River_2, and contains with Slum_1. The
spatial join output (Table 1 left) at the feature instance granularity level when transformed
to the Weka input format (Table 1 right), the relevant feature type name with the
respective instance is transformed in an attribute, while its value receives the respective
topological relationship. For the relevant feature instances that have no relationship with
the instance of the target feature (e.g. River_3 and city_1, River_1 and city_3), the
attribute value is filled with “?”, which is the symbol used by Weka to represent the
absence of an attribute.

Table 1 - Feature Instance Granularity Level for topological relationships
TargetF_id
(city)

RelevantF
Instance

Relationship

1 River_1 Contains
1 River_2 Crosses
2 River_3 Contains
2 River_4 Crosses
3 River_2 Crosses
1 Slum_1 Contains
2 Slum_2 Contains

At a higher granularity level (feature type), as shown in Table 2 (left), notice that the
relevant feature instance is not stored in the spatial join output. For example, city 1 has
two topological relationships with the relevant feature type River, contains and crosses. At
this granularity, to preserve the type of the topological relationship, we cannot simply
convert the relevant feature type River to an attribute in the transformation process
because attributes with same names are not allowed. For example, the final table cannot
have two attributes River with two different relationships (contains and crosses). Indeed, it
would be difficult to specify dominance between topological relationships in order to
choose the strongest relationship.

To preserve the relationship type, the attribute name in the final table (Table 2 right) is
the feature type and the relationship type, while the attribute value receives the string
“yes” when the relationship holds and “ ?” if there is no topological relationship.

 Table 2 - Feature Type Granularity Level for topological relationships
TargetF_id
(city)

RelevantF
Type

Relationship

1 River Contains
1 River Crosses
2 River Contains
2 River Crosses
3 River Crosses
1 Slum Contains
2 Slum Contains

TargetF_id
(city)

River_1 River_2 River_3 River_4 Slum_1….

1 contains crosses ? ? Contains
2 ? ? Contains Crosses Contains
3 ? Crosses ? ? ?

TargetF_id
(city)

Contains_River Crosses_River Contains_Slum

1 Yes Yes Yes
2 Yes Yes Yes
3 ? Yes ?

17

According to the objective of the discovery sometimes topological relationships may
generate some problems. Let us evaluate these problems in practice analyzing Figure 9
which shows part of a geographic map where the small polygons are slums, large polygons
are districts, and lines are water bodies of the city of Porto Alegre. Let us suppose that
district is the target feature type and slums and water bodies are the relevant feature types.

Figure 9 – Part of a geographic map of the Porto Alegre city representing districts, slums,

and water bodies

In Figure 9 we can observe the different topological relationships that districts may
have with both slums and water bodies. The district Nonoai, for example, “contains”
slums (e.g. 159 and 183), “touches” slums (e.g. 180), and “overlaps” slums (e.g. 174).
The district Teresopolis, for example, “contains” water bodies (e.g. 93, 338) and is
“crossed” by water body (e.g. 339). Different topological relationships may not generate
patterns when mining data at the feature instance granularity level if thresholds such as
minimum support for mining spatial association rules are not very low.

For example, the predicates touches(slum_183) for district Santa Tereza will be
considered different from the predicate contains(slum_183) for the district Nonoai. The
same occurs for slum_180 which is within district Cristal and touched by district Nonoai.
When the objective is to investigate high criminal incidence, for example, and either slum
180 or 183 are responsible for high criminal incidence in districts Nonoai and Cristal, this
might not be discovered by data mining algorithms. The same problem may occur when
mining data at the feature type granularity level.

As one solution for this problem we propose to consider general topological
relationships intersects and non-intersects. When different instances of the target feature
(e.g. district Cristal and district Nonoai, or district Nonoai and district Santa Teresa) have
topological relationships with the same instance of a relevant feature type (e.g.slum_180
and slum_183), instead of touches(slum_180) and contains(slum_180), for example, a
predicate intersects(slum_180) is generated.

 Slums

 Districts

 WaterBody

18

Table 3 (left) shows two tables with the feature instance (top) and feature type
granularity level (bottom) for the intersects relationship, and Table 3 (right) shows the
respective transformation for the Weka input format.

Table 3 – (left) Feature instance and feature type granularity for high level topological
relationships (intersects and non-intersects) and (right) Weka input format

TargetF_id
(city)

RelevantF
Instance

Relationship

1 River_1 Intersects
1 River_2 Intersects
2 River_3 Intersects
2 River_4 Intersects
3 River_2 Intersects
1 Slum_1 Intersects
2 Slum_2 Intersects

TargetF_id
(city)

RelevantF
Type

Relationship

1 River Intersects
2 River Intersects
3 River Intersects
1 Slum Intersects
2 Slum Intersects

3.1.1.2 Distance Relationships

Distance relationships are computed according to the distance parameters provided by
the user. If only one distance parameter is provided, neighborhoods are considered very
close if their distance from the target feature is less or equal to dist1. When two distance
measures are informed, than neighborhoods are considered very close if their distance
from the target feature is less or equal to dist1 and close if their distance is higher than
dist1 and smaller than dist2, as shown in the example in Table 4 (left) for the feature
instance and feature type granularity level.

It is important to emphasize that GDPM does not materialize the far relationship,
because all relevant feature types that are neither close nor very close from the target
feature will be far. This would produce and enormous amount of non-interesting patterns.
For example, the city 1 is very close to river 1 and close to river 2, but far from all other
rivers. The materialization of the relationship far would generate, for example, patterns for
all relevant feature types far from the target feature. For distance relationships we can say
that close relationships are dominant over far, because all objects are not close will be far.
Examples of patterns generated at lower granularities include as River_1=VeryClose
River_3=far, and contradictory/negative rules at higher granularities, such as
VeryClose_River=yes FarFrom_River=yes.

To better understand this process, let us observe the map shown in Figure 9. Slum 159,
for example, is very close to district Nonoai, but it would be far from all other districts for
very low distance threshold. At the feature type granularity level, the district Nonoai
would be very close to slums (that are within Nonoai), close to slums (that are within
districts that share boundaries with Nonoai such as Cristal, Santa Tereza, and Teresopolis),
but far from all other slums related to all other districts (e.g. slum 124 in district
Camaqua) far from Nonoai which do not appear in the map.

TargetF_id
(city)

Intersects_River Intersects_Slum

1 Yes Yes
2 Yes Yes
3 yes ?

TargetF_id
(city)

River_1 River_2 River_3 River_4 Slum_1….

1 intersects intersects ? ? intersects

2 ? ? intersects intersects intersects

3 ? intersects ? ? ?

19

Table 4 - (left) Feature instance and feature type granularity for high level for distance
relationships and (right) Weka input format

TargetF_id
(city)

RelevantF
Instance

Relationship

1 River_1 VeryClose
1 River_2 Close
2 River_3 Close
2 River_4 Close
3 River_2 VeryClose
1 Slum_1 Close
2 Slum_2 VeryClose

TargetF_id
(city)

RelevantF
Type

Relationship

1 River VeryClose
1 River Close
2 River Close
3 River VeryClose
1 Slum Close
2 Slum VeryClose

Just in case someone would like to consider things that are far, the value of the
distance metric dist2 can be increased in order to cover the relationship far.

In the previous sections we described the details to be considered for preprocessing
geographic data. In the following sections we describe implementation details.

3.1.2 Implementation details

3.1.2.1 Spatial Join

The spatial join step is performed among the target feature type and all selected
relevant feature types that have no dependence with the target feature. This is performed in
the geographic database, with the spatial operations implemented by PostGIS, which
follows the OGC approach.

The spatial join result is stored in a database temporary table called
target_feature_type_name_temp. This table contains the attributes
gid_target_feature_type, relevantF (which is the name of the relevant feature type), and
relationship, as described in the previous sections.

In case there are no spatial relationships between the target feature type and relevant
feature types, the window shown in Figure 10 is presented to the user.

TargetF_id
(city)

River_1 River_2 River_3 River_4 Slum_1….

1 VeryClose Close ? ? Close
2 ? ? Close Close VeryClose
3 ? VeryClose ? ? ?

TargetF_id
(city)

VeryClose_River Close_River Close_Slum VeryClose_Slum

1 Yes ? Yes ?
2 ? Yes ? Yes
3 Yes ? ? ?

20

Figure 10 – Error message when no relationships are found

3.1.2.2 Transformation

The transformation module is performed in memory and generates an arff 1file in the
directory weka/data, named geographic_data.arff. As the arff file may contain a large
number of attributes, mainly when mining data at the feature instance granularity level, the
transformation step cannot store the result in a database table, since PostGIS only allows
database tables with less than 1500 columns.

By implementing the transformation step in memory makes the process run much
faster. Going into detail about the implementation, the transformation step implies in
obtain the non-spatial attributes of the target feature type (obtained from the database table
target_feature_type), and the spatial predicates, which are all different predicates
generated by the spatial join step.

The transformation step starts reading from the database the table
target_feature_type_temp, in order to find the spatial attributes (spatial predicates) that
will be part of the header of the arff file. To find the new attributes the system checks
which granularity level is selected in the interface. At the feature instance granularity
level, every different value of the column RelationF in table target_feature_type_temp
will result in a new attribute in the arff file.

The possible values of these attribute are stored in the column relationships in the table
target_feature_type_name_temp. For topological relationships, possible values of the
relevantF collumn are: "CONTAINS", "TOUCHES", "WITHIN", "OVERLAPS",
"CROSSES", as shown in the example in Table 1. For the high level topological
relationships, the possible value is "INTERSECTS", as shown in Table 3. For distance
relationships the possible attribute values are "VERY_CLOSE" and "CLOSE".

1 .arff is the input format required by Weka.

21

At the feature type granularity level, where relevant feature types may have different
topological relationships with the target feature type, the attribute names in the arff file
will be the different values of the column relevantF concatenated with the value of the
column relationship stored in the temporary table target_feature_type_temp. For the
feature type granularity level, the values of the attributes in the matrix will be “YES”
when the relationship holds in the respective value of column relationship in the table
target_feature_type_temp.

After discovering the attribute names that will be the header of the arff file, a matrix is
created. There will be exactly one row in the matrix for every different instance of the
target feature type, i.e., for every different gid (geographic identifier). The columns of the
matrix will be the attribute names discovered in the previous step. The matrix is initialized
with "?" strings, to fill the attribute values if there is no relationship between an instance of
the target feature type and a relevant feature (instance or type).

To filling the matrix with the respective relationships, the temporary table is scanned
again. Then the matrix is updated with all records that have a relationship (different from
"?"). Having the matrix matched the temporary table, finally the arff file will be created.

To create the arff file GDPM starts looking for the non-spatial attributes of the target
feature type in the database, saving their names into a vector, named columns. The header
of the file I then created writing each column in columns as an attribute name. The type to
be created in the arff file depends on the respective attribute type in the database. For the
type string we need to select all distinct values that the attribute may have in order to
create the header of a string attribute with all its possible values. For this purpose a SQL
query is performed over the string attributes of the target feature type. After that, GDPM
enumerates these values in the arff file, additionally including the value null to catch the
null values in the database.

Since non-spatial attributes have already been created, GDPM writes the spatial
predicates (which are columns in the matrix generated above) as attribute names in the arff
file. In the sequence, the different values that each of this attributes may have is written in
an enumeration of values.

To filling the body of the file (@data), GDPM starts executing a SQL query that
returns all instances of the target feature type with its respective non-spatial attribute
values. For every instance, the respective non-spatial attribute values returned by the query
as well as the spatial predicates (in the matrix) are added to the file.

In order to avoid errors in the arff file all characters that are not in the sets [A-Z,a-z,0-
9]), are replaced in both attributes and values to the character '_'.

Since the arff file is created, a message is shown to the user, as shown in Figure 11.

22

Figure 11 – Finishing message when the arff file is successfully created

3.1.2.3 Database auxiliary functions to improve performance

Spatial join is the processing bottleneck in spatial data analysis and knowledge
discovery. In order to improve the spatial join computation aiming to make spatial queries
both easier and faster, some auxiliar database functions were created. These functions are
written in the plpgsql language, and are described in the auxFunctions.txt, that have to be
placed into the Weka installation directory.

Weka tries to create these functions automatically in a PostGreSQL database after
clicking the geographic data button shown in Figure 6. The functions are very simple and
are basically a switch that selects the appropriate label given two geometric attributes. The
switchIntersection chooses the suitable topological relationship. The fHowDistance
determines among "CLOSE" and "VERY_CLOSE" given two geometric attributes and
two distance parameters.

3.1.2.4 Weka modifications

The Weka Toolkit was projected to work with JavaBeans. As a consequence, the
correct point to insert the new code is not a trivial task. The PropertySheetPanel class is
responsible to create the panels with their respective properties. One of these panels is the
one shown in Figure 6, where the new button called Geographic Data was added.

Weka creates all instances dynamically at the beginning when it is loaded, calling the
PropertySheetPanel class for each instance. To create the new button only in the specific
panel called weka.Explorer, in the DataPreprocessing interface, we added an if command
that asks for an InstanceQuery object. The InstanceQuery is the bean used to mount the
panel, and it contains all information necessary to connect to the database. When the
InstanceQuery is found, the new button is created.

23

Additionally, it needed to know the InstanceQuery object, because the new module
GDPM (Geographic Database Preprocessing Module) need to get the information about
the user´s connection of this object. Thus, a listener adapter inner class was created to
mantain this object. The adapter class calls the GDPM module with the information of its
InstanceQuery object. The adapter class is at the end of the file PropertySheetPanel.java,
and is named instanceQueryAdapter.

3.1.2.5 New classes and Methods

A new class named GeographicData.java is created into the weka/data/gdpm
directory. It is independent and does not affect any other class or the Weka original code.
The main methods of this class are: topology, intersects, distance, and transformation,
which respectively implement all aspects mentioned before.

The dependence elimination is implemented in another class, named Dependences.

Implementation details my be found in Apendix 1.

24

4 CONCLUSIONS AND FUTURE WORKS

This work presented a solution for the problem of automatic geographic data
preprocessing addressed in (Bogorny, 2005a) and (Bogorny, 2005b). The dependence
elimination between the target feature type and relevant feature types reported in
(Bogorny, 2006a) has also been addressed and solved into GDPM 1.1.

The next steps include the implementation of the algorithms Apriori-KC (Bogorny,
2006b) and Max-FGP (Bogorny, 2006c) in Weka to eliminate geographic dependences
among relevant feature types.

25

5 REFERENCES

(a) BOGORNY, V.; ENGEL, P. M.; ALVARES, L.O.: A Reuse-Based Spatial Data
Preparation Framework for Data Mining. In Proceedings of the 17 th International
Conference on Software Engineering and Knowledge Engineering, (SEKE'05). 14-16 July,
2005. Taipei, Taiwan, Republic of China, 2005, 649-652.

(b) BOGORNY, V.; ENGEL, P. M.; ALVARES, L.O.: Towards the Reduction of Spatial
Join for Knowledge Discovery in Geographic Databases using Geo-Ontologies and Spatial
Integrity Constraints. In: Second Workshop on Knowledge Discovery and Ontologies
(KDO’2005), Porto, Portugal, 2005, 51-58.

(a) BOGORNY, V.; CAMARGO, S.; ENGEL, P. M.; ALVARES, L.O. Towards
elimination or well known geographic domain patterns in spatial association rule mining.
In: Proceedings of the 3th IEEE (IS’2006) International Conference on Intelligent
Systems, London, September 4-6, 2006 (to appear).

(b) BOGORNY, V.; ENGEL, P. M.; ALVARES, L.O. GeoARM – an interoperable
framework to improve geographic data preprocessing and spatial association rule mining.
In: Proceedings of the 18th SEKE (SEKE’2006) International Conference on Software
Engineering and Knowledge Engineering.
ADRIAANS, P. AND ZANTINGE, D (1996). Data mining. Addison Wesley Longman,
Harlow, England.

ESTER M, KRIEGEL H-P, SANDER J (1997). Geographic Data Mining: A Database
Approach. In Proceedings 5th Int. Symposium on Large Geographic Databases (SSD),
Berlin, Germany, pp. 47-66.

ELMASRI R, NAVATHE S (2003). Fundamentals of Database Systems. (4) Addison-
Wesley.

FAYYAD U, PIATETSKY-SHAPIRO G AND SMYTH, P (1996). From data mining to
discovery knowledge in databases. AI Magazine, 3(17): 37-54.

GUTING, R. H. An Introduction to Spatial Database Systems. The International Journal
on Very Large Data Bases, V3 (4), (October) , pp. 357 - 399 (1994)

HAN J, KOPERSKI K., STEFANVIC N (1997) GeoMiner: a system prototype for
geographic data mining. In Proceedings of the ACM-SIGMOD international conference on

26

Management Of Data (SIGMOD’97) (May 13-15,1997). ACM Press, Tucson, AR, 553-
556.

LU, W.; HAN, J.; OOI, B. C. Discovery of general knowledge in large spatial databases.
In Proceedings… Far East Workshop on Geographic Information Systems, 275-289,
Singapura, 1993.
MALERBA D, ESPOSITO F, LANZA A, ET AL (2000). Discovering geographic
knowledge: the INGENS system. In Foundations of Intelligent Systems, 12th International
Symposium, (ISMIS), Lecture Notes in Artificial Intelligence, 1932, 40-48, Springer,
Berlin, Germany.

OGC (1999a). Topic 5, the OpenGIS abstract specification – OpenGIS features – Version
4. Available at <http://www.OpenGIS.org/techno/specs.htm>. Retrieved August 2005.

OGC (1999b). OpenGIS simple features specification for SQL. In URL:
http://www.opengeogeographic.org/docs/99-054.pdf

RIGAUX, P.; SCHOLL, M., VOISARD, A. Spatial Databases: With Application To
GIS. San Francisco: Morgan Kaufmann Publishers, 2002.
SATTLER K, SCHALLEHN E (2001). A Data Preparation Framework based on a
Multidatabase Language. In Proceedings of International Database Engineering and
Applications Symposium (IDEAS).

SHEKHAR, S., CHAWLA, S. Spatial databases: a tour. Prentice Hall, Upper Saddle
River, NJ, 2003.

IAN H. WITTEN AND EIBE FRANK (2005) "Data Mining: Practical machine learning
tools and techniques", 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

