
DeepBot: A Focused Crawler for Accessing
Hidden Web Content

Manuel Álvarez, Juan Raposo, Alberto Pan, Fidel Cacheda, Fernando Bellas, Víctor Carneiro
University of A Coruña - Department of Information and Communications Technologies

Facultade de Informática
Campus de Elviña s/n, A Coruña 15071, Spain

Phone: +34 981 167 000

{mad,jrs,apan,fidel,fbellas,viccar}@udc.es

ABSTRACT
The crawler engines of today cannot reach most of the
information contained in the Web. A great amount of valuable
information is "hidden" behind the query forms of online
databases, and/or is dynamically generated by technologies such
as Javascript. This portion of the web is usually known as the
Deep Web or the Hidden Web. We have built DeepBot, a
prototype of hidden-web focused crawler able to access such
content. DeepBot receives a set of domain definitions as an input,
each one describing a specific data-collecting task and
automatically identifies and learns to execute queries on the forms
relevant to them. In this paper we describe the techniques
employed for building DeepBot and report the experimental
results obtained when testing it with several real world data
collection tasks.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases.

H.2.8 [Database Management]: Database Applications - Data
mining.

H.3.4 [Information Storage and Retrieval]: Systems and
Software

General Terms
Algorithms, Design, Experimentation.

Keywords
Crawler, Hidden Web, Web Forms.

1. INTRODUCTION
A key component in the architecture of current web search
engines are the “crawler” programs used to automatically traverse
the Web, retrieving pages to build a searchable index of their
content. Crawlers receive as input a set of "seed" pages and

recursively obtain new ones by locating and traversing their
outbound links.

Conventional web crawlers cannot reach to a very significant
fraction of the web, which is usually called the “Hidden Web” or
the “Deep Web”.

Several works have studied and characterized the Hidden Web
[4], [5]. They concluded that it is substantially larger than the
publicly indexable web and that it usually contains data of higher
quality and with a higher degree of structure.

The problem of crawling the “Hidden Web” can be divided into
two challenges:

- Crawling the “server-side” Hidden Web. Many websites offer
query forms to access the contents of an underlying database.
Conventional crawlers cannot access these pages because they
do not know how to execute queries on those forms.

- Crawling the “client-side” Hidden Web. Many websites use
techniques such as client-side scripting languages and session
maintenance mechanisms. Most conventional crawlers are
unable to handle this kind of pages.

This paper overviews the architecture of DeepBot, a prototype
system for crawling the Hidden Web, and describes in detail the
techniques it uses for accessing the content behind web forms.
The techniques used to deal with the client-side Deep Web were
described in greater detail in [1].

The main features of DeepBot are:

- For accessing the “server-side” Deep Web, DeepBot can be
provided with a set of domain definitions, each one describing
a certain data-gathering task. DeepBot automatically detects
forms relevant to the defined tasks and executes a set of pre-
defined queries on them.

- DeepBot’s crawling processes are based on automated “mini
web browsers”, built by using browser APIs (our current
implementation is based on Microsoft Internet Explorer). This
enables our system to deal with client-side scripting code,
session mechanisms, and other complexities related with the
client-side Hidden Web.

The paper is organized as follows. Section 2 overviews the
architecture of DeepBot and the main components that participate
in accessing the server-side Hidden Web. Section 3 describes the
domain definitions used to specify a data collection task. Section

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DEECS 2007, June 12, 2007. San Diego, California, USA
Copyright © 2007 ACM 978-1-59593-856-5/07/06... $5.00

18

4 describes how DeepBot detects query forms relevant to a certain
task and how it learns to execute queries on them. Section 5
describes our experiments with the system. Section 6 discusses
related work and section 7 concludes the paper.

2. ARCHITECTURE
The architecture of the system is shown in Figure 1. As well as in
conventional crawlers, the functioning of DeepBot is based on a
shared list of routes (pointers to documents), which will be
accessed by a certain number of concurrent crawling processes,
distributed into several machines. The main singularities of our
approach are:
- In conventional crawlers, routes are just URLs. Thus, they

have problems with sources using session mechanisms. Our
system stores, with each route, a session object containing all
the required information (cookies, etc.) to restore the
execution environment in which the crawling process was
running in the moment of adding the route to the master list.

- Conventional engines implement crawling processes by using
HTTP clients. Instead, our system uses lightweight automated
mini web browsers (built by using the APIs of most popular
browsers) as execution environment for automated navigation.
These mini web browsers access to pages by generating
actions on a web browser interface, in the same way a human
user would generate them when browsing. For specifying a
navigation sequence in the automated mini-browsers, we use
NSEQL [13], a language which allows representing the list of
interface events a user would need to produce on the browser
to reach the desired page.

- When the system reaches a new page, in addition of using its
anchors to generate new routes, it also examines each HTML
form and ranks its relevance with respect to a set of pre-
configured domain definitions, each one describing a specific
data-collection task. If the system finds that the form is
relevant, it is used to execute a set of queries defined by the
domain, thus reaching to new pages.

The architecture also includes components for indexing and
searching the crawled contents, using state of the art algorithms
(our current implementation is based on Apache Lucene). The

NSEQL sequence needed to access each document is also stored.
This sequence is used by the ActiveX for automatic navigation
Component, which receives as a parameter a NSEQL program,
downloads itself into the user browser and makes it execute the
given sequence. This is used to access the documents returned as
result of a search against the index, when they cannot be directly
accessed in the source by using its URL, due to session issues.

3. DOMAIN DEFINITIONS
In this section, we describe the domain definitions used to define
a data-collection task. A domain definition is composed of the
following elements:

- A set of attributes A={a1, a2, …, an}. Each attribute ai has
associated a name, a set of aliases {ai_alias1,…, ai_aliask},
and a specificity index si.

- A set of queries Q={q1, q2, …, qm} we want to execute on the
discovered relevant forms. Each query qj is a list of pairs
(attribute, value), where attribute is an attribute of the domain
and value is a string (it can be empty).

- A relevance threshold denoted as µ.

An attribute represents a field that may appear in the query forms
that are relevant to the data-collection task.

The aliases represent alternative labels that may identify the
attribute in a query form. For instance, the attribute AUTHOR,
from a domain used for collecting data about books, could have
aliases such as “writer” or “written by”. It is important to notice
that the study in [5] concluded that the aggregate schema
vocabulary of web forms in the same domain tends to converge at
a relatively small size. They also detected a Zipf-like distribution
of attribute frequencies (thus, a small set of “dominant” attributes
are much more frequent than the rest of attributes). This supports
the feasibility of creating effective domain definitions in a fast
way: exploring a few sources in the domain is usually enough to
find the most important attributes and aliases.

The specificity index (denoted si) of an attribute ai is a number
between 0 and 1 indicating how probable is that a query form
containing such attribute is actually relevant to the domain. For

Web Browser

Browsers PoolBrowsers Pool

IExplorer tech

Mozilla tech

InternetInternet

index

ActiveX

Crawlers Pool
CrawlerComponent

CrawlerComponent

CrawlerComponent

Crawler Engine
Route Manager

Component
Indexer

Component
Searcher

Component
Data

Repository
C

on
te

nt

fil
te

rsLocal
Route
List

State

Document

Form Analyzer Filter

Configuration Manager
Component

DomainsDomains
Initial Route

List

Route Analyzer Filter

route

Shared
Route List

route

… …

Download Manager
Component

Content Manager
Component

Crawled
Document
Repository

Generic Searcher

Figure 1. Crawler Architecture

19

instance, in an example domain for collecting book data, the
attribute ISBN would have a very high value (e.g. 0.95), since a
query form allowing queries for the ISBN attribute is almost
certainly a form allowing to search books; the PRICE attribute
would have a low value such as 0.05, since a query form
containing it could be related to any kind of product.

Finally, the domain also includes a relevance threshold µ. The
specificity indexes and the threshold will be used to determine if a
given form is relevant to a domain.

Figure 2 shows an example domain definition for the task of
collecting pages containing data about books on the subject of
Java and XML programming. The relevance threshold for this
domain is set to 0.9.

4. PROCESSING FORMS WITH THE
FORM ANALYZER

In this section, we describe how the crawler processes each found
form. The performed steps are:
- For every domain, the system tries to match its attributes with

the fields of the form, using visual distance and text similarity
heuristics (see subsection 4.1).

- By using the output of the previous step, the system
determines if the form is relevant with respect to the domain

(described in subsection 4.2).

- If the form is relevant, the crawler uses it to execute the
queries defined in the domain. For each query, we obtain a
new route to add to the list of routes. The new route will be
dealt with as any other route fetched by the crawler
(subsection 4.3).

4.1 Associating Form Fields and Domain
Attributes

Given a form f located in a certain HTML page and a domain d
describing a data-collecting task, our goal at this stage is to
determine whether f allows executing queries for the attributes of
the domain d or not. Our method consists of two steps:
1. Determining which texts are associated with each field of the

form. This step is based on heuristics using visual distance
measures between the form fields and the texts surrounding
them.

2. Trying to relate the fields of f with the attributes of d. The
system performs this step by obtaining text similarity
measures between the texts associated with each form field
and the texts associated with each attribute in the domain
definition d.

Measuring visual distances. At this step, we consider the texts in
the page and compute their visual distance with respect to each
field of the form f. The visual distance between a text element t
and a form field f is computed as follows:
1. The browser APIs are used to obtain the coordinates of a

rectangle enclosing f and a rectangle enclosing t. If t is into
an HTML table cell, and it is the unique text inside, then the
coordinates of the table cell rectangle are assigned to t.

2. We obtain the minimum distance between both rectangles.
Distances are not computed in pixels but in more coarse-
grained units (we use cells of the approximated visual size of
one character).

3. We also obtain the angle of the shortest line joining both
rectangles. The angle is approximated to the nearest multiple
of π/4.

Figure 3a shows one example query form corresponding to an
Internet bookshop. We show the distance and angles obtained for
some of its texts and fields.

f1
f2
f3

f4
f5
f6

f1
f2
f3

f4
f5
f6

f51 f52 f53

643

661
666
667

687
688
693

711

1
8

8
2

0
0

2
3

2

2
5

4
2

7
6

4
6

6
4

7
0

6
3

1

(example: Thinking in Java)

Author dist(f1, “(example: Thinking in Java)”) = (0, 0)
dist(f1, “Book Title”) = (0, π/2)
dist(f1, “Author”) = (0, -π/2)

f1

Book Title

Figure 3a. Example query form and visual distances and angles for field f1

Domain “Books”

0.25‘binding type'FORMATa4

PRICE

ISBN

AUTHOR

TITLE

Name

0.05‘cost of book’a5

1a3

0.7‘writer’, ‘written by’a2

0.6‘entitle’, ‘title of the book’a1

si (specificity index)AliasesAttribute

0.25‘binding type'FORMATa4

PRICE

ISBN

AUTHOR

TITLE

Name

0.05‘cost of book’a5

1a3

0.7‘writer’, ‘written by’a2

0.6‘entitle’, ‘title of the book’a1

si (specificity index)AliasesAttribute

Attributes: A = {a1, a2, a3, a4, a5}

Queries: Q = {q1, q2, q3, q4, q5, q6, q7, q8}

q6 = { (TITLE, ‘java server faces’) }

q7 = { (AUTHOR, ‘Herbert Schildt ’) }

q8 = { (TITLE, ‘web services’) }

q5 = { (TITLE, ‘ejb3’) }

q4 = { (TITLE, ‘concurrent programming’) }

q3 = { (TITLE, ‘j2ee’) }

q2 = { (TITLE, ‘xml’), (AUTHOR, ‘Priscilla Walmsley’) }

q1 = { (TITLE, ‘java’), (FORMAT, ‘hardcover’) }

q6 = { (TITLE, ‘java server faces’) }

q7 = { (AUTHOR, ‘Herbert Schildt ’) }

q8 = { (TITLE, ‘web services’) }

q5 = { (TITLE, ‘ejb3’) }

q4 = { (TITLE, ‘concurrent programming’) }

q3 = { (TITLE, ‘j2ee’) }

q2 = { (TITLE, ‘xml’), (AUTHOR, ‘Priscilla Walmsley’) }

q1 = { (TITLE, ‘java’), (FORMAT, ‘hardcover’) }

Relevance threshold: µ = 0.9

Figure 2. Example domain definition for Books

20

Associating texts and form fields. For each form field, our goal is
to obtain the texts “semantically linked” with it in the page. For
instance, in the Figure 3a the strings semantically linked to the
first field are “Book Title” and “(example: ‘Thinking in Java’)”.
For pre-selecting the “best texts” for a field f, we apply the
following steps:
1. We add all the texts having the shortest distance d with

respect to f to the list.
2. Those texts having a distance lesser than k•d with respect to f

are added to the list ordered by distance (k is a configurable
factor usually set to 5). This step discards those texts that are
significantly further from the field.

3. Texts with the same distance are ordered according to its
angle. The preference order for angles privileges texts
aligned with the fields (that is, angle multiple of π/2); it also
privileges left with respect to right and top with respect to
bottom, because they are the preferred positions for labels in
forms.

As output of the previous step we have an ordered list of texts,
which are probably associated to each form field. Then we post-
process the lists as follows:
1. We ensure that a given text is only present in the list of one

field. The rationale for this is that at the following stage of
the form ranking process (which consists in matching form
fields and “searchable” attributes), we will need to associate
unambiguously a certain text with a given form field.

2. We ensure that each field has at least one associated text.
The rationale for this is that, in real pages, a given form field
always has some associated text to allow the user to identify
its function. For instance, if the list of a field f1 contained the
texts t1 and t2 (in that order), and the list of a field f2 only
contained the text t1, then we would choose to remove t1
from the list of f1, since removing it from the list of f2 would
leave the field with an empty list.

Figure 3b shows the process for the example form of Figure 3a.
For each field1 of the form, we show the ordered list of texts
obtained by applying the visual distance and angle heuristics. The
texts remaining in the lists after the post-processing steps are
boldfaced in the figure.
Associating form fields and domain attributes. At this step we try
to detect the form fields which correspond to attributes of the
target domain. We distinguish between two kinds of fields:
- Bounded fields. We term as bounded those fields offering a

finite list of possible query values, such as select-option
fields, checkbox fields or radio buttons.

- Unbounded fields. We term as unbounded those fields whose
query values are not limited, such as text boxes.

The basic idea to rank the “similarity” between a field f and an
attribute a is to measure the textual similarity between the texts
associated with f in the page (obtained as shown in the previous
step) and the texts associated with a in the domain (the attribute
name and the aliases). When the field is bounded, the system also
takes into account the text similarities between the possible values
of f in the page2 and the query input values specified for a in the
domain queries. Text similarity measures are obtained using a
method proposed in [7] that combines TFIDF and the Jaro-
Winkler edit-distance algorithm.
As result, we obtain a table with the estimated similarities
between each form field and each attribute. Then, we discard the
pairs from the table that do not reach a minimum similarity
threshold. If the table contains more than one entry for the same
attribute, we choose for each attribute the entry with a higher
similarity but trying to assure that no field with an entry above the
threshold is left unassigned.

1 Note how the system models the FORMAT ‘checkbox’ field as

a field with three subfields. f5 refers to the whole set of
checkboxes while f51, f52 and f53 refer to individual checkboxes.

2 Obtaining these values is a trivial step for select-option tags,
since their possible values appear in the HTML code enclosed
in option tags. For checkbox and radio tags we apply visual
distance techniques similar to the ones previously discussed.

(4, -π/2)Paperback

(2, π/2)(example: Bruce Eckel)

(4, -π/2)Hardcover

(4, -π/2)Format:

(3, -π/2)Used Only:

(3, π/2)Author:

(3, π/2)Book Title:

(2, π/2)(example: Thinking in Java)

(3, -π/2)Publisher:

(1, -π/2)(example: Bruce Eckel)

(0, -π/2)Publisher:

(0, -π/2)Author:

(1, -π/2)Refine your search (optional):

(0, π/2)Author:

(0, π/2)Book Title:

(0, π/2)

(0, 0)

(0,0)

(dist,θ)

Publisher:f3

(example: Bruce Eckel)f2

(example: Thinking in Java)f1

TextsFields

(4, -π/2)Paperback

(2, π/2)(example: Bruce Eckel)

(4, -π/2)Hardcover

(4, -π/2)Format:

(3, -π/2)Used Only:

(3, π/2)Author:

(3, π/2)Book Title:

(2, π/2)(example: Thinking in Java)

(3, -π/2)Publisher:

(1, -π/2)(example: Bruce Eckel)

(0, -π/2)Publisher:

(0, -π/2)Author:

(1, -π/2)Refine your search (optional):

(0, π/2)Author:

(0, π/2)Book Title:

(0, π/2)

(0, 0)

(0,0)

(dist,θ)

Publisher:f3

(example: Bruce Eckel)f2

(example: Thinking in Java)f1

TextsFields

(2, 3π/4)Refine your search (optional):

(0, π)Hardcoverf52
(0, 0)Paperback

(1, π/2)Refine your search (optional):

(0, π)Paperbackf53
(0, 0)e-Books & Docs

(3, π/2)Refine your search (optional):

(1, π/2)Used Only:

(0, π/2)Paperback

(1, π)Format:

(0, π/2)Hardcover

(0, π)

(dist,θ)

Language:f6

TextsFields

(2, 3π/4)Refine your search (optional):

(0, π)Hardcoverf52
(0, 0)Paperback

(1, π/2)Refine your search (optional):

(0, π)Paperbackf53
(0, 0)e-Books & Docs

(3, π/2)Refine your search (optional):

(1, π/2)Used Only:

(0, π/2)Paperback

(1, π)Format:

(0, π/2)Hardcover

(0, π)

(dist,θ)

Language:f6

TextsFields

f1 [(example: Thinking in Java)] [Book Title:]; f2 [(example: Bruce Eckel)] [Author:]; f3 [Publisher:];
f4 [Used Only:] [Refine your search (optional):];
f5 [Format:]; f51 [Hardcover]; f52 [Paperback]; f53 [e-Books & Docs]; f6 [Language]

(0, -3π/4)Language:

(0, 3π/4)Used Only:

(0, -3π/4)Language

(0, 3π/4)Used Only:

(1, π)Format:

(0, π)Used Only:f4
(0, π/2)Refine your search (optional):

(0, -π/2)Hardcover

(1, π)Format:

(2, -π/2)Language:

(1, π/2)Refine your search (optional):

(1, π/2)Refine your search (optional):

(0, 0)e-Books & Docs

(1, π)Format:

(0, 0)Hardcoverf51

(dist,θ)

f5

TextsFields

(0, -3π/4)Language:

(0, 3π/4)Used Only:

(0, -3π/4)Language

(0, 3π/4)Used Only:

(1, π)Format:

(0, π)Used Only:f4
(0, π/2)Refine your search (optional):

(0, -π/2)Hardcover

(1, π)Format:

(2, -π/2)Language:

(1, π/2)Refine your search (optional):

(1, π/2)Refine your search (optional):

(0, 0)e-Books & Docs

(1, π)Format:

(0, 0)Hardcoverf51

(dist,θ)

f5

TextsFields
√
√

√
√

√ √

√

√

√ √

√

√

Figure 3b. Texts associated to each field in the form of Figure 3a

21

The output of this stage is a set of assignments between form
fields and domain attributes. Each of these assignments has a
certain confidence, which the system sets to the similarity
obtained between the field and the attribute.
Figure 4 shows the assignments obtained for the form in Figure
3a, using the domain definition of Book Shopping shown in
Figure 2.

4.2 Determining the Relevance of a Form to a
Domain

The output of the previous stage is a set of assignments {A1,…,
Ak} between form fields and domain attributes. Each assignment
has a certain confidence, expressed as a number between 0 and 1.
We notate the confidence of assignment Ai as ci.
The method we use to determine if a form is relevant to a domain
consists of adding the confidences of each assignment, pondered
by the specificity index of the attribute involved in it, and
checking if the sum exceeds the relevance threshold µ. That is,
the system checks if the inequality µ>∑ = ki iisc

..1
 is verified.

For instance, considering the domain definition shown in Figure
2, and the assignments in Figure 4, we would obtain 0.71 • 0.6 +
1 • 0.7 + 1 • 0.25 = 1.376 > µ = 0.9

4.3 Executing Queries
Once the system determines that a form is relevant to a certain
domain d, a new route must be added for each query specified in
d. Executing a query involves filling in the form according to the
query and submitting it.
The first task can be easily done from the assignments which
associate form fields and domain attributes.
The second task has its own complications. Although the
lightweight mini-browsers the system uses as crawling processes
may directly issue a SUBMIT event on the form once it has been
filled in, this simple strategy does not work in some websites.
This is due to the frequent use of client-side scripting languages to
manage form submission. To overcome these difficulties, the
system proceeds as follows:
1. The system searches for input elements in the form of the

types submit, image or button (in that order). Each element is
used to try to submit the form by generating a click event on
it. After each try, the system checks if the event caused a
new navigation in the browser. If it was not the case, it tries
the next element.

2. If the previous step is unsuccessful (typically because the
searched types of input elements do not exist), the system
concludes that the way used to submit the form is clicking on
an anchor with some associated client-scripting code

(typically Javascript). Therefore, the system looks for
anchors located visually close to the form and having
associated some client-side script in either the href or the
onClick attributes. The anchors obtained are ordered
according to its visual proximity to the form and to the text
similarity between their associated texts and a set of pre-
defined texts commonly used to indicate form submission
(e.g. ‘search’, ‘go’, ‘submit’,…). The system tries to
generate a click event on the anchors in the list and checks if
the event caused a new navigation in the browser.

3. If all the previous steps fail, the system generates a SUBMIT
event on the form.

5. EXPERIENCE
To evaluate the performance of our approach, we tested it on
three different domains: Books Shopping, Music Shopping and
Movies Shopping websites.
The process for creating the domain definitions was the
following: for each domain, we manually explored 10 sites at
random, from the respective Yahoo Directory3 category and used
them to define the attributes and aliases. The specificity indexes
and the relevance threshold were also manually chosen from our
experience visiting these sites. The resulting domain definitions
are shown in Figure 5.
Once the domains were created, we used DeepBot to crawl 20
websites of the respective Yahoo Directory category. The
websites visited by DeepBot for each domain are shown in the
extended version of this paper [2]. The websites used to define the
attributes and aliases are grouped in a dataset named Training,
while the remaining sites are grouped in a dataset named
Advanced.
To check the accuracy of the results obtained, we manually
analyzed the websites and compared the results with those
obtained by DeepBot. We measured the results at each stage of
the process: associating texts with form fields, associating form
fields with domain attributes, establishing the relevance of a form
to a domain, and executing the queries on the relevant forms.
To quantify the results, we used standard Information Retrieval
metrics: precision, recall and F1-measure. For instance, in the
stage of associating form fields and domain attributes, the metrics
are defined as follows; we defined the following variables to use
in (1).
- FieldAttributeADeepBot: set of the associations between form

fields and domain attributes discovered by DeepBot.

- FieldAttributeAReal: set of the associations between form fields
and domain attributes discovered by the manual analysis.

3 http://dir.yahoo.com

f6

f5

f4

f3

f2

f1

Form Field

A3

A2

A1

Assigment

1

1

0.71

ci (confidence)

(unassigned)

a2 = AUTHOR

(unassigned)

a4 = FORMAT

(unassigned)

a1 = TITLE

Domain Attribute

f6

f5

f4

f3

f2

f1

Form Field

A3

A2

A1

Assigment

1

1

0.71

ci (confidence)

(unassigned)

a2 = AUTHOR

(unassigned)

a4 = FORMAT

(unassigned)

a1 = TITLE

Domain Attribute

TITLE
AUTHOR
f3

f4

FORMAT

f6

f51 f52 f53

Assignments = {A1, A2, A3}

Figure 4. Assignments obtained for the form in Figure 3a, using the domain definition shown in Figure 2

22

buteAFieldAttributeAFieldAttri

buteAFieldAttributeAFieldAttri
buteAFieldAttri

buteAFieldAttri

buteAFieldAttri

callecision
callecision

measureF

call

ecision

RePr
RePr2

:

buteAFieldAttri

buteAFieldAttributeAFieldAttri
:Re

buteAFieldAttri

buteAFieldAttributeAFieldAttri
:Pr

1

Real

RealDeepBot

DeepBot

RealDeepBot

+
××

=−

∩
=

∩
=

(1)

The metrics for the remaining stages were defined in a similar
manner. See the extended version of this paper [2] for detail.

5.1 Experimental Results
Table 1 summarizes the obtained experimental results. For each
domain, it shows the values obtained for the Training dataset (S1,
sites used to define the domains), the Advanced dataset (S2, the
remaining sites) and in the Global dataset (S1+S2, Training +
Advanced).
In order to calculate the metrics for form-domain and field-
attribute associations, “quick search” and authentication forms
have not been considered. The results include only multi-field
forms of the kind usually employed for “advanced search” forms.
In addition, the results for the field-attribute associations have
been measured independently of the previous stage (text-field
associations).
The obtained results are quite promising: all the metrics show
high values and some of them even reach 100%. Now we discuss
the reasons behind the mistakes committed by DeepBot at each
stage.
 Recall in associating forms and domains reached 100% in every
case but in the Advanced dataset of the Music and Movies
domains (which reached 95%). In the music domain, the reason
was that the ProMusicFind source used an alias for the ARTIST
attribute which did not match with any of the aliases defined in
the domain. In addition, the form only had two fields so, even
though the system correctly assigned the other one to a domain
attribute (“Album Title”), it was not enough to exceed the
relevance threshold. In the movies domain, the query form from
source IGN.COM only had two searchable fields (title, genre)
matching with attributes in our domain definition. Although the
system correctly matched both, it was not enough to reach the
threshold.
The precision and recall values obtained for the associations
between texts and form fields exceeded 80% except in the
Advanced dataset of the Books domain (0.73 precision and 0.79

recall). The majority of the errors in this dataset came from a
single source (Blackwell’s Bookshop). If we did not have into
account this source, the metrics would take values similar to those
reached by the other ones.
The failures at this stage came mainly from bounded fields that
did not have any globally associated text in the form (the form
only included the texts corresponding to its values). That is
contrary to one of our heuristics, which assumed that every form
field should have at least one associated text to “explain” the
function of the field to the user.
Finally, Recall and Precision also reach high values (> 90%
except in one case) in the associations between form fields an
domain attributes. The mistakes at this stage occurred because the
domain did not include the alias used in the form for some
attribute.

6. RELATED WORKS
In recent years, several works have addressed the problem of
accessing the Hidden Web using a variety of approaches.
The system more similar to ours is HiWE [14]. HiWE is a task-
specific crawler able to automatically recognizing and filling in
forms relevant to a given domain. HiWE also uses visual distance
measures to find the texts associated to each field in a form, and
text similarity measures to match fields and domain attributes.
When analyzing forms, HiWE only associates one text to each
form field. The text is chosen in the following way: first, HiWE
finds the four closest texts to the field; second, it chooses one of
them according to a set of heuristics taking into account the
relative position of the candidate texts with respect to the field
(texts at the left and at the top are privileged), and their font sizes
and styles.
To learn how to fill in a form, HiWE matches the text associated
with each form field and the labels associated to the attributes
defined in its LVS table (a concept that plays a similar role to our
domain definitions). In this process, HiWE has the following
restriction: it requires the LVS table to contain an attribute
definition matching with each unbounded form field.
Now we discuss the differences between HiWE and our system.
The process followed by DeepBot has several advantages:
- DeepBot may use a form, even though it has some fields that

do not match any attribute of the domain. For instance, the
domain definition in Figure 2 does not have any attribute
matching with the “Publisher” field in Figure 3a.

“Books Shopping”

0.25‘binding type'FORMAT

0.05‘section’, ‘category’,
‘department',
‘subject Category’

SUBJECT

0.05PRICE

PUBDATE

ISBN

PUBLISHER

AUTHOR

TITLE

Attribute Name

0.7‘publication date'

0.95

0.8

0.7‘author’s name’

0.6‘title of book’

si (specificity index)Aliases

0.25‘binding type'FORMAT

0.05‘section’, ‘category’,
‘department',
‘subject Category’

SUBJECT

0.05PRICE

PUBDATE

ISBN

PUBLISHER

AUTHOR

TITLE

Attribute Name

0.7‘publication date'

0.95

0.8

0.7‘author’s name’

0.6‘title of book’

si (specificity index)Aliases

“Music Shopping”

0.25‘media type‘, ‘product type’,
‘item types’

FORMAT

0.05PRICE

GENRE

LABEL

ALBUM

SONG

ARTIST

Attribute Name

0.05‘style’

0.8'vendor'

0.95‘album title'

0.95'soundtrack title','song title'

0.6‘artist name‘,
‘composer/author/artist’

si (specificity index)Aliases

0.25‘media type‘, ‘product type’,
‘item types’

FORMAT

0.05PRICE

GENRE

LABEL

ALBUM

SONG

ARTIST

Attribute Name

0.05‘style’

0.8'vendor'

0.95‘album title'

0.95'soundtrack title','song title'

0.6‘artist name‘,
‘composer/author/artist’

si (specificity index)Aliases

Relevance threshold: µ = 0.9

Attributes

Relevance threshold: µ = 0.9

Attributes

“Movies Shopping”

0.05PRICE

0.05‘movie type’, ‘category’GENRE

0.05‘media’FORMAT

0.7EDITOR

0.7‘music’SOUND

PRODUCER

DIRECTOR

STARRING

LEGEND

TITLE

Attribute Name

0.7

0.7

0.7‘star’, ‘actor’, ‘cast’,
‘featuring (cast/crew)’,
‘cast name’, ‘artisties’

0.7

0.6‘movie title’

si (specificity index)Aliases

0.05PRICE

0.05‘movie type’, ‘category’GENRE

0.05‘media’FORMAT

0.7EDITOR

0.7‘music’SOUND

PRODUCER

DIRECTOR

STARRING

LEGEND

TITLE

Attribute Name

0.7

0.7

0.7‘star’, ‘actor’, ‘cast’,
‘featuring (cast/crew)’,
‘cast name’, ‘artisties’

0.7

0.6‘movie title’

si (specificity index)Aliases

Relevance threshold: µ = 0.9

Attributes

Figure 5. Domain definitions: Books, Music and Movies

23

- DeepBot correctly detects when a field has more than one
associated text; this can result in better accuracy when
matching form fields and domain attributes.

- In addition, the decision of assigning a text to a field is not
based only on conditions “local” to the field: the context
provided by the whole form is also taken into account in our
heuristics. For instance, in our example form of Figure 3a,
HiWE would erroneously assign the text “Hardcover” to the
second radio button element (f52), since the text is the closest
one and it is located at the left of the field. Nevertheless, our
system correctly assigns the text “e-Books & Docs” to f53,
“Paperback” to f52 and “Hardcover” to f51.

- Finally, another advantage is that DeepBot fully supports
Javascript sources.

Reference [3] presents another system for domain-specific
crawling of the Hidden Web. Nevertheless, they only deal with
full text search forms; these forms have a single field allowing
search by keyword on unstructured collections. In turn, our
system focuses on the multi-attribute forms typically used to
query structured data.
Reference [12] addresses the problem of automatically generating
keyword queries to crawl all the content behind a form. New

techniques are proposed to automatically generate new search
keywords from previous results, and to prioritize them in order to
retrieve the content behind the form, using the minimum number
of queries. The ability to automatically generate new queries
would be an interesting new feature for DeepBot, so this work is
complementary to ours. Nevertheless, the presented techniques
would need to be adapted since they do not deal with multi-
attribute forms.
The problem of extracting the full content behind a form has been
also addressed in [11]. This system does not deal with forms
requiring textbox fields to be filled in.
The Hidden Web can also be accessed using the meta-search
paradigm instead of the crawling paradigm. In meta-search
systems [6,15,9,8,10], a query from the user is automatically
redirected to a set of underlying relevant sources, and the
obtained results are integrated to return a unified response. The
meta-search approach is more lightweight than the crawling
approach, since it does not require indexing the content from the
sources; it also guarantees up to date data. Nevertheless, users
will get higher response times since the sources are queried in
real-time.

Table 1. Experimental results

Books Shopping Music Shopping Movies Shopping

S1 S2 S1+S2 S1 S2 S1+S2 S1 S2 S1+S2

Submitted Forms

Precision 13/13
1.00

11/11
1.00

24/24
1.00

10/10
1.00

9/9
1.00

19/19
1.00

12/12
1.00

9/9
1.00

21/21
1.00

Form-Domain Associations

Precision 13/13
1.00

11/11
1.00

24/24
1.00

10/10
1.00

9/9
1.00

19/19
1.00

12/12
1.00

9/9
1.00

20/20
1.00

Recall 13/13
1.00

11/11
1.00

24/24
1.00

10/10
1.00

9/10
0.90

19/20
0.95

12/12
1.00

9/10
0.90

21/22
0.95

F1-measure 1.00 1.00 1.00 1.00 0.95 0.97 1.00 0.95 0.97

Field-Attribute Associations

Precision 54/55
0.98

50/50
1.00

104/105
0.99

37/37
1.00

31/33
0.94

68/70
0.97

45/46
0.98

33/33
1.00

78/79
0.99

Recall 54/54
1.00

50/53
0.94

104/107
0.97

37/37
1.00

31/37
0.84

68/74
0.92

45/45
1.00

33/35
0.94

78/80
0.98

F1-measure 0.99 0.97 0.98 1.00 0.89 0.94 0.99 0.97 0.98

Text-Field Associations

Precision 129/142
0.91

101/137
0.73

230/279
0.82

93/110
0.83

107/132
0.81

199/242
0.82

154/179
0.86

163/184
0.89

317/363
0.87

Recall 129/132
0.98

101/127
0.79

230/259
0.88

92/94
0.98

107/109
0.98

199/203
0.98

154/168
0.92

163/181
0.90

317/349
0.91

F1-measure 0.94 0.76 0.85 0.90 0.89 0.89 0.89 0.89 0.89

24

7. CONCLUSIONS
In this paper, we have described the architecture of DeepBot, a
crawling system able to access the contents of the Hidden Web.
Our approach is based on a set of domain definitions, each one
describing a data-collecting task. From the domain definition, the
system uses several heuristics to automatically identifying
relevant query forms and learning how to execute queries on
them. We have tested our techniques for several real-world data-
collecting tasks, obtaining a high degree of effectiveness.

8. ACKNOWLEDGMENTS
This research was partially supported by the Spanish Ministry of
Education and Science under project TSI2005-07730.

Alberto Pan’s work was partially supported by the “Ramón y
Cajal” programme of the Spanish Ministry of Education and
Science.

9. REFERENCES
[1] Álvarez, M., Pan, A., Raposo, J., Hidalgo, J. Crawling Web

Pages with Support for Client-Side Dynamism. Published in
Lecture Notes in Computer Science 4016, pp. 252-262, 2006.
Issue corresponding to Proceedings of the 7th International
Conference on Web Age Information Management. 2006.

[2] Álvarez, M., Raposo J., Pan, A., Cacheda, F., Bellas, F.,
Carneiro, V. DeepBot: A Focused Crawler for Accessing
Hidden Web Content.
http://www.tic.udc.es/~mad/publications/deepbotfocused_ext
ended.pdf.

[3] Bergholz, A., Chidlovskii, B. Crawling for Domain-Specific
Hidden Web Resources. In Proceedings of the 4th Int.
Conference on Web Information Systems Engineering.2003.

[4] Bergman, M. The Deep Web. Surfacing Hidden Value.
http://brightplanet.com/technology/deepweb.asp. 2001.

[5] C.-C. Chang, K., He, B., Patel, M., Zhang, Z. Structured
Databases on the Web: Observations and Implications.
SIGMOD Record, 33(3). 2004.

[6] C.-C. Chang, K., He, B., Zhang, Z. MetaQuerier over the
Deep Web: Shallow Integration Across Holistic Sources. In

Proceedings of the VLDB Workshop on Information
Integration on the Web. 2004.

[7] Cohen, W., Ravikumar., P., Fienberg, S. A Comparison of
String Distance Metrics for Name-Matching Tasks. In
Proceedings of IJCAI-03 Workshop. 2003.

[8] Gravano, L., Ipeirotis, P., Sahami, M. QProber: A System for
Automatic Classification of Hidden-Web Databases. In ACM
Transactions on Information Systems, vol. 21(1), 2003.

[9] He, H., Meng, W., Yu, C., and Wu, Z. Automatic Integration
of Web Search Interfaces with WISE-Integrator. In VLDB
Journal, Vol.13, No.3, pp.256-273. 2004.

[10] Ipeirotis P., Gravano L. Distributed Search over the Hidden
Web: Hierarchical Database Sampling and Selection.
Proceedings of the 28th Very Large DataBases Conference.
2002.

[11] Liddle, S., Embley, D., Scott, Del., Yau Ho, Sai. Extracting
Data Behind Web Forms. Proceedings of the 28th Intl.
Conference on Very Large Databases. 2002.

[12] Ntoulas, A., Zerfos et al.. Downloading Textual Hidden Web
Content Through Keyword Queries. Proceedings of the 5th
ACM/IEEE Joint Conference on Digital Libraries. 2005.

[13] Pan, A., Raposo, J., Álvarez, M., Hidalgo, J. and Viña, A.
Semi-Automatic Wrapper Generation for Commercial Web
Sources. In Proceedings of IFIP WG8.1 Working Conference
on Engineering Information Systems in the Internet Context.
2002.

[14] Raghavan S., Garcia-Molina, H. Crawling the Hidden Web.
Technical Report 2000-36, Computer Science Department,
Stanford University, December 2000. Available at
http://dbpubs.stanford.edu/pub/2000-36)

[15] Zhang, Z., He, B., C.-C. Chang, K. Light-weight Domain-
based Form Assistant: Querying Web Databases On the Fly.
In Proceedings of the 31st Very Large Data Bases
Conference, 2005.

25

