Capítulo IV - Análise Léxica

IV.1 – Fundamentos Teóricos

• Autômatos Finitos e Conjuntos Regulares (cap. III da apostila de Linguagens Formais e Compiladores)

Geradores X Reconhecedores

Gramáticas Tipo 0 → Máquinas de Turing
G. Sensíveis ao Contexto → Aut. Lim. Lineares
G. Livres de Contexto → Autômatos de Pilha
Gramáticas Regulares → Autômatos Finitos

Autômatos Finitos

- São reconhecedores de linguagens regulares
- Tipos de Autômatos Finitos:
 - Autômato Finito Determinístico (AFD)
 - Autômato Finito Não Determinístico(AFND)

IV.1.1 – Autômatos Finitos Determinísticos (AFD)

```
Definição formal: M = (K, Σ, δ, qo, F), onde:
K → É um conjunto finito não vazio de Estados;
Σ → É um Alfabeto, finito, de entrada;
δ → Função de Mapeamento (ou de transição)
definida em: K x Σ → K
qo → ∈ K, é o Estado Inicial
F → ⊆ K, é o conjunto de Estados Finais
Exemplo: Seja M = (K, Σ, δ, qo, F), onde:
K = {q0, q1}
Σ = { a, b}
δ = {δ(q0, a)=q0, δ(q0, b)=q1, δ(q1, b)= q1, δ(q1,a)= - }
qo = q0
```

Representações de AF

 $F = \{q1\}$

- Alem da representação formal, um AF pode também ser representado por:
 - o Diagrama de Transição
 - o Tabela de Transições

Sentenças Aceitas (reconhecidas) por M:

$$\delta(qo, x) = p \mid p \in F$$

Linguagem Aceita por M:

$$T(M) = \{ x \mid \delta(qo, x) = p \land p \in F \}$$

IV.1.2 - A.F.N.D.

Definição: $M = (K, \Sigma, \delta, qo, F)$, onde:

 $K, \Sigma, qo, F \rightarrow$ mesma definição dos AFD

$$\delta \rightarrow K \times \Sigma = \rho(K)$$
, onde $\rho(K) \subseteq K$

	Vantagem	Desvantagem
AFD		Representação menos
	Reconhec. Eficiente	natural de algumas L.R.
		Implementação complexa
	natural de algumas LR	Reconhec. Ineficiente

Exemplos: Construa um AFND M |

a)
$$T(M) = \{ (a, b)*abb \}$$

b)
$$T(M) = \{ (0, 1)^* (00 | 11) (0, 1)^* \}$$

c) Construa AFD \equiv AFND dos itens a) e b)

IV.1.3 – Transformação de AFND para AFD

<u>Teorema 3.1</u>: "Se \underline{L} é um conjunto aceito por um A.F.N.D., então \exists um A.F.D. que aceita \underline{L} "

<u>Prova</u>: Seja M = $(K, \Sigma, \delta, qo, F)$ um A.F.N.D..

Construa um A.F.D. M' = $(K', \Sigma, \delta', qo', F')$ como segue:

$$1 - K' = {\rho(k)}$$

$$2 - qo' = [qo]$$

$$3 - F' = \{ \rho(K) \mid \rho(K) \cap F \neq \emptyset \}$$

 $4 - \text{Para cada } \rho(K) \subset K'$

faça
$$\delta'(\rho(K),a) = \rho'(K)$$
, onde

$$\rho'(K) = \{p \mid para algum q \in \rho(K), \delta(q, a) = p\};$$

Exemplo: Seja M um A.F.N.D. definido por:

δ	a	b
→qo	qo,q1	qo
q1		q2
q2		q3
*q3		

IV.1.4 - Relação entre GR e AF

Teorema 3.2: "Se
$$G = (Vn, V_T, P, S)$$
 é uma $G.R.$, então \exists um $A.F.$ $M = (K, \Sigma, \delta, qo, F) | T(M) = L(G)$ ".

Prova:
$$a - Mostrar que M existe$$

 $b - Mostrar que T(M) = L(G)$

a) Defina M, como segue:

$$1 - K = Vn \cup \{A\}$$
, onde A é um símbolo novo

$$2 - \Sigma = V_T$$

$$3 - qo = S$$

$$4 - F = \{A, S\} \text{ se } S \rightarrow \epsilon \in P$$

 $\{A\} \text{ se } S \rightarrow \epsilon \notin P$

5 – Construa δ de acordo com as regras a, b e c.

a) Se B
$$\rightarrow$$
 a \in P \Rightarrow δ (B, a) = A

b) Se B
$$\rightarrow$$
 a C \in P \Rightarrow δ (B, a) = C

- c) Para todo $a \in VT$, $\delta(A, a) = -$ (indefinido)
- **b)** Para mostrar que T(M)=L(G), deve-se mostrar:

$$1 - L(G) \subseteq T(M)$$

$$2 - T(M) \subseteq L(G)$$

Exemplos:

1)
$$S \rightarrow a S \mid b B$$

 $B \rightarrow b B \mid c$
2) $S \rightarrow b A \mid a B \mid b \mid \epsilon$
 $A \rightarrow b A \mid a B \mid b$
 $B \rightarrow b B \mid a C$
 $C \rightarrow b C \mid a A \mid a$

Teorema 3.3: "Se $M = (K, \Sigma, \delta, qo, F)$ é um A. F., então \exists uma G.R. G = (Vn, Vt, P, S) | L(G) = T(M)"

a) Seja $M = (K, \Sigma, \delta, qo, F)$ um A.F.D..

Construa uma G.R. G=(Vn, V_T, P, S), como segue:

$$1 - Vn = K$$

$$2 - Vt = \Sigma$$

$$3 - S = q_0$$

4 – Defina P, como segue:

- a) Se $\delta(B, a) = C$ então adicione $B \rightarrow aC$ em P
- b) Se $\delta(B, a) = C \wedge C \in F$, adicione $B \rightarrow a$ em P
- c) Se qo \in F,

então
$$\varepsilon \in T(M)$$
.

Neste caso, $L(G) = T(M) - \{\epsilon\}$, portanto, construa uma $GR G_1 \mid L(G_1) = L(G) \cup \{\epsilon\}$ <u>Senão</u> $\epsilon \notin T(M)$ e L(G) = T(M)

b) Para mostrar que L(G) = T(M), devemos mostrar que:

$$1 - T(M) \subseteq L(G)$$

$$2 - L(G) \subseteq T(M)$$

Exemplos:

δ	a	b
*→S	A	В
A	S	C
В	C	S
C	В	A

δ	a	b	b
→S	S	В	-
В	-	В	A
A	-	-	1

IV.1.5 - Minimização de Autômatos Finitos

<u>Definição</u>: Um AFD M = (K, Σ , δ , qo, F) é <u>mínimo</u> se:

- 1 Não possui estados inacessíveis (inalcançáveis);
- 2 Não possui estados mortos;
- 3 Não possui estados <u>equivalentes</u>.

Alg. para Construção das Classes de Equivalência

- 1 − Crie, um estado φ para representar as indefinições;
- 2 Divida K em duas CE : F e K-F;
- 3 Aplique a lei de formação de CE, até que nenhuma nova CE seja formada

Algoritmo para construção do A.F. Mínimo

Entrada: Um A.F.D. $M = (K, \Sigma, \delta, qo, F);$ Saída: Um AFD Mínimo $M' = (K', \Sigma, \delta', qo', F') \mid M' \equiv M;$ Método:

- 1 Elimine os estados Inacessíveis;
- 2 Elimine os estados Mortos;
- 3 Construa todas as CE de M.
- 4 Construa M', como segue:
 - a) $K' = \{ CE \}$
 - b) qo' = CE que contiver qo;
 - c) $F' = \{ [q] | \exists p \in F \text{ em } [q] \}$
 - d) $\delta' = \delta'([p], a) = [q] \Leftrightarrow \delta(p_1, a) = q_1 \text{ está em}$ $M \land p_1 \in [p] \land q_1 \in [q]$

Exemplo: Minimize o seguinte A.F.D.

δ	a	b
* → A	G	В
В	${f F}$	${f E}$
\mathbf{C}	\mathbf{C}	G
* D	A	H
\mathbf{E}	${f E}$	A
\mathbf{F}	В	\mathbf{C}
* G	G	${f F}$
H	H	D

Exercícios:

1)

δ	a	b	c
* → S	A	B,F	S,F
A	S,F	C	A
В	A	-	B,S,F
C	S,F	-	A,C
*F	-	-	-

2

<u> </u>		
δ	0	1
→s	A,D	E
A	A , B	C,E
В	В	•
C	A , B	•
D	B,D	C
*E	E	E

3)

<u> </u>		
δ	a	b
→ q0	q1	q2
q1	q3	-
q2	-	q4
*q3	q3	q3
*q4	q4	q4

4)

δ	a	b	c
* > S	A,C	A,D	B , C
*A	A	A	B
*B	A	A	-
*C	C	D	C
*D	C	_	C

IV.1.6 – Conjuntos e Expressões Regulares

Conjuntos Regulares (C.R.)

```
1 – (* definição matemática (primitiva) *)

Seja Σ um alfabeto qualquer.
Definimos um C.R. sobre Σ, como segue:
a – φ é um C.R. sobre Σ;
b – {ε} é um C.R. sobre Σ;
c – {a}, para todo a ∈ Σ, é um C.R. sobre Σ;
d – Se P e Q são C.R. sobre Σ, então:
1 – P ∪ Q (união),
2 – P.Q (ou PQ) (concatenação),
3 – P* (fechamento).

Também são C.R. sobre ∑;
e – Nada mais é C.R.
```

- 2 Linguagens geradas por Gramáticas Regulares.
- 3 Linguagens reconhecidas por Autômatos Finitos.
- 4 Linguagens denotados por Expressões Regulares.

Expressões Regulares (E.R.)

Definição:

```
1 - φ é uma E.R. e denota o C.R. φ
2 - ε é uma E.R. e denota o C.R. {ε}
3 - a ∈ Σ, é uma E.R. e denota o C.R. {a}
4 - Se p e q são E.R. denotando P e Q, então:
a - (p | q) é uma E.R. denotando P ∪ Q
b - (p.q) ou (pq) é uma E.R. denotando PQ
c - (p)* é uma E.R. denotando P*
5 - Nada mais é E.R.
```

Observações:

```
1 – ordem de precedência: 1) * 2) . 3) |

2 – abreviaturas usuais: p^{+} = pp^{*}
p^{?} = p \mid \epsilon
p^{\pounds}q = p(qp)^{*}
```

Relação entre E.R. e C.R.

- 1 Para todo C.R. 3 uma E.R. que o denota
- 2 Para toda E.R. é possível construir seu C.R.
- $3 E1 = E2 \Leftrightarrow elas denotam o mesmo C.R.$

IV.1.6.1 – Autômatos Finitos com ε-transições

AFND-ε: $M = (K, \Sigma, \delta, qo, F)$, onde:

 $K, \Sigma, qo, F \rightarrow mesma definição dos A.F.D.$

 $\delta \rightarrow K \times \Sigma \cup \{\epsilon\} = \rho(K)$, onde $\rho(K) \subseteq K$

Observações:

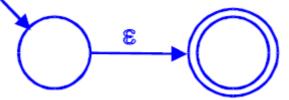
- ε-transições permitem movimentos independentes da entrada;
- O uso de ε-transições não incrementa a expressividade dos AF;
- Todo AFND-ε possui um AFND equivalente;

IV.1.6.2 – Correspondência entre ER e AF

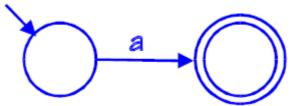
Para mostrarmos que toda ER possui um AF correspondente, é suficiente mostrarmos que toda ER básica (Φ , ϵ , a, ($\alpha \mid \beta$), ($\alpha \cdot \beta$) e α^* - onde α , β são ERs quaisquer) possui um AF correspondente:

1 - AF representando a ER " ϕ " (M|T(M) = ϕ)

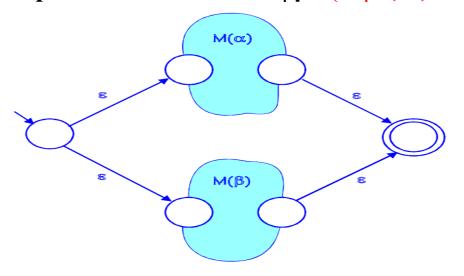
2 – AF representando a ER " ϵ " (M|T(M) = { ϵ })



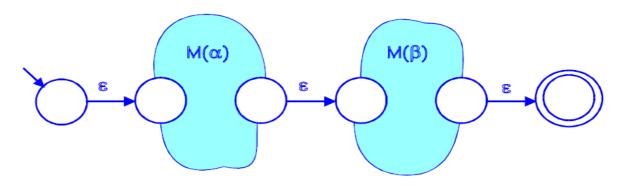
3 – AF representando a ER "a" $(M|T(M) = \{a\})$



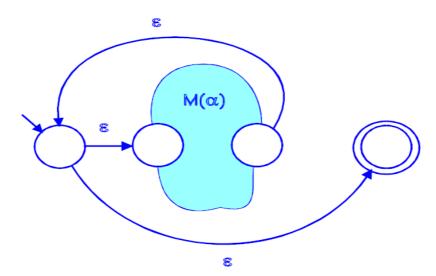
4 – AF representando a ER " $\alpha \mid \beta$ " (M|T(M) = { $\alpha \mid \beta$ })



5 – AF representando a ER "α.β" (M|T(M) = $\{\alpha.\beta\}$)



5 – AF representando a ER " α *" (M|T(M) = { α *})



OBS. Figuras extraídas de J.L.M.Rangel Neto (COPPE/UFRJ-PUC/RJ)

III.6.3 - Transformação de ER para AF

Diferentes métodos (estratégias):

- Método de Thompson
- Método de De Simoni (Adap. de Rennes/AHO)

III.6.3.1 - Método de Thompson

- Consiste em:
 - 1 Decompor uma ER em suas sub-expressões constituintes;
 - 2 Construir o AFNDε de cada subexpressão;
 - 3 Compor o AFNDε final (usando ε-transições)
- Exemplo:

IV.1.7 - Implementação de Autômatos Finitos

Formas básicas para implementação de A.F.:

- Implementação Específica
- Implementação Geral (ou genérica);

IV.1.8 – Propriedades e Prob. de Decisão de CR

Propriedades Básicas de C.R.

- 1 União
- 2 Concatenação
- 3 Fechamento
- 4 Complemento: Se $L_1 \subseteq \Sigma^*$ é CR ⇒ Σ^* L_1 também é CR
- 5 Intersecção: Se L1 e L2 são CR ⇒ L1 ∩ L2 também é CR

Problemas de Decisão sobre C.R.

- $1 Membership : x \in T(M)$?
- $2 Emptiness : T(M) = \varphi$?
- 3 Finiteness : T(M) é finita?
- $4 Containment : T(M1) \subseteq T(M2)$?
- 5 Equivalencia : T(M1) = T(M2)?
- 6 Intersecção Vazia : T(M1) ∩ $T(M2) = \varphi$?

IV.1.9 – Aplicações de A.F. e E.R.

- 1 Compiladores Análise Léxica
- 2 Editores de texto busca/substituição
- 3 Reconhecimento de padrões
- 4 Outras: S.O, Redes, Hipertexto, Robótica, Criptografia, ...