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Course Objectives

In this the course we are going to presented the distributed 
systems, high performance networks, clusters and 
computational grids environments.

In the end, participants will have a good idea of the basis
of these subjects in both theoretical and practical aspects. 
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Distributed Systems
In this part of the course we will cover the following aspects of
the distributed systems :

• Characteristics
• Architectural Models
• Networking and Internetworking
• InterProcess Communication (IPC)
• Distributed File System (DFS)
• Name Services (NS) 



The recommended literature are presented below and 
we base our course in the first book.

Distributed Systems: Concepts and Design, 3rd 
Edition, G. Coulouris, J. Dollimore, T. Kindberg, 
Addison-Wesley, August 2000, ISBN 0201-61918-0.
Distributed Systems: Principles and Paradigms, 
Andrew S. Tanenbaum, Maarten Van Steen, 
Prentice Hall, 2002, ISBN 0130888931.
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Internet

BrowsersWeb servers
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Date Computers Web servers Percentage

1993, July 1,776,000 130 0.008

1995, July 6,642,000 23,500 0.4
1997, July 19,540,000 1,203,096 6
1999, July 56,218,000 6,598,697 12

Distributed Systems

Access transparency: enables local and remote resources to be accessed 
using identical operations.

Location transparency: enables resources to be accessed without knowledge of 
their location.

Concurrency transparency: enables several processes to operate concurrently 
using shared resources without interference between them.

Replication transparency: enables multiple instances of resources to be used to 
increase reliability and performance without knowledge of the replicas by users or 
application programmers.

Transparencies
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Failure transparency: enables the concealment of faults, allowing users and 
application programs to complete their tasks despite the failure of hardware or 
software components.

Mobility transparency: allows the movement of resources and clients within a 
system without affecting the operation of users or programs.

Performance transparency: allows the system to be reconfigured to improve 
performance as loads vary.

Scaling transparency: allows the system and applications to expand in scale 
without  change to the system structure or the application algorithms.

Transparencies

Distributed Systems – Architectural Model
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a) client request results in the downloading of applet code 
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Distributed Systems
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Distributed Systems

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send, but the message is not put

in its outgoing message buffer.
Receive-omission Process A message is put in a process’s incoming message

buffer, but that process does not receive it.
Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Omission and arbitrary failures
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Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.

Timing failures

Distributed Systems
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Network types

Range Bandwidth (Mbps) Latency (ms)
LAN 1-2 kms 10-1000 1-10
WAN worldwide 0.010-600 100-500
MAN 2-50 kms 1-150 10
Wireless LAN 0.15-1.5 km 2-11 5-20
Wireless WAN worldwide 0.010-2 100-500
Internet worldwide 0.010-2 100-500

Distributed Systems –
Networking and Internetworking

Conceptual layering of protocol software

Layer n
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Distributed Systems

Encapsulation as it is applied in layered protocols

Presentation header

Application-layer message

Session header

Transport header

Network header

Distributed Systems

Protocol layers in the ISO 
Open Systems Interconnection (OSI) model

Application
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Session

Transport

Network

Data link

Physical

Message sent Message received

Sender Recipient

Layers

Communication
medium

Distributed Systems



Layer Description Examples
Application Protocols that are designed to meet the communication requirements of

specific applications, often defining the interface to a service.
HTTP, FTP, SMTP,
CORBA IIOP

Presentation Protocols at this level transmit data in a network representation that is
independent of the representations used in individual computers, which may
differ. Encryption is also performed in this layer, if required.

Secure Sockets
(SSL),CORBA Data
Rep.

Session At this level reliability and adaptation are performed, such as detection of
failures and automatic recovery.

Transport This is the lowest level at which messages (rather than packets) are handled.
Messages are addressed to communication ports attached to processes,
Protocols in this layer may be connection-oriented or connectionless.

TCP, UDP

Network Transfers data packets between computers in a specific network. In a WAN
or an internetwork this involves the generation of a route passing through
routers. In a single LAN no routing is required.

IP, ATM virtual
circuits

Data link Responsible for transmission of packets between nodes that are directly
connected by a physical link. In a WAN transmission is between pairs of
routers or between routers and hosts. In a LAN it is between any pair of hosts.

Ethernet MAC,
ATM cell transfer,
PPP

Physical The circuits and hardware that drive the network. It transmits sequences of
binary data by analogue signalling, using amplitude or frequency modulation
of electrical signals (on cable circuits), light signals (on fibre optic circuits)
or other electromagnetic signals (on radio and microwave circuits).

Ethernet base- band
signalling, ISDN

Distributed Systems
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Tunnelling for IPv6 migration

A BIPv6 IPv6

IPv6 encapsulated in IPv4 packets

Encapsulators

IPv4 network

Distributed Systems

TCP/IP layers
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Encapsulation in a message transmitted via TCP over an 
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Internet address structure, showing field sizes in bits

7 24

Class A: 0 Network ID Host ID

14 16

Class B: 1 0 Network ID Host ID

21 8

Class C: 1 1 0 Network ID Host ID

28

Class D (multicast): 1 1 1 0 Multicast address

27

Class E (reserved): 1 1 1 1 unused0

Distributed Systems

Decimal representation of Internet addresses

octet 1 octet 2 octet 3

Class A: 1 to 127

0 to 255 0 to 255 1 to 254

Class B: 128 to 191

Class C: 192 to 223 

224 to 239 Class D (multicast):

Network ID

Network ID

Network ID

Host ID

Host ID

Host ID

Multicast address

0 to 255 0 to 255 1 to 254

0 to 255 0 to 255 0 to 255

0 to 255 0 to 255 0 to 255

Multicast address

0 to 255 0 to 255 1 to 254240 to 255 Class E (reserved):

1.0.0.0 to 
127.255.255.255

128.0.0.0 to 
191.255.255.255

192.0.0.0 to 
223.255.255.255

224.0.0.0 to 
239.255.255.255

240.0.0.0 to 
255.255.255.255

Range of addresses

Distributed Systems

IP packet layout

dataIP address of destinationIP address of source

header

up to 64 kilobytes

Distributed Systems

IPv6 header layout

Source address
(128 bits)

Destination address
(128 bits)

Version (4 bits) Priority (4 bits) Flow label (24 bits)

Payload length (16 bits) Hop limit (8 bits)Next header (8 bits)

Distributed Systems



The MobileIP routing mechanism
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agent
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Firewall configurations

Internet

Router/ Protected intraneta) Filtering router

Internet

b) Filtering router and bastion

filter

Internet

R/filterc) Screened subnet for bastion R/filter Bastion

R/filter Bastion

web/ftp
server

web/ftp
server

web/ftp
server
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IEEE 802 network standards

IEEE No. Title Reference

802.3 CSMA/CD Networks (Ethernet) [IEEE 1985a]
802.4 Token Bus Networks [IEEE 1985b]
802.5 Token Ring Networks [IEEE 1985c]
802.6 Metropolitan Area Networks [IEEE 1994]
802.11 Wireless Local Area Networks [IEEE 1999]

Distributed Systems

Wireless LAN configuration
LAN

Server

Wireless
LAN

Laptops

Base station/
access point

Palmtop

radio obstruction

A B C

D E

Distributed Systems



ATM protocol layers

Physical

Application

ATM layer

Higher-layer protocols

ATM cells

ATM virtual channels

Message
Layers

ATM adaption layer
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ATM cell layout

Flags DataVirtual channel idVirtual path id

53 bytes

Header: 5 bytes

Distributed Systems

Switching virtual paths in an ATM network

VPI in VPI out

2
3

4
5

VPI = 3

VPI = 5

VPI = 4

Virtual path Virtual channels

VPI = 2

VPI : virtual path identifier

VP switch VP/VC
switch

VP switch

Host

Host
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Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

Distributed Systems - IPC



Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

Distributed Systems - IPC

CORBA CDR for constructed types

Type Representation
sequence length (unsigned long) followed by elements in order
string length (unsigned long) followed by characters in order (can also

can have wide characters)
array array elements in order (no length specified because it is fixed)
struct in the order of declaration of thecomponents
enumerated unsigned long (the values are specified by the order declared)
union type tag followed by the selected member

Distributed Systems - IPC

CORBA CDR message

The flattened form represents a Personstruct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in 
sequence of bytes 4 bytes

notes 
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

Distributed Systems - IPC

Indication of Java serialized form

Distributed Systems - IPC

The true serialized form contains additional type markers; h0 and h1 are 
handles

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:
h1

Explanation

class name, version number

number, type and name of 
instance variables 

values of instance variables



Representation of a remote object reference

Internet address port number time object number interface of 
remote object

32 bits 32 bits 32 bits 32 bits

Distributed Systems - IPC

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

Distributed Systems - IPC

Operations of the request-reply protocol

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)
sends a request message to the remote object and returns the reply. 
The arguments specify the remote object, the method to be invoked and the 
arguments of that method.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Distributed Systems - IPC

Request-reply message structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Distributed Systems - IPC



RPC exchange protocols

Name Messages sent by
Client Server Client

R Request
RR Request Reply

RRA Request Reply Acknowledge reply

Distributed Systems - IPC

HTTP request message

GET //www.dcs.qmw.ac.uk/index.htmlHTTP/ 1.1

URL or pathnamemethod HTTP version headers message body

Distributed Systems - IPC

HTTP reply message

HTTP/1.1 200 OK resource data

HTTP version status code reason headers message body

Distributed Systems - IPC Distributed Systems - DFS

In this section we will present an important subject in distributed systems,
the Distributed File Systems. The idea is to understand how they work 
And present case study examples.

Therefore, we will : 



Understand the requirements that affect the design of 
distributed services
NFS: understand how a relatively simple, widely-used service is 
designed

– Obtain a knowledge of file systems, both local and 
networked

– Caching as an essential design technique
– Remote interfaces are not the same as APIs
– Security requires special consideration

Recent advances: appreciate the ongoing research that often 
leads to major advances

*

Distributed Systems - DFS

Storage systems and their properties

*

In first generation of distributed systems 
(1974-95), file systems (e.g. NFS) were the 
only networked storage systems. 
With the advent of distributed object systems 
(CORBA, Java) and the web, the picture has 
become more complex.

Distributed Systems - DFS

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (Ch. 16)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Persistent distributed object store PerDiS, Khazana

1

1

1

*

Types of consistency between copies: 1 - strict one-copy consistency
√ - approximate consistency
X - no automatic consistency

Distributed Systems - DFS

WHAT IS A FILE SYSTEM ?

Persistent stored data sets
Hierarchic name space visible to all processes
API with the following characteristics:

– access and update operations on persistently stored data sets
– Sequential access model (with additional random facilities)

Sharing of data between users, with access control
Concurrent access:

– certainly for read-only access
– what about updates?

Other features:
– mountable file stores
– more? ...

*

Distributed Systems - DFS
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filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.

UNIX file system operations

Distributed Systems - DFS

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

File system modules

*

Distributed Systems - DFS

updated 
by system:

File length
Creation timestamp

Read timestamp
Write timestamp

Attribute timestamp
Reference count

Owner
File type

Access control list

E.g. for UNIX: rw-rw-r--

*

File attribute record structure

updated 
by owner:

Distributed Systems - DFS
Tranparencies
Access: Same operations
Location: Same name space after relocation 

of files or processes
Mobility: Automatic relocation of files is 

possible
Performance: Satisfactory performance across 

a specified range of system loads
Scaling: Service can be expanded to meet 

additional loads

Concurrency properties
Isolation
File-level or record-level locking
Other forms of concurrency control to minimise 

contention

Replication properties
File service maintains multiple identical copies 

of files
• Load-sharing between servers makes 

service more scalable
• Local access has better response (lower 

latency)
• Fault tolerance
Full replication is difficult to implement.
Caching (of all or part of a file) gives most of 

the benefits (except fault tolerance)

Heterogeneity properties
Service can be accessed by clients running on 

(almost) any OS or hardware platform.
Design must be compatible with the file 

systems of different OSes
Service interfaces must be open - precise 

specifications of APIs are published.

Fault tolerance
Service must continue to operate even when 

clients make errors or crash.
• at-most-once semantics
• at-least-once semantics 

•requires idempotent operations

Service must resume after a server machine 
crashes.

If the service is replicated, it can continue to 
operate even during a server crash.

Consistency
Unix offers one-copy update semantics for 

operations on local files - caching is 
completely transparent.

Difficult to achieve the same for distributed file 
systems while maintaining good 
performance and scalability.

Security
Must maintain access control and privacy as 

for local files.
•based on identity of user making request
•identities of remote users must be 
authenticated
•privacy requires secure communication

Service interfaces are open to all processes 
not excluded by a firewall.

•vulnerable to impersonation and other 
attacks

Efficiency
Goal for distributed file systems is usually 

performance comparable to local file system.

File service requirements

Transparenc
y
Concurrency
Replication
Heterogeneit
y
Fault 
tolerance
Consistency
Security
Efficiency..

*



Model file service architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Lookup
AddName
UnName
GetNames

Read
Write
Create
Delete
GetAttributes
SetAttributes

*

File Group

A collection of files that can be located on 
any server or moved between servers 
while maintaining the same names.

– Similar to a UNIX filesystem
– Helps with distributing the load of 

file serving between several 
servers.

– File groups have identifiers which 
are unique throughout the system 
(and hence for an open system, 
they must be globally unique). 

Used to refer to file groups and 
files

To construct a globally 
unique ID we use some 
unique attribute of the 
machine on which it is 
created, e.g. IP number,  
even though the file group 
may move subsequently.

IP address date

32 bits 16 bits
File Group ID:

*

Case Study: Sun NFS

An industry standard for file sharing on local networks since the 
1980s 
An open standard with clear and simple interfaces
Closely follows the abstract file service model defined above
Supports many of the design requirements already mentioned:

– transparency
– heterogeneity
– efficiency
– fault tolerance

Limited achievement of:
– concurrency
– replication
– Consistency and security

*

NFS Architecture

Client computer Server computer

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

Virtual file systemVirtual file system

O
th

er
fil

e 
sy

st
em

UNIX kernel

system calls

NFS
protocol 

(remote operations)

UNIX

Operations 
on local files

Operations
on 

remote files

*

Application
program

NFS
Client

Kernel
Application
program

NFS
Client

Client computer
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NFS Architecture: 
Does the implementation have to be in the system kernel?

No:
– there are examples of NFS clients and servers that run 

at application-level as libraries or processes (e.g. early 
Windows and MacOS implementations, current 
PocketPC, etc.)

Distributed Systems - DFS

*

But, for a Unix implementation there are advantages:
– Binary code compatible - no need to recompile applications

Standard system calls that access remote files can be routed 
through the NFS client module by the kernel

– Shared cache of recently-used blocks at client
– Kernel-level server can access i-nodes and file blocks directly

but a privileged (root) application program could do almost  the
same.

– Security of the encryption key used for authentication.

Distributed Systems - DFS

• read(fh, offset, count) -> attr, data
• write(fh, offset, count, data) -> attr
• create(dirfh, name, attr) -> newfh, attr
• remove(dirfh, name)  status
• getattr(fh) -> attr
• setattr(fh, attr) -> attr
• lookup(dirfh, name) -> fh, attr
• rename(dirfh, name, todirfh, toname)
• link(newdirfh, newname, dirfh, name)
• readdir(dirfh, cookie, count) ->  entries
• symlink(newdirfh, newname, string) -> 

status
• readlink(fh) -> string
• mkdir(dirfh, name, attr) -> newfh, attr
• rmdir(dirfh, name) -> status
• statfs(fh) -> fsstats

NFS server operations (simplified)

fh = file handle:

Filesystem identifier i-node number i-node generation

*

Model flat file service
Read(FileId, i, n) -> Data
Write(FileId, i, Data)
Create() -> FileId
Delete(FileId)
GetAttributes(FileId) -> Attr
SetAttributes(FileId, Attr)

Model directory service
Lookup(Dir, Name) -> FileId
AddName(Dir, Name, File)
UnName(Dir, Name)
GetNames(Dir, Pattern) 
->NameSeq

NFS access control and 
authentication

Stateless server, so the user's identity and access rights must be 
checked by the server on each request. 

– In the local file system they are checked only on open()
Every client request is accompanied by the userID and groupID

– not shown in the Figure 8.9 because they are inserted by the RPC
system

Server is exposed to imposter attacks unless the userID and groupID
are protected by encryption
Kerberos has been integrated with NFS to provide a stronger and 
more comprehensive security solution

– Kerberos is described in Chapter 7. Integration of NFS with 
Kerberos is covered later in this chapter.

*



Mount service

Mount operation:
mount(remotehost, remotedirectory, 

localdirectory)
Server maintains a table of clients who have 
mounted filesystems at that server
Each client maintains a table of mounted file 
systems holding:

< IP address, port number, file handle>
Hard versus soft mounts

*

Local and remote file systems 
accessible on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in 
Server 1; the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

*

Automounter

NFS client catches attempts to access 'empty' mount points and 
routes them to the Automounter

– Automounter has a table of mount points and multiple 
candidate serves for each

– it sends a probe message to each candidate server and 
then uses the mount service to mount the filesystem at the 
first server to respond

Keeps the mount table small
Provides a simple form of replication for read-only filesystems

– E.g. if there are several servers with identical copies of 
/usr/lib then each server will have a chance of being 
mounted at some clients. 

*

Kerberized NFS

Kerberos protocol is too costly to apply on each file access request
Kerberos is used in the mount service:

– to authenticate the user's identity
– User's UserID and GroupID are stored at the server with the 

client's IP address
For each file request:

– The UserID and GroupID sent must match those stored at the 
server 

– IP addresses must also match
This approach has some problems

– can't accommodate multiple users sharing the same client 
computer

– all remote filestores must be mounted each time a user logs in *



NFS optimization - server caching

Similar to UNIX file caching for local files:
– pages (blocks) from disk are held in a main memory buffer cache 

until the space is required for newer pages. Read-ahead and 
delayed-write optimizations.

– For local files, writes are deferred to next sync event (30 second 
intervals)

– Works well in local context, where files are always accessed 
through the local cache, but in the remote case it doesn't offer
necessary synchronization guarantees to clients.

*

NFS optimization - server caching

NFS v3 servers offers two strategies for updating the disk:
– write-through - altered pages are written to disk as soon as they 

are received at the server. When a write() RPC returns, the NFS 
client knows that the page is on the disk.

– delayed commit - pages are held only in the cache until a commit()
call is received for the relevant file. This is the default mode used 
by NFS v3 clients. A commit() is issued by the client whenever a 
file is closed.

*

NFS optimization - client caching

Server caching does nothing to reduce RPC traffic between client and 
server

– further optimization is essential to reduce server load in large
networks

– NFS client module caches the results of  read, write, getattr, lookup
and readdir operations

– synchronization of file contents (one-copy semantics) is not 
guaranteed when two or more clients are sharing the same file.

*

NFS optimization - client caching

Timestamp-based validity check 
– reduces inconsistency, but doesn't eliminate it
– validity condition for cache entries at the client:

(T - Tc < t) v (Tmclient = Tmserver)
– t is configurable (per file) but is typically set to

3 seconds for files and 30 secs. for directories
– it remains difficult to write distributed 

applications that share files with NFS

*

t freshness guarantee
Tc time when cache entry was 

last validated
Tm time when block was last 

updated at server
T current time



Other NFS optimizations

Sun RPC runs over UDP by default (can use TCP if required)
Uses UNIX BSD Fast File System with 8-kbyte blocks 
reads() and writes() can be of any size (negotiated between client and 
server)
the guaranteed freshness interval t is set adaptively for individual files 
to reduce gettattr() calls needed to update Tm
file attribute information (including Tm) is piggybacked in replies to all 
file requests

*

NFS performance

Early measurements (1987) established that:
– write() operations are responsible for only 5% of server calls in 

typical UNIX environments
hence write-through at server is acceptable

– lookup() accounts for 50% of operations -due to step-by-step 
pathname resolution necessitated by the naming and mounting 
semantics.

*

NFS performance

More recent measurements (1993) show high 
performance:
1 x 450 MHz Pentium III: > 5000 server ops/sec,  < 4 millisec. 

average latency
24 x 450 MHz IBM RS64: > 29,000 server ops/sec, < 4 millisec. 

average latency
see www.spec.org for more recent measurements

*

NFS performance

Provides a good solution for many environments 
including:

– large networks of UNIX and PC clients
– multiple web server installations sharing a single file store

*



NFS - Summary 

An excellent example of a simple, robust, high-
performance distributed service.
Achievement of transparencies :
Access: Excellent; the API is the UNIX system call 

interface for both local and remote files.

Location: Not guaranteed but normally achieved; naming 
of filesystems is controlled by client mount operations, 
but transparency can be ensured by an appropriate 
system configuration.

NFS - Summary

Concurrency: Limited but adequate for most purposes; 
when read-write files are shared concurrently between 
clients, consistency is not perfect.

Replication: Limited to read-only file systems; for 
writable files, the SUN Network Information Service 
(NIS) runs over NFS and is used to replicate essential 
system files.

NFS - Summary

Achievement of transparencies (continued):
Failure: Limited but effective; service is suspended if a 

server fails. Recovery from failures is aided by the 
simple stateless design.

Mobility: Hardly achieved; relocation of files is not 
possible, relocation of file systems is possible, but 
requires updates to client configurations.

*

NFS - Summary

Performance: Good; multiprocessor servers achieve 
very high performance, but for a single filesystem it's 
not possible to go beyond the throughput of a 
multiprocessor server.

Scaling: Good; filesystems (file groups) may be 
subdivided and allocated to separate servers. 
Ultimately, the performance limit is determined by the 
load on the server holding the most heavily-used 
filesystem (file group).

*



Distribution of processes in the 
Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

*

File name space seen by clients of 
AFS

/ (root)

tmp bin cmuvmunix.  .  .

bin

SharedLocal

Symbolic
links

*

System call interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

*

Implementation of file system calls 
in AFS

User process UNIX kernel Venus Net Vice
open(FileName,

mode)
If FileName  refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise ,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise  to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback  to all other
clients holding ca llba ck
promises  on the file. *



The main components of the Vice 
service interface

Fetch(fid) -> attr, data Returns the attributes (status) and, optionally, the contents of file
identified by the fid and records a callback promise on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a specified
file.

Create() -> fid Creates a new file and records a callback promise on it.
Remove(fid) Deletes the specified file.
SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the

lock may be shared or exclusive. Locks that are not removed 
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.
RemoveCallback(fid) Informs server that a Venus process has flushed a file from its

cache.
BreakCallback(fid) This call is made by a Vice server to a Venus process. It cancels

the callback promise on the relevant file. *

Recent advances in file services

NFS enhancements
WebNFS - NFS server implements a web-like service on a well-

known port. Requests use a 'public file handle' and a pathname-
capable variant of lookup(). Enables applications to access NFS 
servers directly, e.g. to read a portion of a large file.

One-copy update semantics (Spritely NFS, NQNFS) - Include an 
open() operation and maintain tables of open files at servers, 
which are used to prevent multiple writers and to generate 
callbacks to clients notifying them of updates. Performance was 
improved by reduction in gettattr() traffic.

*

Recent advances in file services

Improvements in disk storage organisation
RAID - improves performance and reliability by striping data 

redundantly across several disk drives
Log-structured file storage - updated pages are stored 

contiguously in memory and committed to disk in large 
contiguous blocks (~ 1 Mbyte). File maps are modified whenever 
an update occurs. Garbage collection to recover disk space.

*

New design approaches

Distribute file data across several servers
– Exploits high-speed networks (ATM, Gigabit Ethernet)
– Layered approach, lowest level is like a 'distributed virtual disk'
– Achieves scalability even for a single heavily-used file

'Serverless' architecture
– Exploits processing and disk resources in all available network 

nodes
– Service is distributed at the level of individual files

*



New design approaches

Examples: 
xFS : Experimental implementation demonstrated a substantial 

performance gain over NFS and AFS
Frangipani : Performance similar to local UNIX file access
Tiger Video File System 
Peer-to-peer systems: Napster, OceanStore (UCB), Farsite (MSR), 

Publius (AT&T research) - see web for documentation on these 
very recent systems

* *

New design approaches

Replicated read-write files
– High availability
– Disconnected working

re-integration after disconnection is a major problem if 
conflicting updates have occurred

– Examples: 
Bayou system 
Coda system 

Summary

Sun NFS is an excellent example of a distributed service 
designed to meet many important design requirements

Effective client caching can produce file service 
performance equal to or better than local file systems

Consistency versus update semantics versus fault 
tolerance remains an issue

*

Summary

Most client and server failures can be masked

Superior scalability can be achieved with whole-file 
serving (Andrew FS) or the distributed virtual disk 
approach

*

Future requirements:
– support for mobile users, disconnected operation, automatic re-

integration (Cf. Coda file system)
– support for data streaming and quality of service (Cf. Tiger file 

system)



The objectives of this section are –

To understand the need for naming systems in distributed 
systems
To be familiar with the design requirements for distributed name
services

To understand the operation of the Internet naming service -
DNS
To be familiar with the role of discovery services in mobile and
ubiquitous computer systems

*

Distributed Systems – Names Services
The role of names and name 
services

Resources are accessed using identifier or reference
– An identifier can be stored in variables and retrieved from 

tables quickly
– Identifier includes or can be transformed to an address for 

an object
E.g. NFS file handle, Corba remote object reference

– A name is human-readable value (usually a string) that can 
be resolved to an identifier or address

Internet domain name, file pathname, process number
E.g ./etc/passwd, http://www.cdk3.net/

*

The role of names and name 
services

For many purposes, names are preferable to 
identifiers 

– because the binding of the named resource to a physical 
location is deferred and can be changed

– because they are more meaningful to users

Resource names are resolved by name services
– to give identifiers and other useful attributes

*

Requirements for name spaces

Allow simple but meaningful names to be used
Potentially infinite number of names
Structured 

– to allow similar subnames without clashes
– to group related names

Allow re-structuring of name trees
– for some types of change, old programs should continue to 

work
Management of trust

*



file

Web server
Socket

Composed naming domains used to 
access a resource from a URL

http://www.cdk3.net:8888/WebExamples/earth.html

URL

Resource ID (IP number, port number, pathname)

138.37.88.61 WebExamples/earth.html8888

DNS lookup

(Ethernet) Network address

2:60:8c:2:b0:5a

ARP lookup

*

Names and resources

Currently, different name systems are used for each type of resource:
resource name identifies
file pathname file within a given file system
process process id process on a given computer
port port number IP port on a given computer

Uniform Resource Identifiers (URI) offer a general solution for any type of 
resource. There two main classes:

URL Uniform Resource Locator
– typed by the protocol field (http, ftp, nfs, etc.)
– part of the name is service-specific
– resources cannot be moved between domains

URN Uniform Resource Name
– requires a universal resource name lookup service - a DNS-like 

system for all resources *

Names and resources

More on URNs
format: urn:<nameSpace>:<name-within-namespace>
examples:
a) urn:ISBN:021-61918-0
b) urn:dcs.qmul.ac.uk:TR2000-56
resolution:
a) send a request to nearest ISBN-lookup service - it would return 

whatever attributes of a book are required by the requester
b) send a request to the urn lookup service at dcs.qmul.ac.uk 

- it would return a url for the relevant document

*

Iterative navigation

Client1
2

3

A client iteratively contacts name servers NS1–NS3 in order to resolve a name

NS2

NS1

NS3

Nameservers

*



Iterative navigation

*

Reason for NFS iterative name resolution
This is because the file service may encounter a symbolic link 
(i.e. an alias) when resolving a name. A symbolic link must be 
interpreted in the client’s file system name space because it may 
point to a file in a directory stored at another server. The client 
computer must determine which server this is, because only the 
client knows its mount points. (p.362.)

Iterative navigation

Used in:
DNS: Client presents entire name to servers, starting at a local

server, NS1. If NS1 has the requested name, it is resolved, else
NS1 suggests contacting NS2 (a server for a domain that 
includes the requested name).

NFS: Client segments pathnames (into 'simple names') and 
presents them one at a time to a server together with the 
filehandle of the directory that contains the simple name.

*

Non-recursive and recursive server-
controlled navigation

A name server NS1 communicates with other name servers on behalf of a client

Recursive
server-controlled

1

2
3

5

4
client

NS2

NS1

NS3

1
2

34
client

NS2

NS1

NS3

Non-recursive
server-controlled

*

Non-recursive and recursive server-
controlled navigation

DNS offers recursive navigation as an option, but iterative is the 
standard technique. Recursive navigation must be used in 
domains that limit client access to their DNS information for 
security reasons.

*



DNS - The Internet Domain Name 
System

A distributed naming database

Name structure reflects administrative structure of the Internet

Rapidly resolves domain names to IP addresses

– exploits caching heavily

– typical query time ~100 milliseconds

Scales to millions of computers

– partitioned database

– caching

Resilient to failure of a server

– replication *

DNS - The Internet Domain Name 
System

*

Basic DNS algorithm for name resolution (domain name -> IP number)
• Look for the name in the local cache
• Try a superior DNS server, which responds with:

– another recommended DNS server
– the IP address (which may not be entirely up to date)

DNS name servers

Note: Name server names are in 
italics, and the corresponding 
domains are in parentheses.
Arrows denote name server 
entries  

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk
qmw.ac.uk
...

dcs.qmw.ac.uk
*.qmw.ac.uk

*.ic.ac.uk*.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk
...

co.uk

yahoo.com
....

authoritative path to lookup:
jeans-pc.dcs.qmw.ac.uk

*

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk
qmw.ac.uk
...

dcs.qmw.ac.uk
*.qmw.ac.uk

*.ic.ac.uk*.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk
...

co.uk

yahoo.com
....

client.ic.ac.uk

IP: alpha.qmw.ac.uk

2

3IP:dns0.dcs.qmw.ac.uk

jeans-pc.dcs.qmw.ac.uk ?

IP:ns0.ja.net

1
IP:jeans-pc.dcs.qmw.ac.uk 

4

Without caching

*



DNS server functions and 
configuration

Main function is to resolve domain names for computers, i.e. to get 
their IP addresses

– caches the results of previous searches until they pass their 'time 
to live'

Other functions:
– get mail host for a domain 
– reverse resolution - get domain name from IP address
– Host information - type of hardware and OS
– Well-known services - a list of well-known services offered by a 

host
– Other attributes can be included (optional)

*

DNS resource records
Record type Meaning Main contents
A A computer address IP number
NS An authoritative name server Domain name for server
CNAME The canonical name for an alias Domain name for alias
SOA Marks the start of data for a zone Parameters governing the zone
WKS A well-known service description List of service names and protocols
PTR Domain name pointer (reverse

lookups)
Domain name

HINFO Host information Machine architecture and operating
system

MX Mail exchange List of <preference, host> pairs
TXT Text string Arbitrary text

*

DNS issues

Name tables change infrequently, but when they do, 
caching can result in the delivery of stale data.

– Clients are responsible for detecting this and recovering

Its design makes changes to the structure of the name 
space difficult. For example:

– merging previously separate domain trees under a new root
– moving subtrees to a different part of the structure (e.g. if 

Scotland became a separate country, its domains should all be 
moved to a new country-level domain.

The GNS, is a research system that solves the above 
issues.

*

Directory and discovery services

Directory service:- 'yellow pages' for the resources in a 
network

– Retrieves the set of names that satisfy a given 
description 

– e.g. X.500, LDAP, MS Active Directory Services
(DNS holds some descriptive data, but:

– the data is very incomplete
– DNS isn't organised to search it)

*



Directory and discovery services

Discovery service:- a directory service that also:
– is automatically updated as the network configuration changes
– meets the needs of clients in spontaneous networks (Section 

2.2.3)
– discovers services required by a client (who may be mobile) within 

the current scope, for example, to find the most suitable printing 
service for image files after arriving at a hotel.

– Examples of discovery services: Jini discovery service, the  
'service location protocol', the 'simple service discovery protocol' 
(part of UPnP), the  'secure discovery service'.

*

Revision: Spontaneous networks

Internet

gateway

PDA

service

Music 
service

service
Discovery

Alarm

Camera

Guest's
devicesLaptopTV/PC 

Hotel wireless
network

*

Revision: Spontaneous networks 

Easy connection of guest's devices
– wireless network
– automatic configuration

Easy integration with local services
– discovery of services relevant to guest's needs

*

Revision: Spontaneous networks 

Discovery service
• .A database of services with lookup based on service 

description or type, location and other criteria, E.g.
1. Find a printing service in this hotel

compatible with a Nikon camera
2. Send the video from my camera  to the digital TV in my room.

• Automatic registration of new services
• Automatic connection of guest's clients to the discovery service

*



Revision: Spontaneous networks 

Other issues for spontaneous networking:
• Unreliable connections when mobile
• Security exposure of ports and communication channels

*

Printing 
service

service
Lookup

service
Lookup

Printing 
service

admin

admin

admin, finance

finance

Client

Mobile client

Corporate 
infoservice

Network

Service discovery in Jini

2. Here I am: .....
4. Use printing

service

1. ‘finance’
lookup service?

*

3. Request
printing &
receive 
proxy

Service discovery in Jini

Jini services register their interfaces and descriptions with the Jini 
lookup services in their scope

Clients find the Jini lookup services in their scope by IP multicast

Jini lookup service searches by attribute or by interface type
– The designers of Jini argue convincingly that this the only reliable way to 

do discovery

*

Topics not covered

GNS case study 
– an early research project (1985) that developed solutions for the 

problems of:
large name spaces 
restructuring the name space

X.500 and LDAP 
– a hierarchically-structured standard directory service designed for 

world-wide use
– accommodates resource descriptions in a standard form and their 

retrieval for any resource (online or offline)
– never fully deployed, but the standard forms the basis for LDAP,

the Lightweight Directory Access Protocol, which is widely used
*



Topics not covered

Trading services
– Directories of services with retrieval by attribute searching
– Brokers negotiate the contract for the use of a service, including 

negotiation of attribute such as quality and quantity of service

*

Summary

Name services:
– defer the binding of resource names to addresses (and other 

attributes)
– Names are resolved to give addresses and other attributes
– Goals :

Scalability (size of database, access traffic (hits/second), update 
traffic)
Reliability
Trust management (authority of servers)

– Issues
exploitation of replication and caching to achieve scalability without 
compromising the distribution of updates
navigation methods *

Summary

Directory and discovery services:
– 'yellow pages' retrieval by attributes
– dynamic resource registration and discovery

*

End of Part I
(Distributed Systems)

Questions ?Questions ?
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Distributed Systems

High Performance Networks

Clusters and Computational Grids

Course Outline

High-Performance Networks

Networks become the important part to any system, because nowadays
distributed local and remote systems are the bases of any computational
environment. However, different network approaches exists. 

In this module of the course we will study high performance networks.

The recommended literature are presented below :

Tecnologias de Redes de Comunicação e Computadores, Mario 
Dantas, Axcel Books, ISBN 85-7323-169-6 

High Performance Networks - Technology and Protocols 
(Editor)Ahmed N. Tantawy, Kluwer, ISBN 0-7923-9371-6;

Sharing Bandwidth, Simon St. Laurent, IDG Books, ISBN 0-7645-
7009-9;

4 - Internetworking with TCP/IP - Volume I Principles,
Protocols, and Architecture, Douglas E. Comer, Third Edition,
Prentice Hall, 1995, ISBN 0-13-216987-8;

Course Outline

Physical

Link

Internet

Transport

Session
Presentation

Application
Application

Transport

Internet

Subnet

ISO/OSI TCP/IP

ISO/OSI Model and TCP/IP Architecture

High Performance Networks



Internet
Internet Architecture

Sub-net access

IP, ICMP, ARP, RARP

TCP                   UDP

FTP, TELNET, SMTP, DNS, SNMP

TCP/IP Protocol Family

ARP , Device drivers

IP ICMP

TCP UD
P

rlogin,ftp,... NFS,DNS,.. tracertarp

Net

ARP , Device drivers

IP ICMP

TCP UD
P

rlogin,ftp,... NFS,DNS,.. tracertarp

Net

NetNet

TransportTransport

ApplicationApplication

SubSub--NetNet

TCP/IP Protocol Family



High Performance Networks

TCP - Connection

Sends SYN seq=x

Receives SYN

Send ACK x + 1, SYN seq=y

Receives SYN + ACK
Sends ACK y + 1

Receives ACK

Machine A Machine B

TCP - Acknowledegment and retransmission

Go-back-n x seletive retransmission

1     2     3     4     5     6     7     8     9    10

5     6     7     8     9    10Go-back-n

5Seletive retransmission

High Performance Networks

Lightweight ProtocolsLightweight Protocols



High Performance Networks
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End of Part II 
(High Performance Networks)

Questions ?Questions ?

Course Outline

Distributed Systems

High Performance Networks

Clusters and Computational Grids

Course Outline

• Computing Paradigms and Applications

• Users

• Grid Architecture

• Grid Computing Environments 

• Experimental Results 

Course Outline

The recommended literature for this part of the course 
is :

The Grid : Blueprint for a New Computing 
Infrastructure, Foster,I. , Kesselman, C.
Morgan Kaufmann, 1998, ISBN 1558604758.

Grid Computing: Making The Global Infrastructure a 
Reality, Berman, F., Fox, G., Hey, T. , John Wiley & 
Sons, 2003, ISBN 0470853190.  



Clusters and Computational Grids

What is the difference between
Cluster and Computational Grid ?

A important difference between clusters and grids is 
mainly based in the way resources are managed. 

In the clusters, the resource allocation is 
performed by a centralized resource manager and 
all nodes cooperatively work together as a single 
unified resource. 

Inside the Grids, each node has its own resource 
manager and do not target for providing a single 
system view.

Computing Paradigms and Applications

Clusters

Computing Paradigms and Applications

High Performance Computing (HPC) traditionally has been based
on specific parallel architectures, such as MPP (Massively Parallel
Processors) and SMP (Symmetric Memory Processors)  

More recently, low cost computers gather either physically or 
virtually, are used called as Clusters or Nows.  These architectures
are interesting to many organizations.

Clusters

Computing Paradigms and Applications

What is a cluster configuration ?



Clusters

Computing Paradigms and Applications

Cluster environments are used when applications which require
processing performance can not execute in a single node.

These environments are built with a local connection of
many no expensive computers using a specific network equipment.

The following figures present examples of cluster environments. 
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Cluster management is an important task
for this new distributed architecture, many
packages exist with this specific function
(e.g. Oscar) 

Clusters and Computational Grids

The experimental research with the I-WAY, 
first large scale Grid effort, bring to us that 
there were five classes of applications using 
a specific computing paradigm. 

Computing Paradigms and Applications
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Computing paradigmsComputing paradigms and applications applications can  be classify as 
following :

• Distributed Supercomputing

• High-Throughput Computing

• On-Demand Computing 

• Computing for Large Amount of Data

• Collaborative Computing

Computing Paradigms and Applications
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Applications that use this approach can be characterized by the 
fact that it is not possible to solve these applications in a single 
computational system.

The aggregation environment which we are referring to can be 
represented by all the supercomputers of a  specific country or 
all the workstation inside of an organization.   

1. Distributed Supercomputing

Computing Paradigms and Applications
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Examples of applications using the distributed supercomputing
approach are :

• Distributed Interactive Simulation  (DIS) : this is a simulation 
technique used to model the behaviour and movement of hundred 
(or thousand) of entities which are usually employed for military 
planning and teaching.       

Computing Paradigms and Applications
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• Simulation of complex models such as those in weather 
forecast and cosmology.

Computing Paradigms and Applications
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2. High-Throughput Computing

The main objective of this approach it solve the problem of 
applications that require a transfer of a large amount of data. 

The computational environment is used for scheduling a large 
number of  loosely couple tasks and enhance the utilization of 
machines with a low workload.    

Computing Paradigms and Applications
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Classical examples for high-throughput computing are :

• Condor High-Throughput – this software environment
from the University of Wisconsin is used to manage pools 
of hundreds workstations in the university and other labs
around the world.     

Computing Paradigms and Applications
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• The Platform Computing software - used by AMD  during 
the projects of K6 e K7 processors. It is reported  that the 
company has used all the desktops which were not in use by 
the engineers in a specific period of time.    

Computing Paradigms and Applications
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3. On-Demand Computing 

This class of applications usually can be characterized by the 
use of  resources that can not be used in the local site, because 
it is not available.

The resources can be computing, data streams, software, 
archives and for examples experimental results. 

Computing Paradigms and Applications
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Difference between this approach  and distributed
Supercomputing is related to the cost of performance
then the complete performance behaviour.

Computing Paradigms and Applications
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4. Computing for Large Amount of Data

This class of application and computing paradigm covers the 
requirement for processing large amount of data stored in a 
geographic distributed fashion.

Examples are large databases and digital libraries that are 
available for access in a distributed way.

The Digital Sky Survey and modern weather forecast
Systems are applications examples.

Computing Paradigms and Applications
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5. Collaborative Computing

Examples for this class are those which are oriented to the 
improvement the relation between humans.

Many collaborative applications allow the share use of 
computational resources. 

Computing Paradigms and Applications
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NICE is a collaborative learning environment for 
young children (approximately 6-8 years of age). 
The environment depicts a virtual island in which 
the children can tend a virtual garden and learn 
about environmental concepts.

Computing Paradigms and Applications
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Another approach used to understand what is a Grid, is to 
understand who is going to use.

A Grid is above of the mechanisms of resource  sharing 
therefore we can image two questions :    

A - Which kind of entity is going to invest in the 
infrastructure for a Grid ? 
B - Which kind of resources each community of

the entity will be share ? 

Clusters and Computational Grids

Answers for the two questions should be based on costs and 
benefits for sharing resources.

Therefore it is usually presented in the academic and 
commercial reports efforts for the following groups of grid 
environments :

• National 
• Private 
• Virtual 
• Public 

Users
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• National Grid – the target of this group is to be
a strategic computational resource and serve as a
bridge between national sharing  facilities.

• Private Grid – the heath community it is an 
example of private grid organization. This group,
was  identified to benefit from grid configurations
because of  the strategic utilization of computational
power.

Users

Clusters and Computational Grids

NSF National Technology Grid

Users
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NEESgrid: national 
infrastructure to couple 
earthquake engineers 
with experimental 
facilities, databases, 
computers, & each 
other
On-demand access to 
experiments, data 
streams, computing, 
archives, collaboration

Network for Earthquake Engineering Simulation
NEESgrid: Argonne, Michigan, NCSA, UIUC, USC

Users
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• Virtual Grid – this community is formed by researches and 
scientists which require the use of expensive equipments and a 
great computational power. 

• Public Grid – this group is basically characterized by those 
which the main activity includes services using a great 
quantity of computational power.

Users

DOE X-ray grand challenge: ANL, USC/ISI, NIST, U.Chicago

tomographic reconstruction

real-time
collection

wide-area
dissemination

desktop & VR clients 
with shared controls

Advanced Photon Source

Online Access to Scientific Instruments

archival 
storage

Users
Data Grids for High Energy Physics

Tier2 Centre 
~1 TIPS

Online System

Offline Processor Farm 

~20 TIPS

CERN Computer Centre

FermiLab ~4 TIPSFrance Regional 
Centre 

Italy Regional 
Centre 

Germany Regional 
Centre 

InstituteInstituteInstituteInstitute 
~0.25TIPS

Physicist workstations

~100 MBytes/sec

~100 MBytes/sec

~622 Mbits/sec

~1 MBytes/sec

There is a “bunch crossing” every 25 nsecs.
There are 100 “triggers” per second
Each triggered event is ~1 MByte in size

Physicists work on analysis “channels”.
Each institute will have ~10 physicists working on one or more 
channels; data for these channels should be cached by the 
institute server

Physics data cache

~PBytes/sec

~622 Mbits/sec                                      
or Air Freight (deprecated)

Tier2 Centre 
~1 TIPS

Tier2 Centre 
~1 TIPS

Tier2 Centre 
~1 TIPS

Caltech                  
~1 TIPS

~622 Mbits/sec

Tier 0Tier 0

Tier 1Tier 1

Tier 2Tier 2

Tier 4Tier 4

1 TIPS is approximately 25,000 
SpecInt95 equivalents

Image courtesy Harvey Newman, Caltech
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Before we start to study the Grid architecture it is interesting to 
know about Virtual Organizations (VO). Virtual organizations 
are the entities that share resources of the Grid under a specific 
policy .Examples of VO are :

• Providers of applications, data storage and 
computational power.

• Research organizations

• Universities

Grid ArchitectureGrid Architecture Clusters and Computational Grids

Virtual Organizations are different from each other considering
the following parameters :

• Main objective
• Geographic extension
• Size (or physical dimensions)
• Time to use the facilities
• Structure
• Community 

Virtual OrganizationsVirtual Organizations

Grid ArchitectureGrid Architecture
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Similar to the experience with Internet, researches 
involved with the Grid established an architecture
aiming the interoperability between VOs.

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

Aspects such as :

- authentication, 
- authorization, 
- mechanism of message passing, 
- resource sharing, 
- scheduling and
- load balancing of tasks 

are some of issues which a Grid architecture should 
provide.

Grid ArchitectureGrid Architecture
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A standard Grid architecture was proposed as : A standard Grid architecture was proposed as : 

ApplicationApplication

CollectiveCollective

Resource

ConnectivityConnectivity

FabricFabric

Five Layers Grid ArchitectureFive Layers Grid Architecture

Grid ArchitectureGrid Architecture
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Fabric Fabric ––

Components of this layer implement local operations which 
occurs in each resource mainly because of the sharing provided 
by the above layers.

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture
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Fabric Fabric ––

Mechanisms are necessary to obtain information about the 
structure, state and available resources. 

On the other hand, it is also important techniques to
management the QoS (Quality of Service) for each query. 

Grid ArchitectureGrid Architecture
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Connectivity Connectivity 

In this layer exists the definition of the basic protocols necessary 
for communication and authentication for a specific transaction 
of the Grid.

The communication protocols allow the data 
exchange between  the Fabric layers. This 
service includes the transport, routing and 
name services. 

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture
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Connectivity Connectivity 

The authentication protocols are responsible for building
the communication services which are way to prove 
secure mechanism to verify the identity of users and
resources 

Grid ArchitectureGrid Architecture
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ResourceResource

This layer uses the connectivity protocols(communication
and authentication) to define protocols and APIs to 
provide security during the negotiation, starting, control,
monitoring, creating reports and details involved 
During the individual resources operations. ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

ResourceResource

Protocol implementations of this layer utilizes calls from
the Fabric to access and control local resources.

Grid ArchitectureGrid Architecture
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CollectiveCollective

The resource layer treats the scope of individual resource 
operations. 

On the other hand, in the collective layer collective layer components work with 
the interaction of resource collections. 

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture



Clusters and Computational Grids

CollectiveCollective

The elements from this layer use the resource resource and application application 
layers to implement a variety of services, such as :

• Directory service : this facility allows members of virtual virtual 
organization organization to discover which are the resources available

• Common Authorization Servers : this facility is also
design to implement a better policy to access resources.

Grid ArchitectureGrid Architecture
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ApplicationApplication

This layer is related to the users´ applications in their
virtual organizations virtual organizations The previous commented layers
provide services for this layer.

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture

CollectiveCollective

ResourceResource

ConnectivityConnectivity

FabricFabric

ApplicationApplication

GridGrid

ApplicationApplication

TransportTransport

InternetInternet

LinkLink

InternetInternet

Equivalence between the Gird and Internet Models

Grid ArchitectureGrid Architecture
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Grid Consortiums and Open Forums

•• C3CAC3CA
•• Global Grid Forum Global Grid Forum 
•• Australian Grid Forum Australian Grid Forum 
•• PeerPeer--toto--Peer (P2P) Working Group Peer (P2P) Working Group 
•• eGrideGrid: European Grid Computing Initiative : European Grid Computing Initiative 
•• Asia Pacific Grid Asia Pacific Grid 
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Grid Consortiums and Open Forums

•• GridForumGridForum Korea Korea 
•• EuroToolsEuroTools SIG on SIG on MetacomputingMetacomputing
•• IEEE Task Force on Cluster Computing IEEE Task Force on Cluster Computing 
•• New Productivity Initiative (NPI) New Productivity Initiative (NPI) 
•• The Distributed Coalition The Distributed Coalition 
•• Content Alliance: About Content PeeringContent Alliance: About Content Peering
•• `̀MyMy´́ BrazilianBrazilian ........

Grid Computing Environments
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Grid Computing Environments
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Grid Middleware 

• Cosm P2P Toolkit

• GlobusGlobus

• GRACE: GRid Architecture for Computational 
Economy 

• Gridbus

Grid Computing Environments
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Grid Middleware 

•• Grid Grid DatafarmDatafarm

•• GridSimGridSim: Toolkit for Grid Resource Modeling : Toolkit for Grid Resource Modeling 
and Scheduling and Scheduling SimultationSimultation

•• SimgridSimgrid

•• JxtaJxta Peer to Peer Network Peer to Peer Network 

•• Legion: A Worldwide Virtual Computer Legion: A Worldwide Virtual Computer 

Grid Computing Environments
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DataGrid Initiatives

•Virtual Laboratory: Tools for Data Intensive 
Science on Grid 

•EU DataGrid
•DIDC Data Grid work 
•GriPhyN (Grid Physics Network) 
•HEPGrid (High Energy Physics and Grid Networks) 
•Particle Physics Data Grid (PPDG) 
•Datacentric Grid 

Grid Computing Environments
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Grid Systems

•Compute Power Market 
• Global Operating Systems 
• XtremWeb
• JAVELIN: Java-Based Global Computing 
• MILAN: Metacomputing In Large Asynchronous 
Networks 

• Harness Parallel Virtual Machine Project 
• Management System for Heterogeneous Networks 
• PUNCH - Network Computing Hub 
• MOBIDICK  

Grid Computing Environments
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Grid Systems

• Amica
• MultiCluster
• Poland Metacomputing
• Echelon: Agent Based Grid Computing 
• Bayanihan
• NeuroGrid
• GridLab
• DAMIEN 
• CrossGrid
• DIET 

Grid Computing Environments
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Computational Economy

•GRACE: GRid Architecture for Computational 
Economy 

•Compute Power Market (CPM) 
•G-Commerce 
•Mariposa: A New Approach to Distributed Data 
•The Information Economy 
•FORTH Information Economies 
•Share Meta 
•D'Agent
•Program for Research on the Information Economy 

Grid Computing Environments
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Computational Economy

• Xenoservers - Accountable Execution of Untrusted
Programs 

• Electricity Trading Over the Internet Begins in Six 
New England States 

• POPCORN 
• CSAR: Resource Tokens and Trading Pool 
• OCEAN - The Open Computation Exchange & Arbitration  

Network 
• Spawn: A Distributed Computational Economy 
• Market-Based Computing 

Grid Computing Environments
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Computational Economy

• W3C effort: Common Markup for micropayment
per-fee-links 

• Agent-Based Computational Economics 

• Electronic Brokerage 

• Society for Computational Economics 

• Internet Ecologies 

Grid Computing Environments
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Grid Schedulers

• Nimrod/G Grid Resource Broker
• AppLeS
• SILVER Metascheduler
• ST-ORM 
• Condor/G 
• NetSolve
• DISCWorld
• Computing Centre Software (CCS) 

Grid Computing Environments
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Grid Portals

• ActiveSheets

• UNICORE - Uniform Interface to Computing Resources 
• SDSC GridPort Toolkit 
• Enginframe
• Lecce GRB Portal 
• Grid Enabled Desktop Environments 
• Interactive Control and Debugging of Distribution- IC2D 
• NLANR Grid Portal Development Kit 

Grid Computing Environments
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Grid Programming Environments 
•Nimrod - A tool for distributed parametric modeling 
•Ninf
•Cactus Code 
•MetaMPI - Flexible Coupling of Heterogeneous 

MPI Systems 
•Virtual Distributed Computing Environment 
•GrADS: Grid Application Development Software 

Project 

Grid Computing Environments
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Grid Programming Environments 

•Jave-based CoG Kit 
•GAF3J - Grid Application Framework for Java 
•ProActive PDC 
•REDISE - Remote and Distributed Software 

Engineering 
•Albatross: Wide Area Cluster Computing 

Grid Computing Environments
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Grid Performance Monitoring and Forecasting

• Network Weather Service 

• NetLogger

• Remos

Grid Computing Environments
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Grid Testbeds and Developments

• World Wide Grid (WWG) 
• Polder Metacomputer
• NASA Information Power Grid (IPG) 
• NPACI: Metasystems
• Asia Pacific Bioinformatics Network 
• The Distributed ASCI Supercomputer (DAS) 
• G-WAAT 
• Micro Grid 
• Alliance Grid Technologies 
• The Alliance Virtual Machine Room 
• EuroGrid

Grid Computing Environments
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Grid Testbeds and Developments

• Internet Movie Project 
• Nordic Grid 
• ThaiGrid
• TeraGrid
• Irish Computational Grid (ICG) 
• GrangeNet
• LHC Grid 
• I-Grid 

Grid Computing Environments
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Grid Applications

• Molecular Modelling for Drug Design 
• Neuro Science - Brain Activity Analysis 
• Cellular Microphysiology
• HEPGrid: High Energy Physics and the Grid 
Network 

• Access Grid 
• Globus Applications 
• The International Grid (iGrid) 
• UK Grid Apps Working Group 
• NLANR Distributed Applications 
• DataGRID - WP9: Earth Observation Science 

Application 

Grid Computing Environments
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Grid Applications

• Particle Physics Data Grid 

• DREAM project: Evolutionary Computing and 
Agents Applications 

• Knowledge Grid 
• Fusion Collaboratory
• APEC Cooperation for Earthquake Simulation 
• Australian Computational Earth Systems Simulator 
• EarthSystemGrid

Grid Computing Environments
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Grid Applications

• Australian Virtual Observatory 

• US Virtual Observatory 
• Distributed Proofreaders 

• NEESgrid: Earthquake Engineering Virtual 
Collaboratory

• Geodise: Aerospace Design Optimisation 
• Japanese BioGrid

Grid Computing Environments
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The Globus software environment is a project developed by 
Argonne National Laboratory (ANL) and University of 
Southern California. In our work we use the version 1.1.4 of t
he Globus software package because this release provides 
support to MPI applications. 

The Globus environment is composed by a set of components 
implementing basic services to resource  allocation,
communication, security, process management 
and access to remote data . 

Experimental ResultsExperimental Results Clusters and Computational Grids

The resource allocation component of the Globus
environment (GRAM - Globus Resource Allocation 
Manager) is the element that acts as an interface between 
global and local services. 

Application programmers use the GRAM element, 
through the gatekeeper software portion which is 
responsible for the user authentication and association 
with a local computer account. 

Experimental ResultsExperimental Results
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The mechanism to identify users of the grid is based on 
a file called map-file. In this file exists information about 
authorized users of the grid configuration. 

Any requirement for resource should be translated to the 
Resource Specification Language (RSL). 

Experimental ResultsExperimental Results
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GRAM GRAM GRAM

LSF EASY-LL NQE

Application

RSL

Simple ground RSL

Information 
Service

Local
resource
managers

RSL
specializationBroker

Ground RSL

Co-allocator

Queries

& Info
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Experimental ResultsExperimental Results
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Communication in the Globus environment is performed 
using a communication library called Nexus. This component 
defines low a level API to support high level programming 
paradigms. 

Examples of high level programming paradigms supported 
are message passing, remote procedure call and remote I/O 

procedures. 

The information about the system and the grid configuration are 
management by a component called Metacomputing Directory 
Service (MDS).

Experimental ResultsExperimental Results
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An important aspect of the Globus software environment 
is the security. 

This software tool employs the certificate approach, 
which is carried by a CA (Certificate Authority) using 
the protocol Secure Socket Layer (SSL) 

Experimental ResultsExperimental Results
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Legion

The Legion software environment is a system object oriented 
which is being developed since 1993 at University of Virginia. 

This environment has an architecture concept of grid computing 
providing a unique virtual machine for users´ applications. 

The approach of the Legion is to have some important concepts of 
a grid configuration (e.g. scalability, easy to program, fault 
tolerance and security) transparent to final users.

Experimental ResultsExperimental Results
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In the Legion, every entity such as processing power, 
RAM memory and storage capacity is represented as 
objects. Objects communicate with each other using 
services calls to a remote mechanism. 

Experimental ResultsExperimental Results
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The security component of the Legion, as the others elements of 
this software, is based on an object. The application programmer
specifies the security related to an object, where it is defined
which type of  mechanism is allowed. 

In addition, the Legion provides some extra basic mechanism to 
ensure more security. 

The May I method is an example. Every class should define the 
method May I, which check for a called object the related allowed 
access.

Experimental ResultsExperimental Results
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The traditional system file is emulated in the Legion 
environment through the combination of persistent objects 
with the global information of object identification. 

This approach simplifies the manipulation of files to 
application programmers. In addition, it is allow to users 
to add fault tolerance characteristics to applications using 
rollback and recovery mechanisms 

Experimental ResultsExperimental Results
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Grid Environment Legion Globus

Software requirement - OpenSSL 0.9.5
- bin/ksh

- SSLeay 0.9.0
- OpenLDAP 1.2.7

Minimum Disk space De 250MB a 300 MB 200 MB

Minimum Memory RAM 256 MB Not specified
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A CASE STUDY A CASE STUDY 
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Hardware and SoftwareHardware and Software
EnvironmentEnvironment

Experimental ResultsExperimental Results
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After providing some characteristics of the Globus and 
Legion software tools, in this section we present our grid 
configuration environment. 

It is important to mention that all the machines were in 
the same laboratory. However, using a Ethernet Layer 3 
Switch we were able to have the abstraction of a WAN 
(Wide Area Network) inside this box. 

In other words, this equipment could prove the abstraction 
of a distributed resource environment for our experiments.
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Computer 
Name

AIX 1 AIX 2 AIX 3 AIX 4

Operating 
System

AIX 4.3 AIX 4.3 AIX 4.3 AIX 4.3

Processor PowerPC_
604
233 MHz

PowerPC_
604 233 
MHz

PowerPC_
604 233 
MHz

PowerPC_
604 233 
MHz

Memory RAM 256 MB 128 MB 128 MB 512 MB

Hard disk Two disks 
of 
9 GB

Two disks 
of 
4 GB

Two disks 
of 4 GB 
and one 
2 GB disk

Two disks 
of 4 GB 
and one 
2 GB disk

Software 
Environment

Legion Globus Globus Legion

Table I: The grid environment configuration
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The Legion software provides a homogeneous view 
of the grid to the application programmer. 

The environment uses its own tools to create the 
homogeneity. The procedure to install the software does 
not represent any problem, because the application 
programmer needs only to uncompress binary files and 
execute some script files. However, for the AIX 
environment it is necessary more information then those 
available from the software documents.

Experimental ResultsExperimental Results
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We fixed some problems using our background on AIX 
and exchanging several e-mails with other AIX systems 
managers. The Legion concept of file system represents 
an advantage of the environment. 

The Legion file system presents a unique identifier 
for each object.

Experimental ResultsExperimental Results
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This approach provides application programmers the 
facility to access files widely distributed only using their 
names. 

In other words, the users only use the name of the file, 
which can be storage in a local or remote machine. 

On the other hand, we have verified some problems with 
the package. As a first problem, we can mention the 
necessary installation of the entire environment when the 
bootstrap host has a power failure.

Experimental ResultsExperimental Results
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The bootstrap host is responsible for the domain control. 
Another drawback of the environment is the low 
communication rate between objects. 

The paradigm of the Legion is to be a framework 
environment, where users can develop their own tools, 
such as security and fault tolerance facilities. 

This freedom can represent some flexibility to any 
developers group. However, it does not allow the use 
external tools.

Experimental ResultsExperimental Results
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The Globus approach allows users to use existing system 
available tools and have a uniform interface to the gird 
environment. Interesting features of the Globus
environment are related to the security and to the 
autonomy of the configuration. 
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Clusters and Computational Grids

The system has an infrastructure based on X509 certificate 
and the use the mutual authentification. On the other hand, 
one drawback of the software is the scalability, which can 
be understood as the capability to add new resources 
and new sites. 

When considering new facilities application programmers 
are required to have account into all new hosts.   
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End of Part III 
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