
Distributed Systems
High-Performance Networks

Clusters and Computational Grids

Prof. Mario Dantas, Prof. Mario Dantas, PhDPhD

Course Objectives

In this the course we are going to presented the distributed
systems, high performance networks, clusters and
computational grids environments.

In the end, participants will have a good idea of the basis
of these subjects in both theoretical and practical aspects.

Course Outline

Distributed Systems

High Performance Networks

Clusters and Computational Grids

Course Outline

Distributed Systems
In this part of the course we will cover the following aspects of
the distributed systems :

• Characteristics
• Architectural Models
• Networking and Internetworking
• InterProcess Communication (IPC)
• Distributed File System (DFS)
• Name Services (NS)

The recommended literature are presented below and
we base our course in the first book.

Distributed Systems: Concepts and Design, 3rd
Edition, G. Coulouris, J. Dollimore, T. Kindberg,
Addison-Wesley, August 2000, ISBN 0201-61918-0.
Distributed Systems: Principles and Paradigms,
Andrew S. Tanenbaum, Maarten Van Steen,
Prentice Hall, 2002, ISBN 0130888931.

Course Outline Distributed Systems - Characteristics

intranet

ISP

desktop computer:

backbone

satellite link

server:

☎

network link:

☎

☎

☎

An Internet Example

Distributed Systems

the rest of

email server

Web server

Desktop
computers

File server

router/firewall

print and other servers

other servers

print

Local area
network

email server

the Internet

An Intranet Example

Distributed Systems

Laptop

Mobile

Printer
Camera

Internet

Host intranet Home intranetWAP
Wireless LAN

phone

gateway

Host site

Mobile Equipments in a DS

Distributed Systems

Internet

BrowsersWeb servers

www.google.com

www.cdk3.net

www.w3c.org

Protocols

Activity.html

http://www.w3c.org/Protocols/Activity.html

http://www.google.comlsearch?q=kindberg

http://www.cdk3.net/

File system of
www.w3c.org

Web servers and web browsers

Distributed Systems

5,560,86656,218,0001999 – July

0130,0001989 – July

01881979 –
December

WebserversComputersDate

Distributed Systems

Date Computers Web servers Percentage

1993, July 1,776,000 130 0.008

1995, July 6,642,000 23,500 0.4
1997, July 19,540,000 1,203,096 6
1999, July 56,218,000 6,598,697 12

Distributed Systems

Access transparency: enables local and remote resources to be accessed
using identical operations.

Location transparency: enables resources to be accessed without knowledge of
their location.

Concurrency transparency: enables several processes to operate concurrently
using shared resources without interference between them.

Replication transparency: enables multiple instances of resources to be used to
increase reliability and performance without knowledge of the replicas by users or
application programmers.

Transparencies

Distributed Systems

Failure transparency: enables the concealment of faults, allowing users and
application programs to complete their tasks despite the failure of hardware or
software components.

Mobility transparency: allows the movement of resources and clients within a
system without affecting the operation of users or programs.

Performance transparency: allows the system to be reconfigured to improve
performance as loads vary.

Scaling transparency: allows the system and applications to expand in scale
without change to the system structure or the application algorithms.

Transparencies

Distributed Systems – Architectural Model

Architectural Models

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

Distributed Systems

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:

Clients invoke individual servers

Distributed Systems

Server

Server

Server

Service

Client

Client

A service provided by multiple servers

Distributed Systems

Client

Proxy

Web

server

Web

server

server
Client

Web proxy server

Distributed Systems

Coordination

Application

code

Coordination

Application

code

Coordination

Application

code

A distributed application based on peer processes

Distributed Systems

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

Web applets

Distributed Systems

Thin clients and compute servers

Distributed Systems

Internet

gateway

PDA

service

Music
service

service
Discovery

Alarm

Camera

Guests
devices

LaptopTV/PC

Hotel wireless
network

Spontaneous networking in a hotel

Distributed Systems

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical
time

A
m3

receive receive

send

receive receive receive
t1 t2 t3

receive

receive
m2

m1

Real-time ordering of events

Distributed Systems

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Processes and channels

Distributed Systems

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send, but the message is not put

in its outgoing message buffer.
Receive-omission Process A message is put in a process’s incoming message

buffer, but that process does not receive it.
Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Omission and arbitrary failures

Distributed Systems

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.

Timing failures

Distributed Systems

Network

invocation

result
Client

Server

Principal (user) Principal (server)

ObjectAccess rights

Objects and principals

Distributed Systems

Communication channel

Copy of m

Process p Process qm

The enemy
m’

The enemy

Distributed Systems

Process p
Process q

Secure Channel

Network types

Range Bandwidth (Mbps) Latency (ms)
LAN 1-2 kms 10-1000 1-10
WAN worldwide 0.010-600 100-500
MAN 2-50 kms 1-150 10
Wireless LAN 0.15-1.5 km 2-11 5-20
Wireless WAN worldwide 0.010-2 100-500
Internet worldwide 0.010-2 100-500

Distributed Systems –
Networking and Internetworking

Conceptual layering of protocol software

Layer n

Layer 2

Layer 1

Message sent Message received

Communication
medium

Sender Recipient

Distributed Systems

Encapsulation as it is applied in layered protocols

Presentation header

Application-layer message

Session header

Transport header

Network header

Distributed Systems

Protocol layers in the ISO
Open Systems Interconnection (OSI) model

Application

Presentation

Session

Transport

Network

Data link

Physical

Message sent Message received

Sender Recipient

Layers

Communication
medium

Distributed Systems

Layer Description Examples
Application Protocols that are designed to meet the communication requirements of

specific applications, often defining the interface to a service.
HTTP, FTP, SMTP,
CORBA IIOP

Presentation Protocols at this level transmit data in a network representation that is
independent of the representations used in individual computers, which may
differ. Encryption is also performed in this layer, if required.

Secure Sockets
(SSL),CORBA Data
Rep.

Session At this level reliability and adaptation are performed, such as detection of
failures and automatic recovery.

Transport This is the lowest level at which messages (rather than packets) are handled.
Messages are addressed to communication ports attached to processes,
Protocols in this layer may be connection-oriented or connectionless.

TCP, UDP

Network Transfers data packets between computers in a specific network. In a WAN
or an internetwork this involves the generation of a route passing through
routers. In a single LAN no routing is required.

IP, ATM virtual
circuits

Data link Responsible for transmission of packets between nodes that are directly
connected by a physical link. In a WAN transmission is between pairs of
routers or between routers and hosts. In a LAN it is between any pair of hosts.

Ethernet MAC,
ATM cell transfer,
PPP

Physical The circuits and hardware that drive the network. It transmits sequences of
binary data by analogue signalling, using amplitude or frequency modulation
of electrical signals (on cable circuits), light signals (on fibre optic circuits)
or other electromagnetic signals (on radio and microwave circuits).

Ethernet base- band
signalling, ISDN

Distributed Systems

Underlying network

Application

Network interface

Transport

Internetwork

Internetwork packets

Network-specific packets

Message
Layers

Internetwork
protocols

Underlying
network
protocols

Distributed Systems

Routing in a wide area network

Hosts Linksor local
networks

A

D E

B

C

1
2

5

43

6

Routers

Distributed Systems

file

compute

dialup

hammer

henry

hotpoint

138.37.88.230

138.37.88.162

bruno
138.37.88.249

router/
sickle

138.37.95.241138.37.95.240/29

138.37.95.249

copper
138.37.88.248

firewall

web

138.37.95.248/29

server

desktop computers 138.37.88.xx

subnet

subnet

Eswitch

138.37.88

server

server

server

138.37.88.251

custard
138.37.94.246

desktop computers

Eswitch

138.37.94

hubhub

Student subnetStaff subnet

other
servers

router/firewall

138.37.94.251

☎

1000 Mbps Ethernet
Eswitch: Ethernet switch

100 Mbps Ethernet

file server/
gateway

printers

Campus
router

Campus
router

138.37.94.xx

Distributed Systems

A Network Example

Tunnelling for IPv6 migration

A BIPv6 IPv6

IPv6 encapsulated in IPv4 packets

Encapsulators

IPv4 network

Distributed Systems

TCP/IP layers

Messages (UDP) or Streams (TCP)

Application

Transport

Internet

UDP or TCP packets

IP datagrams

Network-specific frames

Message
Layers

Underlying network

Network interface

Distributed Systems

Encapsulation in a message transmitted via TCP over an
Ethernet

Application message

TCP header

IP header

Ethernet header

Ethernet frame

port

TCP

IP

Distributed Systems

The programmer's conceptual view of a TCP/IP Internet

IP

Application Application

TCP UDP

Distributed Systems

Internet address structure, showing field sizes in bits

7 24

Class A: 0 Network ID Host ID

14 16

Class B: 1 0 Network ID Host ID

21 8

Class C: 1 1 0 Network ID Host ID

28

Class D (multicast): 1 1 1 0 Multicast address

27

Class E (reserved): 1 1 1 1 unused0

Distributed Systems

Decimal representation of Internet addresses

octet 1 octet 2 octet 3

Class A: 1 to 127

0 to 255 0 to 255 1 to 254

Class B: 128 to 191

Class C: 192 to 223

224 to 239 Class D (multicast):

Network ID

Network ID

Network ID

Host ID

Host ID

Host ID

Multicast address

0 to 255 0 to 255 1 to 254

0 to 255 0 to 255 0 to 255

0 to 255 0 to 255 0 to 255

Multicast address

0 to 255 0 to 255 1 to 254240 to 255 Class E (reserved):

1.0.0.0 to
127.255.255.255

128.0.0.0 to
191.255.255.255

192.0.0.0 to
223.255.255.255

224.0.0.0 to
239.255.255.255

240.0.0.0 to
255.255.255.255

Range of addresses

Distributed Systems

IP packet layout

dataIP address of destinationIP address of source

header

up to 64 kilobytes

Distributed Systems

IPv6 header layout

Source address
(128 bits)

Destination address
(128 bits)

Version (4 bits) Priority (4 bits) Flow label (24 bits)

Payload length (16 bits) Hop limit (8 bits)Next header (8 bits)

Distributed Systems

The MobileIP routing mechanism

Sender

Home

Mobile host MH

Foreign agent FA
Internet

agent

First IP packet
addressed to MH

Address of FA
returned to sender

First IP packet
tunnelled to FA

Subsequent IP packets
tunnelled to FA

Distributed Systems

Firewall configurations

Internet

Router/ Protected intraneta) Filtering router

Internet

b) Filtering router and bastion

filter

Internet

R/filterc) Screened subnet for bastion R/filter Bastion

R/filter Bastion

web/ftp
server

web/ftp
server

web/ftp
server

Distributed Systems

IEEE 802 network standards

IEEE No. Title Reference

802.3 CSMA/CD Networks (Ethernet) [IEEE 1985a]
802.4 Token Bus Networks [IEEE 1985b]
802.5 Token Ring Networks [IEEE 1985c]
802.6 Metropolitan Area Networks [IEEE 1994]
802.11 Wireless Local Area Networks [IEEE 1999]

Distributed Systems

Wireless LAN configuration
LAN

Server

Wireless
LAN

Laptops

Base station/
access point

Palmtop

radio obstruction

A B C

D E

Distributed Systems

ATM protocol layers

Physical

Application

ATM layer

Higher-layer protocols

ATM cells

ATM virtual channels

Message
Layers

ATM adaption layer

Distributed Systems

ATM cell layout

Flags DataVirtual channel idVirtual path id

53 bytes

Header: 5 bytes

Distributed Systems

Switching virtual paths in an ATM network

VPI in VPI out

2
3

4
5

VPI = 3

VPI = 5

VPI = 4

Virtual path Virtual channels

VPI = 2

VPI : virtual path identifier

VP switch VP/VC
switch

VP switch

Host

Host

Distributed Systems

Middleware layers

Applications, services

Middleware
layers

request-reply protocol

marshalling and external data representation

UDP and TCP

This
chapter

RMI and RPC

Distributed Systems - IPC

Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

Distributed Systems - IPC

CORBA CDR for constructed types

Type Representation
sequence length (unsigned long) followed by elements in order
string length (unsigned long) followed by characters in order (can also

can have wide characters)
array array elements in order (no length specified because it is fixed)
struct in the order of declaration of thecomponents
enumerated unsigned long (the values are specified by the order declared)
union type tag followed by the selected member

Distributed Systems - IPC

CORBA CDR message

The flattened form represents a Personstruct with value: {‘Smith’, ‘London’, 1934}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"

"h___"

6

"Lond"

"on__"

1934

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

Distributed Systems - IPC

Indication of Java serialized form

Distributed Systems - IPC

The true serialized form contains additional type markers; h0 and h1 are
handles

Serialized values
Person

3

1934

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:
h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

Representation of a remote object reference

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

Distributed Systems - IPC

Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

Distributed Systems - IPC

Operations of the request-reply protocol

public byte[] doOperation (RemoteObjectRef o, int methodId, byte[] arguments)
sends a request message to the remote object and returns the reply.
The arguments specify the remote object, the method to be invoked and the
arguments of that method.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Distributed Systems - IPC

Request-reply message structure

messageType

requestId

objectReference

methodId

arguments

int (0=Request, 1= Reply)

int

RemoteObjectRef

int or Method

array of bytes

Distributed Systems - IPC

RPC exchange protocols

Name Messages sent by
Client Server Client

R Request
RR Request Reply

RRA Request Reply Acknowledge reply

Distributed Systems - IPC

HTTP request message

GET //www.dcs.qmw.ac.uk/index.htmlHTTP/ 1.1

URL or pathnamemethod HTTP version headers message body

Distributed Systems - IPC

HTTP reply message

HTTP/1.1 200 OK resource data

HTTP version status code reason headers message body

Distributed Systems - IPC Distributed Systems - DFS

In this section we will present an important subject in distributed systems,
the Distributed File Systems. The idea is to understand how they work
And present case study examples.

Therefore, we will :

Understand the requirements that affect the design of
distributed services
NFS: understand how a relatively simple, widely-used service is
designed

– Obtain a knowledge of file systems, both local and
networked

– Caching as an essential design technique
– Remote interfaces are not the same as APIs
– Security requires special consideration

Recent advances: appreciate the ongoing research that often
leads to major advances

*

Distributed Systems - DFS

Storage systems and their properties

*

In first generation of distributed systems
(1974-95), file systems (e.g. NFS) were the
only networked storage systems.
With the advent of distributed object systems
(CORBA, Java) and the web, the picture has
become more complex.

Distributed Systems - DFS

Sharing Persis-
tence

Distributed
cache/replicas

Consistency
maintenance

Example

Main memory RAM

File system UNIX file system

Distributed file system Sun NFS

Web Web server

Distributed shared memory Ivy (Ch. 16)

Remote objects (RMI/ORB) CORBA

Persistent object store 1 CORBA Persistent
Object Service

Persistent distributed object store PerDiS, Khazana

1

1

1

*

Types of consistency between copies: 1 - strict one-copy consistency
√ - approximate consistency
X - no automatic consistency

Distributed Systems - DFS

WHAT IS A FILE SYSTEM ?

Persistent stored data sets
Hierarchic name space visible to all processes
API with the following characteristics:

– access and update operations on persistently stored data sets
– Sequential access model (with additional random facilities)

Sharing of data between users, with access control
Concurrent access:

– certainly for read-only access
– what about updates?

Other features:
– mountable file stores
– more? ...

*

Distributed Systems - DFS

*

filedes = open(name, mode)
filedes = creat(name, mode)

Opens an existing file with the given name.
Creates a new file with the given name.
Both operations deliver a file descriptor referencing the open
file. The mode is read, write or both.

status = close(filedes) Closes the open file filedes.
count = read(filedes, buffer, n)
count = write(filedes, buffer, n)

Transfers n bytes from the file referenced by filedes to buffer.
Transfers n bytes to the file referenced by filedes from buffer.
Both operations deliver the number of bytes actually transferred
and advance the read-write pointer.

pos = lseek(filedes, offset,
whence)

Moves the read-write pointer to offset (relative or absolute,
depending on whence).

status = unlink(name) Removes the file name from the directory structure. If the file
has no other names, it is deleted.

status = link(name1, name2) Adds a new name (name2) for a file (name1).
status = stat(name, buffer) Gets the file attributes for file name into buffer.

UNIX file system operations

Distributed Systems - DFS

Directory module: relates file names to file IDs

File module: relates file IDs to particular files

Access control module: checks permission for operation requested

File access module: reads or writes file data or attributes

Block module: accesses and allocates disk blocks

Device module: disk I/O and buffering

File system modules

*

Distributed Systems - DFS

updated
by system:

File length
Creation timestamp

Read timestamp
Write timestamp

Attribute timestamp
Reference count

Owner
File type

Access control list

E.g. for UNIX: rw-rw-r--

*

File attribute record structure

updated
by owner:

Distributed Systems - DFS
Tranparencies
Access: Same operations
Location: Same name space after relocation

of files or processes
Mobility: Automatic relocation of files is

possible
Performance: Satisfactory performance across

a specified range of system loads
Scaling: Service can be expanded to meet

additional loads

Concurrency properties
Isolation
File-level or record-level locking
Other forms of concurrency control to minimise

contention

Replication properties
File service maintains multiple identical copies

of files
• Load-sharing between servers makes

service more scalable
• Local access has better response (lower

latency)
• Fault tolerance
Full replication is difficult to implement.
Caching (of all or part of a file) gives most of

the benefits (except fault tolerance)

Heterogeneity properties
Service can be accessed by clients running on

(almost) any OS or hardware platform.
Design must be compatible with the file

systems of different OSes
Service interfaces must be open - precise

specifications of APIs are published.

Fault tolerance
Service must continue to operate even when

clients make errors or crash.
• at-most-once semantics
• at-least-once semantics

•requires idempotent operations

Service must resume after a server machine
crashes.

If the service is replicated, it can continue to
operate even during a server crash.

Consistency
Unix offers one-copy update semantics for

operations on local files - caching is
completely transparent.

Difficult to achieve the same for distributed file
systems while maintaining good
performance and scalability.

Security
Must maintain access control and privacy as

for local files.
•based on identity of user making request
•identities of remote users must be
authenticated
•privacy requires secure communication

Service interfaces are open to all processes
not excluded by a firewall.

•vulnerable to impersonation and other
attacks

Efficiency
Goal for distributed file systems is usually

performance comparable to local file system.

File service requirements

Transparenc
y
Concurrency
Replication
Heterogeneit
y
Fault
tolerance
Consistency
Security
Efficiency..

*

Model file service architecture

Client computer Server computer

Application
program

Application
program

Client module

Flat file service

Directory service

Lookup
AddName
UnName
GetNames

Read
Write
Create
Delete
GetAttributes
SetAttributes

*

File Group

A collection of files that can be located on
any server or moved between servers
while maintaining the same names.

– Similar to a UNIX filesystem
– Helps with distributing the load of

file serving between several
servers.

– File groups have identifiers which
are unique throughout the system
(and hence for an open system,
they must be globally unique).

Used to refer to file groups and
files

To construct a globally
unique ID we use some
unique attribute of the
machine on which it is
created, e.g. IP number,
even though the file group
may move subsequently.

IP address date

32 bits 16 bits
File Group ID:

*

Case Study: Sun NFS

An industry standard for file sharing on local networks since the
1980s
An open standard with clear and simple interfaces
Closely follows the abstract file service model defined above
Supports many of the design requirements already mentioned:

– transparency
– heterogeneity
– efficiency
– fault tolerance

Limited achievement of:
– concurrency
– replication
– Consistency and security

*

NFS Architecture

Client computer Server computer

UNIX
file

system

NFS
client

NFS
server

UNIX
file

system

Application
program

Application
program

Virtual file systemVirtual file system

O
th

er
fil

e
sy

st
em

UNIX kernel

system calls

NFS
protocol

(remote operations)

UNIX

Operations
on local files

Operations
on

remote files

*

Application
program

NFS
Client

Kernel
Application
program

NFS
Client

Client computer

*

NFS Architecture:
Does the implementation have to be in the system kernel?

No:
– there are examples of NFS clients and servers that run

at application-level as libraries or processes (e.g. early
Windows and MacOS implementations, current
PocketPC, etc.)

Distributed Systems - DFS

*

But, for a Unix implementation there are advantages:
– Binary code compatible - no need to recompile applications

Standard system calls that access remote files can be routed
through the NFS client module by the kernel

– Shared cache of recently-used blocks at client
– Kernel-level server can access i-nodes and file blocks directly

but a privileged (root) application program could do almost the
same.

– Security of the encryption key used for authentication.

Distributed Systems - DFS

• read(fh, offset, count) -> attr, data
• write(fh, offset, count, data) -> attr
• create(dirfh, name, attr) -> newfh, attr
• remove(dirfh, name) status
• getattr(fh) -> attr
• setattr(fh, attr) -> attr
• lookup(dirfh, name) -> fh, attr
• rename(dirfh, name, todirfh, toname)
• link(newdirfh, newname, dirfh, name)
• readdir(dirfh, cookie, count) -> entries
• symlink(newdirfh, newname, string) ->

status
• readlink(fh) -> string
• mkdir(dirfh, name, attr) -> newfh, attr
• rmdir(dirfh, name) -> status
• statfs(fh) -> fsstats

NFS server operations (simplified)

fh = file handle:

Filesystem identifier i-node number i-node generation

*

Model flat file service
Read(FileId, i, n) -> Data
Write(FileId, i, Data)
Create() -> FileId
Delete(FileId)
GetAttributes(FileId) -> Attr
SetAttributes(FileId, Attr)

Model directory service
Lookup(Dir, Name) -> FileId
AddName(Dir, Name, File)
UnName(Dir, Name)
GetNames(Dir, Pattern)
->NameSeq

NFS access control and
authentication

Stateless server, so the user's identity and access rights must be
checked by the server on each request.

– In the local file system they are checked only on open()
Every client request is accompanied by the userID and groupID

– not shown in the Figure 8.9 because they are inserted by the RPC
system

Server is exposed to imposter attacks unless the userID and groupID
are protected by encryption
Kerberos has been integrated with NFS to provide a stronger and
more comprehensive security solution

– Kerberos is described in Chapter 7. Integration of NFS with
Kerberos is covered later in this chapter.

*

Mount service

Mount operation:
mount(remotehost, remotedirectory,

localdirectory)
Server maintains a table of clients who have
mounted filesystems at that server
Each client maintains a table of mounted file
systems holding:

< IP address, port number, file handle>
Hard versus soft mounts

*

Local and remote file systems
accessible on an NFS client

jim jane joeann

usersstudents

usrvmunix

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

Note: The file system mounted at /usr/students in the client is actually the sub-tree located at /export/people in
Server 1; the file system mounted at /usr/staff in the client is actually the sub-tree located at /nfs/users in Server 2.

*

Automounter

NFS client catches attempts to access 'empty' mount points and
routes them to the Automounter

– Automounter has a table of mount points and multiple
candidate serves for each

– it sends a probe message to each candidate server and
then uses the mount service to mount the filesystem at the
first server to respond

Keeps the mount table small
Provides a simple form of replication for read-only filesystems

– E.g. if there are several servers with identical copies of
/usr/lib then each server will have a chance of being
mounted at some clients.

*

Kerberized NFS

Kerberos protocol is too costly to apply on each file access request
Kerberos is used in the mount service:

– to authenticate the user's identity
– User's UserID and GroupID are stored at the server with the

client's IP address
For each file request:

– The UserID and GroupID sent must match those stored at the
server

– IP addresses must also match
This approach has some problems

– can't accommodate multiple users sharing the same client
computer

– all remote filestores must be mounted each time a user logs in *

NFS optimization - server caching

Similar to UNIX file caching for local files:
– pages (blocks) from disk are held in a main memory buffer cache

until the space is required for newer pages. Read-ahead and
delayed-write optimizations.

– For local files, writes are deferred to next sync event (30 second
intervals)

– Works well in local context, where files are always accessed
through the local cache, but in the remote case it doesn't offer
necessary synchronization guarantees to clients.

*

NFS optimization - server caching

NFS v3 servers offers two strategies for updating the disk:
– write-through - altered pages are written to disk as soon as they

are received at the server. When a write() RPC returns, the NFS
client knows that the page is on the disk.

– delayed commit - pages are held only in the cache until a commit()
call is received for the relevant file. This is the default mode used
by NFS v3 clients. A commit() is issued by the client whenever a
file is closed.

*

NFS optimization - client caching

Server caching does nothing to reduce RPC traffic between client and
server

– further optimization is essential to reduce server load in large
networks

– NFS client module caches the results of read, write, getattr, lookup
and readdir operations

– synchronization of file contents (one-copy semantics) is not
guaranteed when two or more clients are sharing the same file.

*

NFS optimization - client caching

Timestamp-based validity check
– reduces inconsistency, but doesn't eliminate it
– validity condition for cache entries at the client:

(T - Tc < t) v (Tmclient = Tmserver)
– t is configurable (per file) but is typically set to

3 seconds for files and 30 secs. for directories
– it remains difficult to write distributed

applications that share files with NFS

*

t freshness guarantee
Tc time when cache entry was

last validated
Tm time when block was last

updated at server
T current time

Other NFS optimizations

Sun RPC runs over UDP by default (can use TCP if required)
Uses UNIX BSD Fast File System with 8-kbyte blocks
reads() and writes() can be of any size (negotiated between client and
server)
the guaranteed freshness interval t is set adaptively for individual files
to reduce gettattr() calls needed to update Tm
file attribute information (including Tm) is piggybacked in replies to all
file requests

*

NFS performance

Early measurements (1987) established that:
– write() operations are responsible for only 5% of server calls in

typical UNIX environments
hence write-through at server is acceptable

– lookup() accounts for 50% of operations -due to step-by-step
pathname resolution necessitated by the naming and mounting
semantics.

*

NFS performance

More recent measurements (1993) show high
performance:
1 x 450 MHz Pentium III: > 5000 server ops/sec, < 4 millisec.

average latency
24 x 450 MHz IBM RS64: > 29,000 server ops/sec, < 4 millisec.

average latency
see www.spec.org for more recent measurements

*

NFS performance

Provides a good solution for many environments
including:

– large networks of UNIX and PC clients
– multiple web server installations sharing a single file store

*

NFS - Summary

An excellent example of a simple, robust, high-
performance distributed service.
Achievement of transparencies :
Access: Excellent; the API is the UNIX system call

interface for both local and remote files.

Location: Not guaranteed but normally achieved; naming
of filesystems is controlled by client mount operations,
but transparency can be ensured by an appropriate
system configuration.

NFS - Summary

Concurrency: Limited but adequate for most purposes;
when read-write files are shared concurrently between
clients, consistency is not perfect.

Replication: Limited to read-only file systems; for
writable files, the SUN Network Information Service
(NIS) runs over NFS and is used to replicate essential
system files.

NFS - Summary

Achievement of transparencies (continued):
Failure: Limited but effective; service is suspended if a

server fails. Recovery from failures is aided by the
simple stateless design.

Mobility: Hardly achieved; relocation of files is not
possible, relocation of file systems is possible, but
requires updates to client configurations.

*

NFS - Summary

Performance: Good; multiprocessor servers achieve
very high performance, but for a single filesystem it's
not possible to go beyond the throughput of a
multiprocessor server.

Scaling: Good; filesystems (file groups) may be
subdivided and allocated to separate servers.
Ultimately, the performance limit is determined by the
load on the server holding the most heavily-used
filesystem (file group).

*

Distribution of processes in the
Andrew File System

Venus

Workstations Servers

Venus

VenusUser
program

Network

UNIX kernel

UNIX kernel

Vice

User
program

User
program

Vice
UNIX kernel

UNIX kernel

UNIX kernel

*

File name space seen by clients of
AFS

/ (root)

tmp bin cmuvmunix. . .

bin

SharedLocal

Symbolic
links

*

System call interception in AFS

UNIX file
system calls

Non-local file
operations

Workstation

Local
disk

User
program

UNIX kernel

Venus

UNIX file system

Venus

*

Implementation of file system calls
in AFS

User process UNIX kernel Venus Net Vice
open(FileName,

mode)
If FileName refers to a
file in shared file space,
pass the request to
Venus.

Open the local file and
return the file
descriptor to the
application.

Check list of files in
local cache. If not
present or there is no
valid callback promise ,
send a request for the
file to the Vice server
that is custodian of the
volume containing the
file.

Place the copy of the
file in the local file
system, enter its local
name in the local cache
list and return the local
name to UNIX.

Transfer a copy of the
file and a callback
promise to the
workstation. Log the
callback promise.

read(FileDescriptor,
Buffer, length)

Perform a normal
UNIX read operation
on the local copy.

write(FileDescriptor,
Buffer, length)

Perform a normal
UNIX write operation
on the local copy.

close(FileDescriptor) Close the local copy
and notify Venus that
the file has been closed. If the local copy has

been changed, send a
copy to the Vice server
that is the custodian of
the file.

Replace the file
contents and send a
callback to all other
clients holding ca llba ck
promises on the file. *

The main components of the Vice
service interface

Fetch(fid) -> attr, data Returns the attributes (status) and, optionally, the contents of file
identified by the fid and records a callback promise on it.

Store(fid, attr, data) Updates the attributes and (optionally) the contents of a specified
file.

Create() -> fid Creates a new file and records a callback promise on it.
Remove(fid) Deletes the specified file.
SetLock(fid, mode) Sets a lock on the specified file or directory. The mode of the

lock may be shared or exclusive. Locks that are not removed
expire after 30 minutes.

ReleaseLock(fid) Unlocks the specified file or directory.
RemoveCallback(fid) Informs server that a Venus process has flushed a file from its

cache.
BreakCallback(fid) This call is made by a Vice server to a Venus process. It cancels

the callback promise on the relevant file. *

Recent advances in file services

NFS enhancements
WebNFS - NFS server implements a web-like service on a well-

known port. Requests use a 'public file handle' and a pathname-
capable variant of lookup(). Enables applications to access NFS
servers directly, e.g. to read a portion of a large file.

One-copy update semantics (Spritely NFS, NQNFS) - Include an
open() operation and maintain tables of open files at servers,
which are used to prevent multiple writers and to generate
callbacks to clients notifying them of updates. Performance was
improved by reduction in gettattr() traffic.

*

Recent advances in file services

Improvements in disk storage organisation
RAID - improves performance and reliability by striping data

redundantly across several disk drives
Log-structured file storage - updated pages are stored

contiguously in memory and committed to disk in large
contiguous blocks (~ 1 Mbyte). File maps are modified whenever
an update occurs. Garbage collection to recover disk space.

*

New design approaches

Distribute file data across several servers
– Exploits high-speed networks (ATM, Gigabit Ethernet)
– Layered approach, lowest level is like a 'distributed virtual disk'
– Achieves scalability even for a single heavily-used file

'Serverless' architecture
– Exploits processing and disk resources in all available network

nodes
– Service is distributed at the level of individual files

*

New design approaches

Examples:
xFS : Experimental implementation demonstrated a substantial

performance gain over NFS and AFS
Frangipani : Performance similar to local UNIX file access
Tiger Video File System
Peer-to-peer systems: Napster, OceanStore (UCB), Farsite (MSR),

Publius (AT&T research) - see web for documentation on these
very recent systems

* *

New design approaches

Replicated read-write files
– High availability
– Disconnected working

re-integration after disconnection is a major problem if
conflicting updates have occurred

– Examples:
Bayou system
Coda system

Summary

Sun NFS is an excellent example of a distributed service
designed to meet many important design requirements

Effective client caching can produce file service
performance equal to or better than local file systems

Consistency versus update semantics versus fault
tolerance remains an issue

*

Summary

Most client and server failures can be masked

Superior scalability can be achieved with whole-file
serving (Andrew FS) or the distributed virtual disk
approach

*

Future requirements:
– support for mobile users, disconnected operation, automatic re-

integration (Cf. Coda file system)
– support for data streaming and quality of service (Cf. Tiger file

system)

The objectives of this section are –

To understand the need for naming systems in distributed
systems
To be familiar with the design requirements for distributed name
services

To understand the operation of the Internet naming service -
DNS
To be familiar with the role of discovery services in mobile and
ubiquitous computer systems

*

Distributed Systems – Names Services
The role of names and name
services

Resources are accessed using identifier or reference
– An identifier can be stored in variables and retrieved from

tables quickly
– Identifier includes or can be transformed to an address for

an object
E.g. NFS file handle, Corba remote object reference

– A name is human-readable value (usually a string) that can
be resolved to an identifier or address

Internet domain name, file pathname, process number
E.g ./etc/passwd, http://www.cdk3.net/

*

The role of names and name
services

For many purposes, names are preferable to
identifiers

– because the binding of the named resource to a physical
location is deferred and can be changed

– because they are more meaningful to users

Resource names are resolved by name services
– to give identifiers and other useful attributes

*

Requirements for name spaces

Allow simple but meaningful names to be used
Potentially infinite number of names
Structured

– to allow similar subnames without clashes
– to group related names

Allow re-structuring of name trees
– for some types of change, old programs should continue to

work
Management of trust

*

file

Web server
Socket

Composed naming domains used to
access a resource from a URL

http://www.cdk3.net:8888/WebExamples/earth.html

URL

Resource ID (IP number, port number, pathname)

138.37.88.61 WebExamples/earth.html8888

DNS lookup

(Ethernet) Network address

2:60:8c:2:b0:5a

ARP lookup

*

Names and resources

Currently, different name systems are used for each type of resource:
resource name identifies
file pathname file within a given file system
process process id process on a given computer
port port number IP port on a given computer

Uniform Resource Identifiers (URI) offer a general solution for any type of
resource. There two main classes:

URL Uniform Resource Locator
– typed by the protocol field (http, ftp, nfs, etc.)
– part of the name is service-specific
– resources cannot be moved between domains

URN Uniform Resource Name
– requires a universal resource name lookup service - a DNS-like

system for all resources *

Names and resources

More on URNs
format: urn:<nameSpace>:<name-within-namespace>
examples:
a) urn:ISBN:021-61918-0
b) urn:dcs.qmul.ac.uk:TR2000-56
resolution:
a) send a request to nearest ISBN-lookup service - it would return

whatever attributes of a book are required by the requester
b) send a request to the urn lookup service at dcs.qmul.ac.uk

- it would return a url for the relevant document

*

Iterative navigation

Client1
2

3

A client iteratively contacts name servers NS1–NS3 in order to resolve a name

NS2

NS1

NS3

Nameservers

*

Iterative navigation

*

Reason for NFS iterative name resolution
This is because the file service may encounter a symbolic link
(i.e. an alias) when resolving a name. A symbolic link must be
interpreted in the client’s file system name space because it may
point to a file in a directory stored at another server. The client
computer must determine which server this is, because only the
client knows its mount points. (p.362.)

Iterative navigation

Used in:
DNS: Client presents entire name to servers, starting at a local

server, NS1. If NS1 has the requested name, it is resolved, else
NS1 suggests contacting NS2 (a server for a domain that
includes the requested name).

NFS: Client segments pathnames (into 'simple names') and
presents them one at a time to a server together with the
filehandle of the directory that contains the simple name.

*

Non-recursive and recursive server-
controlled navigation

A name server NS1 communicates with other name servers on behalf of a client

Recursive
server-controlled

1

2
3

5

4
client

NS2

NS1

NS3

1
2

34
client

NS2

NS1

NS3

Non-recursive
server-controlled

*

Non-recursive and recursive server-
controlled navigation

DNS offers recursive navigation as an option, but iterative is the
standard technique. Recursive navigation must be used in
domains that limit client access to their DNS information for
security reasons.

*

DNS - The Internet Domain Name
System

A distributed naming database

Name structure reflects administrative structure of the Internet

Rapidly resolves domain names to IP addresses

– exploits caching heavily

– typical query time ~100 milliseconds

Scales to millions of computers

– partitioned database

– caching

Resilient to failure of a server

– replication *

DNS - The Internet Domain Name
System

*

Basic DNS algorithm for name resolution (domain name -> IP number)
• Look for the name in the local cache
• Try a superior DNS server, which responds with:

– another recommended DNS server
– the IP address (which may not be entirely up to date)

DNS name servers

Note: Name server names are in
italics, and the corresponding
domains are in parentheses.
Arrows denote name server
entries

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk
qmw.ac.uk
...

dcs.qmw.ac.uk
*.qmw.ac.uk

.ic.ac.uk.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk
...

co.uk

yahoo.com
....

authoritative path to lookup:
jeans-pc.dcs.qmw.ac.uk

*

a.root-servers.net
(root)

ns0.ja.net
(ac.uk)

dns0.dcs.qmw.ac.uk
(dcs.qmw.ac.uk)

alpha.qmw.ac.uk
(qmw.ac.uk)

dns0-doc.ic.ac.uk
(ic.ac.uk)

ns.purdue.edu
(purdue.edu)

uk
purdue.edu

ic.ac.uk
qmw.ac.uk
...

dcs.qmw.ac.uk
*.qmw.ac.uk

.ic.ac.uk.dcs.qmw.ac.uk

* .purdue.edu

ns1.nic.uk
(uk)

ac.uk
...

co.uk

yahoo.com
....

client.ic.ac.uk

IP: alpha.qmw.ac.uk

2

3IP:dns0.dcs.qmw.ac.uk

jeans-pc.dcs.qmw.ac.uk ?

IP:ns0.ja.net

1
IP:jeans-pc.dcs.qmw.ac.uk

4

Without caching

*

DNS server functions and
configuration

Main function is to resolve domain names for computers, i.e. to get
their IP addresses

– caches the results of previous searches until they pass their 'time
to live'

Other functions:
– get mail host for a domain
– reverse resolution - get domain name from IP address
– Host information - type of hardware and OS
– Well-known services - a list of well-known services offered by a

host
– Other attributes can be included (optional)

*

DNS resource records
Record type Meaning Main contents
A A computer address IP number
NS An authoritative name server Domain name for server
CNAME The canonical name for an alias Domain name for alias
SOA Marks the start of data for a zone Parameters governing the zone
WKS A well-known service description List of service names and protocols
PTR Domain name pointer (reverse

lookups)
Domain name

HINFO Host information Machine architecture and operating
system

MX Mail exchange List of <preference, host> pairs
TXT Text string Arbitrary text

*

DNS issues

Name tables change infrequently, but when they do,
caching can result in the delivery of stale data.

– Clients are responsible for detecting this and recovering

Its design makes changes to the structure of the name
space difficult. For example:

– merging previously separate domain trees under a new root
– moving subtrees to a different part of the structure (e.g. if

Scotland became a separate country, its domains should all be
moved to a new country-level domain.

The GNS, is a research system that solves the above
issues.

*

Directory and discovery services

Directory service:- 'yellow pages' for the resources in a
network

– Retrieves the set of names that satisfy a given
description

– e.g. X.500, LDAP, MS Active Directory Services
(DNS holds some descriptive data, but:

– the data is very incomplete
– DNS isn't organised to search it)

*

Directory and discovery services

Discovery service:- a directory service that also:
– is automatically updated as the network configuration changes
– meets the needs of clients in spontaneous networks (Section

2.2.3)
– discovers services required by a client (who may be mobile) within

the current scope, for example, to find the most suitable printing
service for image files after arriving at a hotel.

– Examples of discovery services: Jini discovery service, the
'service location protocol', the 'simple service discovery protocol'
(part of UPnP), the 'secure discovery service'.

*

Revision: Spontaneous networks

Internet

gateway

PDA

service

Music
service

service
Discovery

Alarm

Camera

Guest's
devicesLaptopTV/PC

Hotel wireless
network

*

Revision: Spontaneous networks

Easy connection of guest's devices
– wireless network
– automatic configuration

Easy integration with local services
– discovery of services relevant to guest's needs

*

Revision: Spontaneous networks

Discovery service
• .A database of services with lookup based on service

description or type, location and other criteria, E.g.
1. Find a printing service in this hotel

compatible with a Nikon camera
2. Send the video from my camera to the digital TV in my room.

• Automatic registration of new services
• Automatic connection of guest's clients to the discovery service

*

Revision: Spontaneous networks

Other issues for spontaneous networking:
• Unreliable connections when mobile
• Security exposure of ports and communication channels

*

Printing
service

service
Lookup

service
Lookup

Printing
service

admin

admin

admin, finance

finance

Client

Mobile client

Corporate
infoservice

Network

Service discovery in Jini

2. Here I am:
4. Use printing

service

1. ‘finance’
lookup service?

*

3. Request
printing &
receive
proxy

Service discovery in Jini

Jini services register their interfaces and descriptions with the Jini
lookup services in their scope

Clients find the Jini lookup services in their scope by IP multicast

Jini lookup service searches by attribute or by interface type
– The designers of Jini argue convincingly that this the only reliable way to

do discovery

*

Topics not covered

GNS case study
– an early research project (1985) that developed solutions for the

problems of:
large name spaces
restructuring the name space

X.500 and LDAP
– a hierarchically-structured standard directory service designed for

world-wide use
– accommodates resource descriptions in a standard form and their

retrieval for any resource (online or offline)
– never fully deployed, but the standard forms the basis for LDAP,

the Lightweight Directory Access Protocol, which is widely used
*

Topics not covered

Trading services
– Directories of services with retrieval by attribute searching
– Brokers negotiate the contract for the use of a service, including

negotiation of attribute such as quality and quantity of service

*

Summary

Name services:
– defer the binding of resource names to addresses (and other

attributes)
– Names are resolved to give addresses and other attributes
– Goals :

Scalability (size of database, access traffic (hits/second), update
traffic)
Reliability
Trust management (authority of servers)

– Issues
exploitation of replication and caching to achieve scalability without
compromising the distribution of updates
navigation methods *

Summary

Directory and discovery services:
– 'yellow pages' retrieval by attributes
– dynamic resource registration and discovery

*

End of Part I
(Distributed Systems)

Questions ?Questions ?

Course Outline

Distributed Systems

High Performance Networks

Clusters and Computational Grids

Course Outline

High-Performance Networks

Networks become the important part to any system, because nowadays
distributed local and remote systems are the bases of any computational
environment. However, different network approaches exists.

In this module of the course we will study high performance networks.

The recommended literature are presented below :

Tecnologias de Redes de Comunicação e Computadores, Mario
Dantas, Axcel Books, ISBN 85-7323-169-6

High Performance Networks - Technology and Protocols
(Editor)Ahmed N. Tantawy, Kluwer, ISBN 0-7923-9371-6;

Sharing Bandwidth, Simon St. Laurent, IDG Books, ISBN 0-7645-
7009-9;

4 - Internetworking with TCP/IP - Volume I Principles,
Protocols, and Architecture, Douglas E. Comer, Third Edition,
Prentice Hall, 1995, ISBN 0-13-216987-8;

Course Outline

Physical

Link

Internet

Transport

Session
Presentation

Application
Application

Transport

Internet

Subnet

ISO/OSI TCP/IP

ISO/OSI Model and TCP/IP Architecture

High Performance Networks

Internet
Internet Architecture

Sub-net access

IP, ICMP, ARP, RARP

TCP UDP

FTP, TELNET, SMTP, DNS, SNMP

TCP/IP Protocol Family

ARP , Device drivers

IP ICMP

TCP UD
P

rlogin,ftp,... NFS,DNS,.. tracertarp

Net

ARP , Device drivers

IP ICMP

TCP UD
P

rlogin,ftp,... NFS,DNS,.. tracertarp

Net

NetNet

TransportTransport

ApplicationApplication

SubSub--NetNet

TCP/IP Protocol Family

High Performance Networks

TCP - Connection

Sends SYN seq=x

Receives SYN

Send ACK x + 1, SYN seq=y

Receives SYN + ACK
Sends ACK y + 1

Receives ACK

Machine A Machine B

TCP - Acknowledegment and retransmission

Go-back-n x seletive retransmission

1 2 3 4 5 6 7 8 9 10

5 6 7 8 9 10Go-back-n

5Seletive retransmission

High Performance Networks

Lightweight ProtocolsLightweight Protocols

High Performance Networks

 Metric Multicast 1:3 x FTP "Multicast" 1:3
Buffer 1024 bytes

(Timing)

0

1000

2000

3000

4000

5000

64
k

12
8k

25
6k

51
2k 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

25
6M

51
2M 1G

B

Tamanho (bytes)

Te
m

po
 (s

)

Metric Multicast 1:3

FTP "Multicast" 1:3

High Performance Networks

0

15.000

30.000

45.000

60.000

75.000

90.000

105.000

120.000

135.000

150.000

1M 4M 16M 64M

Tamanho do Arquivo

Te
m

po
(m

s)

XTP multicast 1:2

TCP p/ c4

TCP p/ c5

0

1

2

3

4

5

6

7

8

9

1M 4M 16M 64M

Tamanho do Arquivo

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

TCP p/ c4

TCP p/ c5

XTP multicast 1:2

High Performance Networks

0
20.000
40.000
60.000
80.000
100.000
120.000
140.000
160.000
180.000
200.000
220.000

1M 4M 16M 64M

Tamanho do Arquivo

Te
m

po
(m

s)

XTP multicast 1:3
TCP p/ c2
TCP p/ c4
TCP p/ c5

0

1

2

3

4

5

6

7

8

9

1M 4M 16M 64M
Tamanho do Arquivo

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

TCP p/ c2
TCP p/ c4
TCP p/ c5
XTP multicast 1:3

High Performance Networks

0
20.000
40.000
60.000
80.000
100.000
120.000
140.000
160.000
180.000
200.000
220.000
240.000
260.000
280.000

1M 4M 16M 64M

Tamanho do Arquivo
Te

m
po

(m
s)

XTP multicast 1:4
TCP p/ c2
TCP p/ c3
TCP p/ c4
TCP p/ c5

0

1

2

3

4

5

6

7

8

9

1M 4M 16M 64M

Tamanho do Arquivo

Th
ro

ug
hp

ut
(M

bi
ts

/s
)

TCP p/ c2
TCP p/ c3
TCP p/ c4
TCP p/ c5
XTP multicast 1:4

End of Part II
(High Performance Networks)

Questions ?Questions ?

Course Outline

Distributed Systems

High Performance Networks

Clusters and Computational Grids

Course Outline

• Computing Paradigms and Applications

• Users

• Grid Architecture

• Grid Computing Environments

• Experimental Results

Course Outline

The recommended literature for this part of the course
is :

The Grid : Blueprint for a New Computing
Infrastructure, Foster,I. , Kesselman, C.
Morgan Kaufmann, 1998, ISBN 1558604758.

Grid Computing: Making The Global Infrastructure a
Reality, Berman, F., Fox, G., Hey, T. , John Wiley &
Sons, 2003, ISBN 0470853190.

Clusters and Computational Grids

What is the difference between
Cluster and Computational Grid ?

A important difference between clusters and grids is
mainly based in the way resources are managed.

In the clusters, the resource allocation is
performed by a centralized resource manager and
all nodes cooperatively work together as a single
unified resource.

Inside the Grids, each node has its own resource
manager and do not target for providing a single
system view.

Computing Paradigms and Applications

Clusters

Computing Paradigms and Applications

High Performance Computing (HPC) traditionally has been based
on specific parallel architectures, such as MPP (Massively Parallel
Processors) and SMP (Symmetric Memory Processors)

More recently, low cost computers gather either physically or
virtually, are used called as Clusters or Nows. These architectures
are interesting to many organizations.

Clusters

Computing Paradigms and Applications

What is a cluster configuration ?

Clusters

Computing Paradigms and Applications

Cluster environments are used when applications which require
processing performance can not execute in a single node.

These environments are built with a local connection of
many no expensive computers using a specific network equipment.

The following figures present examples of cluster environments.

Clusters

Computing Paradigms and Applications

Clusters

Computing Paradigms and Applications

Clusters

Computing Paradigms and Applications

Clusters

Computing Paradigms and Applications

Clusters

Computing Paradigms and Applications

Clusters

Computing Paradigms and Applications

Cluster management is an important task
for this new distributed architecture, many
packages exist with this specific function
(e.g. Oscar)

Clusters and Computational Grids

The experimental research with the I-WAY,
first large scale Grid effort, bring to us that
there were five classes of applications using
a specific computing paradigm.

Computing Paradigms and Applications

Clusters and Computational Grids

Computing paradigmsComputing paradigms and applications applications can be classify as
following :

• Distributed Supercomputing

• High-Throughput Computing

• On-Demand Computing

• Computing for Large Amount of Data

• Collaborative Computing

Computing Paradigms and Applications

Clusters and Computational Grids

Applications that use this approach can be characterized by the
fact that it is not possible to solve these applications in a single
computational system.

The aggregation environment which we are referring to can be
represented by all the supercomputers of a specific country or
all the workstation inside of an organization.

1. Distributed Supercomputing

Computing Paradigms and Applications

Clusters and Computational Grids

Examples of applications using the distributed supercomputing
approach are :

• Distributed Interactive Simulation (DIS) : this is a simulation
technique used to model the behaviour and movement of hundred
(or thousand) of entities which are usually employed for military
planning and teaching.

Computing Paradigms and Applications

Clusters and Computational Grids

• Simulation of complex models such as those in weather
forecast and cosmology.

Computing Paradigms and Applications

Clusters and Computational Grids

2. High-Throughput Computing

The main objective of this approach it solve the problem of
applications that require a transfer of a large amount of data.

The computational environment is used for scheduling a large
number of loosely couple tasks and enhance the utilization of
machines with a low workload.

Computing Paradigms and Applications

Clusters and Computational Grids

Classical examples for high-throughput computing are :

• Condor High-Throughput – this software environment
from the University of Wisconsin is used to manage pools
of hundreds workstations in the university and other labs
around the world.

Computing Paradigms and Applications

Clusters and Computational Grids

• The Platform Computing software - used by AMD during
the projects of K6 e K7 processors. It is reported that the
company has used all the desktops which were not in use by
the engineers in a specific period of time.

Computing Paradigms and Applications

Clusters and Computational Grids

3. On-Demand Computing

This class of applications usually can be characterized by the
use of resources that can not be used in the local site, because
it is not available.

The resources can be computing, data streams, software,
archives and for examples experimental results.

Computing Paradigms and Applications

Clusters and Computational Grids

Difference between this approach and distributed
Supercomputing is related to the cost of performance
then the complete performance behaviour.

Computing Paradigms and Applications

Clusters and Computational Grids

4. Computing for Large Amount of Data

This class of application and computing paradigm covers the
requirement for processing large amount of data stored in a
geographic distributed fashion.

Examples are large databases and digital libraries that are
available for access in a distributed way.

The Digital Sky Survey and modern weather forecast
Systems are applications examples.

Computing Paradigms and Applications

Clusters and Computational Grids

5. Collaborative Computing

Examples for this class are those which are oriented to the
improvement the relation between humans.

Many collaborative applications allow the share use of
computational resources.

Computing Paradigms and Applications

Clusters and Computational Grids

NICE is a collaborative learning environment for
young children (approximately 6-8 years of age).
The environment depicts a virtual island in which
the children can tend a virtual garden and learn
about environmental concepts.

Computing Paradigms and Applications

UsersUsers

Users

Another approach used to understand what is a Grid, is to
understand who is going to use.

A Grid is above of the mechanisms of resource sharing
therefore we can image two questions :

A - Which kind of entity is going to invest in the
infrastructure for a Grid ?
B - Which kind of resources each community of

the entity will be share ?

Clusters and Computational Grids

Answers for the two questions should be based on costs and
benefits for sharing resources.

Therefore it is usually presented in the academic and
commercial reports efforts for the following groups of grid
environments :

• National
• Private
• Virtual
• Public

Users

Clusters and Computational Grids

• National Grid – the target of this group is to be
a strategic computational resource and serve as a
bridge between national sharing facilities.

• Private Grid – the heath community it is an
example of private grid organization. This group,
was identified to benefit from grid configurations
because of the strategic utilization of computational
power.

Users

Clusters and Computational Grids

NSF National Technology Grid

Users

Clusters and Computational Grids

NEESgrid: national
infrastructure to couple
earthquake engineers
with experimental
facilities, databases,
computers, & each
other
On-demand access to
experiments, data
streams, computing,
archives, collaboration

Network for Earthquake Engineering Simulation
NEESgrid: Argonne, Michigan, NCSA, UIUC, USC

Users

Clusters and Computational Grids

• Virtual Grid – this community is formed by researches and
scientists which require the use of expensive equipments and a
great computational power.

• Public Grid – this group is basically characterized by those
which the main activity includes services using a great
quantity of computational power.

Users

DOE X-ray grand challenge: ANL, USC/ISI, NIST, U.Chicago

tomographic reconstruction

real-time
collection

wide-area
dissemination

desktop & VR clients
with shared controls

Advanced Photon Source

Online Access to Scientific Instruments

archival
storage

Users
Data Grids for High Energy Physics

Tier2 Centre
~1 TIPS

Online System

Offline Processor Farm

~20 TIPS

CERN Computer Centre

FermiLab ~4 TIPSFrance Regional
Centre

Italy Regional
Centre

Germany Regional
Centre

InstituteInstituteInstituteInstitute
~0.25TIPS

Physicist workstations

~100 MBytes/sec

~100 MBytes/sec

~622 Mbits/sec

~1 MBytes/sec

There is a “bunch crossing” every 25 nsecs.
There are 100 “triggers” per second
Each triggered event is ~1 MByte in size

Physicists work on analysis “channels”.
Each institute will have ~10 physicists working on one or more
channels; data for these channels should be cached by the
institute server

Physics data cache

~PBytes/sec

~622 Mbits/sec
or Air Freight (deprecated)

Tier2 Centre
~1 TIPS

Tier2 Centre
~1 TIPS

Tier2 Centre
~1 TIPS

Caltech
~1 TIPS

~622 Mbits/sec

Tier 0Tier 0

Tier 1Tier 1

Tier 2Tier 2

Tier 4Tier 4

1 TIPS is approximately 25,000
SpecInt95 equivalents

Image courtesy Harvey Newman, Caltech

Users

Before we start to study the Grid architecture it is interesting to
know about Virtual Organizations (VO). Virtual organizations
are the entities that share resources of the Grid under a specific
policy .Examples of VO are :

• Providers of applications, data storage and
computational power.

• Research organizations

• Universities

Grid ArchitectureGrid Architecture Clusters and Computational Grids

Virtual Organizations are different from each other considering
the following parameters :

• Main objective
• Geographic extension
• Size (or physical dimensions)
• Time to use the facilities
• Structure
• Community

Virtual OrganizationsVirtual Organizations

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

Similar to the experience with Internet, researches
involved with the Grid established an architecture
aiming the interoperability between VOs.

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

Aspects such as :

- authentication,
- authorization,
- mechanism of message passing,
- resource sharing,
- scheduling and
- load balancing of tasks

are some of issues which a Grid architecture should
provide.

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

A standard Grid architecture was proposed as : A standard Grid architecture was proposed as :

ApplicationApplication

CollectiveCollective

Resource

ConnectivityConnectivity

FabricFabric

Five Layers Grid ArchitectureFive Layers Grid Architecture

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

Fabric Fabric ––

Components of this layer implement local operations which
occurs in each resource mainly because of the sharing provided
by the above layers.

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

Fabric Fabric ––

Mechanisms are necessary to obtain information about the
structure, state and available resources.

On the other hand, it is also important techniques to
management the QoS (Quality of Service) for each query.

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

Connectivity Connectivity

In this layer exists the definition of the basic protocols necessary
for communication and authentication for a specific transaction
of the Grid.

The communication protocols allow the data
exchange between the Fabric layers. This
service includes the transport, routing and
name services.

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

Connectivity Connectivity

The authentication protocols are responsible for building
the communication services which are way to prove
secure mechanism to verify the identity of users and
resources

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

ResourceResource

This layer uses the connectivity protocols(communication
and authentication) to define protocols and APIs to
provide security during the negotiation, starting, control,
monitoring, creating reports and details involved
During the individual resources operations. ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

ResourceResource

Protocol implementations of this layer utilizes calls from
the Fabric to access and control local resources.

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

CollectiveCollective

The resource layer treats the scope of individual resource
operations.

On the other hand, in the collective layer collective layer components work with
the interaction of resource collections.

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

CollectiveCollective

The elements from this layer use the resource resource and application application
layers to implement a variety of services, such as :

• Directory service : this facility allows members of virtual virtual
organization organization to discover which are the resources available

• Common Authorization Servers : this facility is also
design to implement a better policy to access resources.

Grid ArchitectureGrid Architecture

Clusters and Computational Grids

ApplicationApplication

This layer is related to the users´ applications in their
virtual organizations virtual organizations The previous commented layers
provide services for this layer.

ApplicationApplication

CollectiveCollective

Resource

ConConnnectivityectivity

FabricFabric

Grid ArchitectureGrid Architecture

CollectiveCollective

ResourceResource

ConnectivityConnectivity

FabricFabric

ApplicationApplication

GridGrid

ApplicationApplication

TransportTransport

InternetInternet

LinkLink

InternetInternet

Equivalence between the Gird and Internet Models

Grid ArchitectureGrid Architecture

Grid Computing Environments

Grid Consortiums and Open Forums

•• C3CAC3CA
•• Global Grid Forum Global Grid Forum
•• Australian Grid Forum Australian Grid Forum
•• PeerPeer--toto--Peer (P2P) Working Group Peer (P2P) Working Group
•• eGrideGrid: European Grid Computing Initiative : European Grid Computing Initiative
•• Asia Pacific Grid Asia Pacific Grid

Clusters and Computational Grids

Grid Consortiums and Open Forums

•• GridForumGridForum Korea Korea
•• EuroToolsEuroTools SIG on SIG on MetacomputingMetacomputing
•• IEEE Task Force on Cluster Computing IEEE Task Force on Cluster Computing
•• New Productivity Initiative (NPI) New Productivity Initiative (NPI)
•• The Distributed Coalition The Distributed Coalition
•• Content Alliance: About Content PeeringContent Alliance: About Content Peering
•• `̀MyMy´́ BrazilianBrazilian

Grid Computing Environments

Clusters and Computational Grids

Grid Computing Environments

Clusters and Computational Grids

Grid Middleware

• Cosm P2P Toolkit

• GlobusGlobus

• GRACE: GRid Architecture for Computational
Economy

• Gridbus

Grid Computing Environments

Clusters and Computational Grids

Grid Middleware

•• Grid Grid DatafarmDatafarm

•• GridSimGridSim: Toolkit for Grid Resource Modeling : Toolkit for Grid Resource Modeling
and Scheduling and Scheduling SimultationSimultation

•• SimgridSimgrid

•• JxtaJxta Peer to Peer Network Peer to Peer Network

•• Legion: A Worldwide Virtual Computer Legion: A Worldwide Virtual Computer

Grid Computing Environments

Clusters and Computational Grids

DataGrid Initiatives

•Virtual Laboratory: Tools for Data Intensive
Science on Grid

•EU DataGrid
•DIDC Data Grid work
•GriPhyN (Grid Physics Network)
•HEPGrid (High Energy Physics and Grid Networks)
•Particle Physics Data Grid (PPDG)
•Datacentric Grid

Grid Computing Environments

Clusters and Computational Grids

Grid Systems

•Compute Power Market
• Global Operating Systems
• XtremWeb
• JAVELIN: Java-Based Global Computing
• MILAN: Metacomputing In Large Asynchronous
Networks

• Harness Parallel Virtual Machine Project
• Management System for Heterogeneous Networks
• PUNCH - Network Computing Hub
• MOBIDICK

Grid Computing Environments

Clusters and Computational Grids

Grid Systems

• Amica
• MultiCluster
• Poland Metacomputing
• Echelon: Agent Based Grid Computing
• Bayanihan
• NeuroGrid
• GridLab
• DAMIEN
• CrossGrid
• DIET

Grid Computing Environments

Clusters and Computational Grids

Computational Economy

•GRACE: GRid Architecture for Computational
Economy

•Compute Power Market (CPM)
•G-Commerce
•Mariposa: A New Approach to Distributed Data
•The Information Economy
•FORTH Information Economies
•Share Meta
•D'Agent
•Program for Research on the Information Economy

Grid Computing Environments

Clusters and Computational Grids

Computational Economy

• Xenoservers - Accountable Execution of Untrusted
Programs

• Electricity Trading Over the Internet Begins in Six
New England States

• POPCORN
• CSAR: Resource Tokens and Trading Pool
• OCEAN - The Open Computation Exchange & Arbitration

Network
• Spawn: A Distributed Computational Economy
• Market-Based Computing

Grid Computing Environments

Clusters and Computational Grids

Computational Economy

• W3C effort: Common Markup for micropayment
per-fee-links

• Agent-Based Computational Economics

• Electronic Brokerage

• Society for Computational Economics

• Internet Ecologies

Grid Computing Environments

Clusters and Computational Grids

Grid Schedulers

• Nimrod/G Grid Resource Broker
• AppLeS
• SILVER Metascheduler
• ST-ORM
• Condor/G
• NetSolve
• DISCWorld
• Computing Centre Software (CCS)

Grid Computing Environments

Clusters and Computational Grids

Grid Portals

• ActiveSheets

• UNICORE - Uniform Interface to Computing Resources
• SDSC GridPort Toolkit
• Enginframe
• Lecce GRB Portal
• Grid Enabled Desktop Environments
• Interactive Control and Debugging of Distribution- IC2D
• NLANR Grid Portal Development Kit

Grid Computing Environments

Clusters and Computational Grids

Grid Programming Environments
•Nimrod - A tool for distributed parametric modeling
•Ninf
•Cactus Code
•MetaMPI - Flexible Coupling of Heterogeneous

MPI Systems
•Virtual Distributed Computing Environment
•GrADS: Grid Application Development Software

Project

Grid Computing Environments

Clusters and Computational Grids

Grid Programming Environments

•Jave-based CoG Kit
•GAF3J - Grid Application Framework for Java
•ProActive PDC
•REDISE - Remote and Distributed Software

Engineering
•Albatross: Wide Area Cluster Computing

Grid Computing Environments

Clusters and Computational Grids

Grid Performance Monitoring and Forecasting

• Network Weather Service

• NetLogger

• Remos

Grid Computing Environments

Clusters and Computational Grids

Grid Testbeds and Developments

• World Wide Grid (WWG)
• Polder Metacomputer
• NASA Information Power Grid (IPG)
• NPACI: Metasystems
• Asia Pacific Bioinformatics Network
• The Distributed ASCI Supercomputer (DAS)
• G-WAAT
• Micro Grid
• Alliance Grid Technologies
• The Alliance Virtual Machine Room
• EuroGrid

Grid Computing Environments

Clusters and Computational Grids

Grid Testbeds and Developments

• Internet Movie Project
• Nordic Grid
• ThaiGrid
• TeraGrid
• Irish Computational Grid (ICG)
• GrangeNet
• LHC Grid
• I-Grid

Grid Computing Environments

Clusters and Computational Grids

Grid Applications

• Molecular Modelling for Drug Design
• Neuro Science - Brain Activity Analysis
• Cellular Microphysiology
• HEPGrid: High Energy Physics and the Grid
Network

• Access Grid
• Globus Applications
• The International Grid (iGrid)
• UK Grid Apps Working Group
• NLANR Distributed Applications
• DataGRID - WP9: Earth Observation Science

Application

Grid Computing Environments

Clusters and Computational Grids

Grid Applications

• Particle Physics Data Grid

• DREAM project: Evolutionary Computing and
Agents Applications

• Knowledge Grid
• Fusion Collaboratory
• APEC Cooperation for Earthquake Simulation
• Australian Computational Earth Systems Simulator
• EarthSystemGrid

Grid Computing Environments

Clusters and Computational Grids

Grid Applications

• Australian Virtual Observatory

• US Virtual Observatory
• Distributed Proofreaders

• NEESgrid: Earthquake Engineering Virtual
Collaboratory

• Geodise: Aerospace Design Optimisation
• Japanese BioGrid

Grid Computing Environments

Globus

The Globus software environment is a project developed by
Argonne National Laboratory (ANL) and University of
Southern California. In our work we use the version 1.1.4 of t
he Globus software package because this release provides
support to MPI applications.

The Globus environment is composed by a set of components
implementing basic services to resource allocation,
communication, security, process management
and access to remote data .

Experimental ResultsExperimental Results Clusters and Computational Grids

The resource allocation component of the Globus
environment (GRAM - Globus Resource Allocation
Manager) is the element that acts as an interface between
global and local services.

Application programmers use the GRAM element,
through the gatekeeper software portion which is
responsible for the user authentication and association
with a local computer account.

Experimental ResultsExperimental Results

Clusters and Computational Grids

The mechanism to identify users of the grid is based on
a file called map-file. In this file exists information about
authorized users of the grid configuration.

Any requirement for resource should be translated to the
Resource Specification Language (RSL).

Experimental ResultsExperimental Results

Clusters and Computational Grids

GRAM GRAM GRAM

LSF EASY-LL NQE

Application

RSL

Simple ground RSL

Information
Service

Local
resource
managers

RSL
specializationBroker

Ground RSL

Co-allocator

Queries

& Info

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

Communication in the Globus environment is performed
using a communication library called Nexus. This component
defines low a level API to support high level programming
paradigms.

Examples of high level programming paradigms supported
are message passing, remote procedure call and remote I/O

procedures.

The information about the system and the grid configuration are
management by a component called Metacomputing Directory
Service (MDS).

Experimental ResultsExperimental Results

Clusters and Computational Grids

An important aspect of the Globus software environment
is the security.

This software tool employs the certificate approach,
which is carried by a CA (Certificate Authority) using
the protocol Secure Socket Layer (SSL)

Experimental ResultsExperimental Results

Clusters and Computational Grids

Legion

The Legion software environment is a system object oriented
which is being developed since 1993 at University of Virginia.

This environment has an architecture concept of grid computing
providing a unique virtual machine for users´ applications.

The approach of the Legion is to have some important concepts of
a grid configuration (e.g. scalability, easy to program, fault
tolerance and security) transparent to final users.

Experimental ResultsExperimental Results

Clusters and Computational Grids

In the Legion, every entity such as processing power,
RAM memory and storage capacity is represented as
objects. Objects communicate with each other using
services calls to a remote mechanism.

Experimental ResultsExperimental Results

Clusters and Computational Grids

The security component of the Legion, as the others elements of
this software, is based on an object. The application programmer
specifies the security related to an object, where it is defined
which type of mechanism is allowed.

In addition, the Legion provides some extra basic mechanism to
ensure more security.

The May I method is an example. Every class should define the
method May I, which check for a called object the related allowed
access.

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

The traditional system file is emulated in the Legion
environment through the combination of persistent objects
with the global information of object identification.

This approach simplifies the manipulation of files to
application programmers. In addition, it is allow to users
to add fault tolerance characteristics to applications using
rollback and recovery mechanisms

Experimental ResultsExperimental Results

Clusters and Computational Grids

Grid Environment Legion Globus

Software requirement - OpenSSL 0.9.5
- bin/ksh

- SSLeay 0.9.0
- OpenLDAP 1.2.7

Minimum Disk space De 250MB a 300 MB 200 MB

Minimum Memory RAM 256 MB Not specified

Experimental ResultsExperimental Results

Clusters and Computational Grids

A CASE STUDY A CASE STUDY

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

Experimental ResultsExperimental Results

Clusters and Computational Grids

Hardware and SoftwareHardware and Software
EnvironmentEnvironment

Experimental ResultsExperimental Results

Clusters and Computational Grids

After providing some characteristics of the Globus and
Legion software tools, in this section we present our grid
configuration environment.

It is important to mention that all the machines were in
the same laboratory. However, using a Ethernet Layer 3
Switch we were able to have the abstraction of a WAN
(Wide Area Network) inside this box.

In other words, this equipment could prove the abstraction
of a distributed resource environment for our experiments.

Experimental ResultsExperimental Results

Clusters and Computational Grids

Computer
Name

AIX 1 AIX 2 AIX 3 AIX 4

Operating
System

AIX 4.3 AIX 4.3 AIX 4.3 AIX 4.3

Processor PowerPC_
604
233 MHz

PowerPC_
604 233
MHz

PowerPC_
604 233
MHz

PowerPC_
604 233
MHz

Memory RAM 256 MB 128 MB 128 MB 512 MB

Hard disk Two disks
of
9 GB

Two disks
of
4 GB

Two disks
of 4 GB
and one
2 GB disk

Two disks
of 4 GB
and one
2 GB disk

Software
Environment

Legion Globus Globus Legion

Table I: The grid environment configuration

Experimental ResultsExperimental Results

Clusters and Computational Grids

The Legion software provides a homogeneous view
of the grid to the application programmer.

The environment uses its own tools to create the
homogeneity. The procedure to install the software does
not represent any problem, because the application
programmer needs only to uncompress binary files and
execute some script files. However, for the AIX
environment it is necessary more information then those
available from the software documents.

Experimental ResultsExperimental Results

Clusters and Computational Grids

We fixed some problems using our background on AIX
and exchanging several e-mails with other AIX systems
managers. The Legion concept of file system represents
an advantage of the environment.

The Legion file system presents a unique identifier
for each object.

Experimental ResultsExperimental Results

Clusters and Computational Grids

This approach provides application programmers the
facility to access files widely distributed only using their
names.

In other words, the users only use the name of the file,
which can be storage in a local or remote machine.

On the other hand, we have verified some problems with
the package. As a first problem, we can mention the
necessary installation of the entire environment when the
bootstrap host has a power failure.

Experimental ResultsExperimental Results

Clusters and Computational Grids

The bootstrap host is responsible for the domain control.
Another drawback of the environment is the low
communication rate between objects.

The paradigm of the Legion is to be a framework
environment, where users can develop their own tools,
such as security and fault tolerance facilities.

This freedom can represent some flexibility to any
developers group. However, it does not allow the use
external tools.

Experimental ResultsExperimental Results

Clusters and Computational Grids

The Globus approach allows users to use existing system
available tools and have a uniform interface to the gird
environment. Interesting features of the Globus
environment are related to the security and to the
autonomy of the configuration.

Experimental ResultsExperimental Results

Clusters and Computational Grids

The system has an infrastructure based on X509 certificate
and the use the mutual authentification. On the other hand,
one drawback of the software is the scalability, which can
be understood as the capability to add new resources
and new sites.

When considering new facilities application programmers
are required to have account into all new hosts.

Experimental ResultsExperimental Results

Clusters and Computational Grids

MATRIX MULTIPLICATION (500x500)

0

100

200

300

400

500

600

700

800

2 4 8 16

NUMBER OF PROCESSES

EL
A

PS
ED

-T
IM

E

Legion Globus

Experimental ResultsExperimental Results

Clusters and Computational Grids

MATRIX MULTIPLICATION (500x500)

0

100

200

300

400

500

600

700

800

2 4 8 16

NUMBER OF PROCESSES

EL
A

PS
ED

-T
IM

E

Legion Globus MPI Nativo

Experimental ResultsExperimental Results

End of Part III
(Clusters and Computational Grids)

