
Agile Software Project Management with Scrum

Viljan Mahnic, Slavko Drnovscek

University of Ljubljana, Faculty of Computer and Information Science
Trzaska 25, SI-1000 Ljubljana, Slovenia

viljan.mahnic@fri.uni-lj.si, slavko.drnovscek@fri.uni-lj.si

Abstract

The aim of our paper is to describe the experience we have
using Scrum for agile software project management in a
university environment. The paper is divided into three
parts. In the first part an overview of the Scrum method is
given. In the second part we describe how we used Scrum
during the development of (a part of) the student records
information system at the University of Ljubljana. Finally,
the advantages of Scrum are summarized.

Keywords: agile methods, Scrum, software development

1 Introduction

Universities in Slovenia, like most universities in Central
and Eastern European countries, usually develop their own
software for university information systems. This is
especially true for student records information systems
which are often so specific that there are no commercially
available solutions in the marketplace. The University of
Ljubljana is no exception. In autumn 2001 a project was
launched with the aim of building a comprehensive web
based student records information system which enables
remote access to data to all parties involved (viz. students,
teachers, and administrative staff) [1, 2]. In the beginning,
it was a pilot project of three departments, but after
successful completion of the first phase, the project has
been extended in order to serve other departments as well.
At the moment of this writing the new student records
information system is in use in 15 departments.1

Developing software for such a project requires a
systematic and manageable software process. During the
aforementioned project, we were using an adapted version
of SSADM [3] for analysis and design, and Gantt charts
for project planning. However, it often happened that the
activities were late and some rework had to be done, partly
due to changes in requirements and partly due to the fact
that developers were not familiar with the development of

1 The university of Ljubljana has a peculiar organizational
structure, permitting all departments a high level of
autonomy. Consequently, each department maintains its
own student records information system.

web based information systems and the new tools they had
to use (viz. Oracle Portal).

In order to make software development visible and
adaptable we were looking for an agile approach to project
management and decided to try Scrum [4, 5]. We first used
Scrum to manage the development of the so called
maintenance module that upgrades the aforementioned
student records information system with facilities for the
maintenance of data, administration of users, export of
data to the data warehouse, import of data on freshmen
students, etc.

The aim of this paper is to describe our experience using
Scrum on this project. In the next section an overview of
Scrum is given. In Section 3 we describe how we used
Scrum during the development of the maintenance module
and present some examples of Scrum artifacts, viz. a
sample Product Backlog and Sprint Backlog. In Section 4
we summarize our experience with the use of Scrum.

2 Overview of Scrum

Scrum belongs to the family of agile software
development methods that have attracted significant
attention among software practitioners during last five
years. Whereas the Extreme Programming method [6] that
has been widely accepted as one of the most important
agile approaches has a definite programming flavour (pair
programming, coding standards, test driven development,
refactoring, continuous integration), Scrum concentrates
on managing software projects.

Scrum starts with the premise that software development is
too complex and unpredictable to be planned exactly in
advance. Instead, empirical process control must be
applied to ensure visibility, inspection, and adaptation. The
different environmental and technical variables (such as
time frame, quality, requirements, resources,
implementation technologies and tools, and even
development methods) must be controlled constantly in
order to be able to adapt to changes flexibly. This is
achieved through an iterative and incremental
development process.

Scrum's skeleton is shown in Figure 1.2 The lower circle
represents an iteration of development activities that occur
one after another. The output of each iteration is an
increment of the product. The upper circle represents the
daily inspection that occurs during the iteration, in which
the individual team members meet to inspect each others'
activities and make appropriate adaptations. Driving the
iteration is a list of requirements. This cycle repeats until
the project is completed.

Figure 1 : Scrum skeleton

Scrum implements this iterative, incremental skeleton
through three roles: the Product Owner, the Team, and the
ScrumMaster.

• The Product Owner is responsible for representing the
interests of everyone with a stake in the project and its
resulting system. He maintains the Product Backlog,
i.e., a prioritized list of project requirements with
estimated times to turn them into completed product
functionality.

• The Team is responsible for developing functionality.
Teams are self-managing, self-organizing, and cross-
functional, and they are responsible for figuring out
how to turn Product Backlog into an increment of
functionality within an iteration and managing their
own work to do so. Team members are collectively
responsible for the success of each iteration and of the
project as a whole.

The ScrumMaster fills the position normally occupied by
the project manager, but his role is slightly different.
While the traditional project manager is responsible for
defining and managing the work, the ScrumMaster is
responsible for managing the Scrum process, i.e., for
teaching Scrum to everyone involved in the project, for
implementing Scrum so that it fits within an organization's
culture and still delivers the expected benefits, and for
ensuring that everyone follows Scrum rules and practices.

Detailed Scrum flow is shown in Figure 2. A Scrum
project starts with a vision of the system to be developed.
Then a Product Backlog list is created containing all the

2 Figures 1 and 2 are taken form [5].

requirements that are currently known. The Product
Backlog is prioritized and divided into proposed releases.

All work is done in Sprints. Each Sprint is an iteration of
30 consecutive calendar days. Each Sprint is initiated with
a Sprint planning meeting, where the Product Owner and
Team get together to collaborate about what will be done
for the next Sprint. Selecting from the highest priority
Product Backlog, the Product Owner tells the Team what
is desired, and the Team tells the Product Owner how
much of what is desired it believes it can turn into
functionality over the next Sprint.

After deciding what has to be done in the next Sprint, the
Team develops the Sprint Backlog, i.e., a list of tasks that
must be performed to deliver a completed increment of
potentially shippable product functionality by the end of
the Sprint. The tasks in the list emerge as the Sprint
evolves and should be divided so that each takes roughly 4
to 16 hours to finish.

Every day the Team gets together for a 15-minute meeting
called a Daily Scrum. At the Daily Scrum, each Team
member answers three questions: What have you done on
this project since the last Daily Scrum Meeting? What will
you do before the next meeting? Do you have any
obstacles? The purpose of the meeting is to synchronize
the work of all team members and to schedule any
meetings that the Team needs to forward its progress.

Figure 2 : Detailed Scrum flow

At the end of the Sprint, a Sprint review meeting is held at
which the Team presents what was developed during the
Sprint to the Product Owner and any other stakeholders
who want to attend. After the Sprint review and prior to
the next Sprint planning meeting, the ScrumMaster also
holds a Sprint retrospective meeting in order to encourage
the Team to revise, within the Scrum process framework,
its development process to make it more effective and
enjoyable for the next Sprint.

Together, the Sprint planning meeting, the Daily Scrum,
the Sprint review, and the Sprint retrospective constitute
the empirical inspection and adaptation practices of
Scrum.

3 Scrum at the University of Ljubljana

At the University of Ljubljana we started using Scrum
within the project of building the so called maintenance
module that enables the maintenance of all data required
for the proper functioning of the student records
information system, e.g., the maintenance of various code
tables, installation parameters, lists of compulsory and
optional courses for each study program, data about
teachers of each course, etc. Additionally, the maintenance
module provides facilities for administration of users and
their rights, export of data to the data warehouse, import of
data about newcomers, etc.

There were 4 people involved in the development of the
maintenance module: three of them as members of the

Team, and one who performed the roles of Product Owner
and ScrumMaster. The roles of Product Owner and
ScrumMaster are usually filled by two different persons,
but in our specific situation the project was managed by
the Head of Software Engineering Laboratory (viz.
ScrumMaster) who was at the same time the Vice-Dean
for Educational Affairs, thus representing also the interests
of project stakeholders (viz. Product Owner).

After defining the initial Product Backlog and prioritizing
requirements, it was estimated that the development of the
required software will take three months. Therefore, three
Sprints were planned as shown in Table 1.

The first four columns represent the Product Backlog item
name, the initial estimate, the complexity factor, and the
adjusted estimate. The complexity factor increases the
estimate due to project characteristics that reduce the
productivity of the Team. Initially, all Sprints were
planned to take 20 working days; however, experience had
shown that the adjusted estimate should be taken into
account from the very beginning.

Table 1 : Product backlog at the beginning of the second Sprint

Work remaining until
completion

Backlog Description

Initial

Estimate

Adjustment
Factor

Adjusted
Estimate

Sprint
1

Sprint
2

Sprint
3

Defining a new user role 4 1.2 4.8 4.8 0 0

Maintenance of simple code tables 8 1.5 12 12 0 0

Maintenance of complex code tables 8 1.5 12 12 0 0

Sprint 1 20 28.8 28.8 0 0

Maintenance of complex code tables 5 1.1 5.5 5.5 5.5

Maintenance of curriculum data 7 1.2 8.4 8.4 8.4 0

Maintenance of teacher's database 8 1.2 9.6 9.6 9.6 0

Sprint 2 20 23.5 23.5 23.5 0

Maintenance of installation parameters 3 1.2 3.6 3.6 3.6 3.6

Adding and removing users 3 1.1 3.3 3.3 3.3 3.3

Data import and export 5 1.2 6 6 6 6

Maintenance of data about degree
pending students

2 1.2 2.4 2.4 2.4 2.4

Integration test 5 1.3 6.5 6.5 6.5 6.5

Installation 2 1.1 2.2 2.2 2.2 2.2

Sprint 3 20 24 24 24 24

Release 1 60 76.3 76.3 47.5 24

The Product Backlog evolved as the project evolved.
Table 1 represents the situation at the beginning of the
second Sprint. The rows correspond to the Product
Backlog items, separated by Sprint and Release
subheadings, and (within each Sprint) ordered according
to their priority. All of the rows above Sprint 1 represent
tasks that were worked on in that Sprint. The row
Maintenance of Complex Code Tables is duplicated in
Sprint 2 because it was only partly completed in Sprint 1,
so it was moved down to the Sprint 2 for completion. The
last three columns represent the Sprint during which the
Product Backlog was developed.

After the Product Owner and the Team had agreed about
the amount of work to be completed during each Sprint the

Team was left alone to accomplish its tasks. Team
members maintained the Sprint Backlog and participated
regularly in the Daily Scrum meetings. Table 2 shows the
Sprint Backlog of our project after the ninth day of the
second Sprint. The rows represent Sprint Backlog tasks;
the columns on the right represent the first 9 days of the
Sprint. In each column, the estimated number of hours
remaining to complete the task is shown for each task. If a
task emerges later in the Sprint it is simply added together
with the corresponding estimation (see task Export to
different schemata). Obviously, in that case the total
number of hours of work remaining may increase
compared to the value of the previous day.

Table 2: Sprint Backlog after the ninth day of the second Sprint

Hours of work remaining

Task Description

Respon
sible

Status (Not
Started/In
Progress/

Completed)
1 2 3 4 5 6 7 8 9

Create SIFRANT_DATA table Marko Completed 2 0 0 0 0 0 0 0 0

Relocate icons for deletion and update Marko Completed 3 0 0 0 0 0 0 0 0

Relocate search and insert links Marko Completed 1 0 0 0 0 0 0 0 0

Develop toUpper function for
Slovenian character set

Marko Completed 3 3 0 0 0 0 0 0 0

Improve diagnostic messages Marko Completed 8 8 0 0 0 0 0 0 0

Use default sort order Slavko Completed 2 0 0 0 0 0 0 0 0

Include icons for scrolling
up/down/left/right

Marko Completed 1 1 1 1 1 1 1 0 0

Adapt sorting to Slovenian character
set

Marko Completed 3 3 3 0 0 0 0 0 0

Refactor sorting function Slavko Completed 8 8 8 8 8 8 0 0 0

Keep the selection unchanged if
editing of a record is suspended

Slavko Completed 2 2 2 2 2 2 2 2 0

Reset of sorting is not necessary Slavko Completed 2 2 2 2 2 2 2 2 0

Don’t show the search criterion Slavko Completed 2 2 2 2 2 2 2 2 0

Refactor menu calls Marko Completed 4 4 4 0 0 0 0 0 0

Complete users manual Marko Completed 4 4 4 4 4 4 4 0 0

Export to different schemata Marko Completed 6 1 0

Maintenance of complex code tables 45 37 26 19 19 19 17 7 0

Print out curricula – selection criteria Igor Completed 10 6 5 0 0 0 0 0 0

Print out curricula – html Igor In Progress 16 16 16 16 8 2 2 2 2

Print out curricula – pdf, csv Igor In Progress 10 10 10 10 10 10 10 7 7

Copy STANJE table – previous year Igor Not Started 6 6 6 6 6 6 6 6 6

Edit STANJE table Slavko Completed 9 9 9 9 9 9 9 4 0

Create a list of courses for the next
year based on data of previous year

Marko Not Started 12 12 12 12 12 12 12 12 12

Add a course in the curriculum Igor Not Started 24 24 24 24 24 24 24 24 24

Delete a course from the curriculum Igor Not Started 6 6 6 6 6 6 6 6 6

Change course attributes Igor Not Started 8 8 8 8 8 8 8 8 8

Add a partial exam Marko In Progress 16 16 16 16 16 16 16 16 8

Delete a partial exam Marko Not Started 4 4 4 4 4 4 4 4 4

Change partial exam attributes Marko Not Started 6 6 6 6 6 6 6 6 6

Maintain exam prerequisites Marko Not Started 16 16 16 16 16 16 16 16 16

Maintenance of curriculum data 143 139 138 133 125 119 119 111 99

Print out all data for a specified year Slavko In Progress 12 12 12 12 12 12 12 12 6

Copy the last year settings Slavko Disregarded

Add a new teacher Slavko Not Started 16 16 16 16 16 16 16 16 16

Delete a teacher for a specified year Slavko Not Started 16 16 16 16 16 16 16 16 16

Change examination dates because of
teacher changes

Slavko Not Started 12 12 12 12 12 12 12 12 12

Maintenance of teacher's database 56 56 56 56 56 56 56 56 50

There were no other elaborate plans during a Sprint, but
the Team members were expected to be guided by their
knowledge and experience on the basis of self-
organization. Daily meetings allowed everyone on the
project team to see the status of all aspects of the project in
real time. The Sprint goals were an effective tool for
keeping the Team on track and aware of expectations. We
noticed an increase in volunteerism within the Team. They
were taking an interest in each other's tasks and were more
ready to help each other out. The best part of Scrum
meetings was the problem resolution and clearing of
obstacles. The meetings let the Team take advantage of the
group's experience and ideas.

The ScrumMaster acted merely as a coach or mentor. His
main task was to fend off changes during a Sprint to
protect the Team from getting sidetracked. Nobody was
allowed to change the Sprint goals. At the end of each
sprint a Sprint review meeting took place at which the
Team demonstrated the shippable increment of product
functionality.

Each Sprint (except the first) produced tested and
shippable code. During the first Sprint programs for
maintaining code tables were developed that needed some
elaborations (mainly regarding the user interface)
requested by users at the Sprint review meeting. Users'
remarks were considered in the second Sprint. After the

second Sprint programs for maintenance of curriculum
data and teacher's database were completed. Project was
finished in time after the completion of the third Sprint.

4 Conclusions

The Team members found Scrum very useful. The use of
Scrum improved the communication among them and
maximized co-operation. It also increased their motivation
and responsibility for the success of the project. On the
other hand, it gave them freedom to maximally exploit
their talent and knowledge during each Sprint. They were
able to organize their work by themselves considering
their preferences and special knowledge. At the end of the
project they felt good about their job, their contributions,
and they believed that they had done the very best they
possibly could.

From the Product Owner's and ScrumMaster's point of
view it was most important that the software development
process became visible, controllable, and manageable. All
impediments were immediately detected during Daily
Scrum meetings and removed as soon as possible. It was
also important that each Sprint produced a shippable
increment of functionality that could be put into operation
immediately.

Our experience corresponds to findings reported in the
literature [7, 8]. As a result of the use of Scrum:

• the product becomes a series of manageable chunks,

• progress is made, even when requirements are not
stable,

• everything is visible to everyone,

• team communication improves,

• the Team shares successes along the way and at the
end,

• customers see on-time delivery of increments,

• customers obtain frequent feedback on how the
product actually works,

• a relationship with the customer develops, trust builds,
and knowledge grows, and

• a culture is created where everyone expects the project
to succeed.

References

[1] Mahnic, V., Bajec, M. Introducing e-business
technology in the area of student records,
Proceedings of the 8th International Conference of

European University Information Systems EUNIS
2002, Porto, Portugal, 19-22 June 2002, pp. 300-304.

 [2] Mahnic, V., Bajec, M. Reengineering of the student
records information system, Proceedings of
International Conference on University Information
Systems UNINFOS 2003, Nitra, Slovakia, 3-5
September 2003, pp. 212-218.

[3] Goodland, M., Slater, C. SSADM, A Practical
Approach, McGraw-Hill, 1995.

[4] Schwaber, K. and Beedle, M. Agile Software
Development with Scrum, Prentice Hall, 2002.

[5] Schwaber, K. Agile Project Management with Scrum,
Microsoft Press, 2004.

[6] Beck, K. Extreme Programming Explained, Addison-
Wesley, 2000.

[7] Rising, L., Janoff, N. S. The Scrum Software
Development Process for Small Teams, IEEE
Software, July/August 2000.

[8] Sutherland, J. Agile Development: Lessons Learned
from the First Scrum, October 2004,
http://jeffsutherland.com/scrum/FirstScrum2004.pdf,
page visited on 21.2.2005.

