
October 2004 www.stsc.hill.af.mil 5

This article is derived from analysis of
about 250 large software projects at

or above 10,000 function points in size
that were examined by the author’s com-
pany between 1995 and 2004. (Note that
10,000 function points are roughly equiv-
alent to 1,250,000 statements in the C
programming language.)

It is difficult during analysis to pick
out successful or unsuccessful methods
from projects that are more or less aver-
age. However when polar opposites are
examined, some very interesting differ-
ences stand out. The phrase polar opposites
refers to projects at opposite ends of the
spectrum in terms of achieving cost,
schedule, and quality targets. When pro-
jects that were late by more than 35 per-
cent, or overran their budgets by more
than 35 percent, or experienced serious
quality problems after delivery are com-
pared to projects without such issues,
some interesting patterns can be seen.

Of the 250 projects analyzed, about
25 were deemed successful in that they
achieved their schedule, cost, and quality
objectives. About 50 had delays or over-
runs below 35 percent, while about 175
experienced major delays and overruns,
or were terminated without completion.
The projects included systems software,
information systems, outsourced projects,
and defense applications. This distribu-
tion of results shows that large system
development is a very hazardous under-
taking. Indeed, some of the failing pro-
jects were examined by the author while
working as an expert witness in breach-
of-contract litigation involving the failed
projects.

These large applications included both
systems software and information sys-
tems. Both corporations and government

agencies were included. In terms of
development methods, both waterfall
development cycles and spiral develop-
ment were included. The newer agile
methods were not included because such
methods are seldom if ever utilized on
applications larger than about 1,000 func-
tion points.

Table 1 shows six major factors noted
at opposite ends of the spectrum in terms
of failure versus success as they were
revealed in the study analysis.

The author and his colleagues were
commissioned by clients to examine the
software development practices, tools uti-
lized, quality, and productivity results of
various projects. Thus, this article may be
biased toward the topics examined. We
were not commissioned to examine other
kinds of issues such as poor training, staff
inexperience, or poor personnel practices.
There are, of course, many other influen-
tial factors besides these six in this report.
Indeed, several prior books by the author
cited more than 100 factors [1, 2]. But
these six key factors occur so frequently
that they stand out from factors that
occur only now and then. For additional
studies on recent project failures other
than the author’s, see [3, 4, 5, 6].

Before dealing with the patterns
observed on the successful and failing
projects, it is desirable to discuss some of
the differences between project planning

and project estimating since these are the
key factors associated with both success
and failure.

The phrase project management tools has
been applied to a large family of tools
whose primary purpose is sophisticated
scheduling for projects with hundreds or
even thousands of overlapping and par-
tially interdependent tasks. These tools
are able to drop down to very detailed
task levels, and can even handle the
schedules of individual workers. A few
examples of tools within the project man-
agement class include Artemis Views,
Microsoft Project, Primavera, and Project
Manager’s Workbench.

However, the family of project man-
agement tools is general purpose in
nature and does not include specialized
software sizing and estimating capabilities
as do the software cost estimating tools.
Neither do these general project manage-
ment tools deal with quality issues such as
defect removal efficiency. Project man-
agement tools are useful, but software
requires additional capabilities to be
under full management control.

The software cost estimation industry
and the project management tool industry
originated as separate businesses with
project management tools appearing in
the 1960s, around 10 years before soft-
ware cost estimating tools. Although the
two were originally separate businesses,

Software Project Management Practices:
Failure Versus Success©

Capers Jones
Software Productivity Research LLC

An analysis of approximately 250 large software projects between 1995 and 2004 shows an interesting pattern. When com-
paring large projects that successfully achieved their cost and schedule estimates against those that ran late, were over budget,
or were cancelled without completion, six common problems were observed: poor project planning, poor cost estimating, poor
measurements, poor milestone tracking, poor change control, and poor quality control. By contrast, successful software projects
tended to be better than average in all six of these areas. Perhaps the most interesting aspect of these six problem areas is
that all are associated with project management rather than with technical personnel. Two working hypotheses emerged: 1)
poor quality control is the largest contributor to cost and schedule overruns, and 2) poor project management is the most like-
ly cause of inadequate quality control.

© 2001-2004 Capers Jones.

Table 1: Opposing Major Factors in Study Analysis

Project Management

 



Project Management

6 CROSSTALK The Journal of Defense Software Engineering October 2004

they are now starting to join together
technically.

Examples of specialized software cost
estimating tools include Before You Leap,
CHECKPOINT, Constructive Cost
Model (COCOMO) II, CostXpert,
KnowledgePlan, Parametric Review of
Information for Costing and Evaluation –
Software (PRICE-S), Software Evaluation
and Estimation of Resources – Software
Estimating Model (SEER-SEM), and
Software Life Cycle Management (SLIM).

Project management tools are an auto-
mated form of several techniques devel-
oped by the Navy for controlling large
and complex weapons systems. For exam-
ple, the program evaluation and review tech-
nique (PERT) originated in the 1950s for
handling complex military projects such
as building warships. Other capabilities of
project management tools include critical
path analysis, resource leveling, and pro-
duction of Gantt or timeline charts.
There are many commercial project man-
agement tools available such as Artemis
Views, Microsoft Project, Primavera,
Project Manager’s Workbench, and more.

Project management tools did not
originate for software, but rather for han-
dling very complex scheduling situations
where hundreds or even thousands of
tasks need to be determined and
sequenced, and where dependencies such
as the completion of a task might affect
the start of subsequent tasks.

Project management tools have no
built-in expertise regarding software as do
the commercial software cost estimating
tools. For example, if you wish to explore
the quality and cost impact of an object-
oriented programming language such as
Smalltalk, a standard project management
tool is not the right choice.

By contrast, many software cost esti-
mating tools have built-in tables of pro-
gramming languages and will automatical-
ly adjust the estimate based on which lan-
guage is selected for the application.

Since software cost estimating tools
originated about 10 years after commercial
project management tools, the developers
of software cost estimating tools seldom
tried to replicate project management
functions such as construction of detailed
PERT diagrams or critical path analysis.
Instead, the cost estimation tools would
export data to a project management tool.
Thus, interfaces between software cost
estimating tools and project management
tools are now standard features in the
commercial estimation market.

Let us now turn to applying project
planning and project estimating tools to
large software applications.

Successful and Unsuccessful
Project Planning
The phrase project planning encompasses
creating work breakdown structures, and
then apportioning tasks to staff members
over time. Project planning includes cre-
ation of various timelines and critical paths
including Gantt charts, PERT charts, or
the like.

Effective project planning for large
projects in large corporations involves
both planning specialists and automated
planning tools. Successful planning for
large software projects circa 2004 involves
the following:
• Using automated planning tools such

as Artemis Views or Microsoft Project.
• Developing complete work breakdown

structures.
• Conducting critical path analysis of

project development activities.
• Considering staff hiring and turnover

during the project.
• Considering subcontractors and inter-

national teams.
• Factoring in time for requirements

gathering and analysis.
• Factoring in time for handling chang-

ing requirements.
• Factoring in time for a full suite of

quality control activities.
• Considering multiple releases if

requirements growth is significant.
Successful projects do planning very

well indeed. Delayed or cancelled projects,
however, almost always have planning fail-
ures. The most common planning failures
include (1) not dealing effectively with
changing requirements; (2) not anticipat-
ing staff hiring and turnover during the
project; (3) not allotting time for detailed
requirements analysis; and (4) not allotting
sufficient time for inspections, testing, and
defect repairs.

Successful project planning tends to be
highly automated. There are at least 50
commercial project-planning tools on the
market, and successful projects all use at
least one of these. Not only are the initial
plans automated, but also any changes in
requirements scope or external events will
trigger updated plans to match the new
assumptions. Such updates cannot be eas-
ily accomplished via manual methods;
planning tools are a necessity for large
software projects.

Successful and Unsuccessful
Project Cost Estimating
Software cost estimating for large soft-
ware projects is far too complex to be per-
formed manually. This observation is sup-
ported by the presence of at least 75 com-

mercial software cost estimating tools,
including such well-known tools as
COCOMO II, CostXpert, Knowledge-
Plan, PRICE-S, SEER-SEM, SLIM, and
the like [7]. Successful projects all use at
least one such tool, and usage of two or
more is not uncommon. Estimates pro-
duced by trained estimating specialists are
also noted on many successful large pro-
jects, but not on failing projects.
Successful cost estimating for large sys-
tems involves using the following:
• Software estimating tools (COCOMO

II, CostXpert, KnowledgePLAN,
PRICE-S, SEER-SEM, SLIM, etc.).

• Formal sizing approaches for major
deliverables based on function points.

• Comparison of estimates to historical
data from similar projects.

• Availability of trained estimating spe-
cialists or project managers.

• Inclusion of new and changing
requirements in the estimate.

• Inclusion of quality estimation as well
as schedule and cost estimation.
By contrast, large failing projects may

not utilize any of the commercial software
estimating tools. However, manual esti-
mates are never sufficient for projects in
the 10,000-function point range.

Failing projects tend to understate the
size of the work to be accomplished due
to inadequate sizing approaches. Failing
projects also omit quality estimates, which
are a major omission since excessive
defect levels slow down testing to a stand-
still. Overestimating productivity rates or
assuming that productivity on a large sys-
tem will be equal to productivity on small
projects are other common reasons for
cost and schedule overruns. The main
problem with estimates for projects in the
10,000-function point size range is that
they err on the side of excessive opti-
mism.

Project planning tools and project esti-
mating tools overlap in functionality, and
are usually marketed separately. Normally,
the project planning and cost estimating
tools pass information back and forth.
The software cost estimating tool would
be used for overall project sizing, resource
estimating, and quality estimating. The
project-planning tool would be used for
critical path analysis, detailed scheduling,
and for work breakdown structures.

Successful and Unsuccessful
Project Measurements
Successful large projects are most often
found in companies that have software
measurement programs for capturing
productivity and quality historical data [8,

 



Software Project Management Practices: Failure Versus Success

October 2004 www.stsc.hill.af.mil 7

9]. Thus any new project can be com-
pared against similar projects to judge the
validity of schedules, costs, quality, and
other important factors. The most useful
measurements for projects in the 10,000-
function point domain include measures
of the following:
• Accumulated effort.
• Accumulated costs.
• Development productivity.
• Volume and rate of requirements

changes.
• Defects by origin.
• Defect removal efficiency.

Measures of effort should be granular
enough to support work breakdown
structures. Cost measures should be com-
plete and include development costs, con-
tract costs, and costs associated with pur-
chasing or leasing packages. There is one
area of ambiguity even for top companies
and successful projects: The overhead or
burden rates established by companies
vary widely. These variances can distort
comparisons between companies, indus-
tries, and countries, and make bench-
marking difficult. Of course, within a sin-
gle company this is not an issue.

Function points are now the most
commonly used metric in both the
United States and Europe for software
projects, and are rapidly growing in usage
throughout the world. Development pro-
ductivity measurements normally use
function points in two fashions: function
points per staff month and/or work
hours per function point [10, 11, 12]. For
additional information on functional
metrics, refer to the Web site of the non-
profit International Function Point Users
Group at <www.ifpug.org>.

The federal government, some mili-
tary projects, and the defense industry
still perform measurements using the
older lines-of-code metric. This metric is
hazardous because it cannot be used for
measuring many important activities such
as requirements, design, documentation,
project management, quality assurance,
and the like. There are also programming
languages such as Visual Basic that have
no effective rules for counting lines of
code. About one third of the large soft-
ware projects examined utilized several
programming languages concurrently,
and one large application included 12 dif-
ferent programming languages.

Measures of quality are powerful indi-
cators of top-ranked software producers
and are almost universal on successful
projects. Projects that are likely to fail, or
have failed, almost never measure quality.
Quality measures include defect volumes
by origin (i.e., requirements, design, code,

bad fixes) and severity level, defect sever-
ity levels, and defect repair rates.

Really sophisticated companies and
projects also measure defect removal effi-
ciency. This requires accumulating all
defects found during development and also
after release to customers for a predeter-
mined time period. For example, if a pro-
ject finds 900 defects during development
and the users find 100 defects in the first
three months of use, then it can be stated
that the project achieved a 90 percent
defect removal efficiency level. Of course,
any defect found after the first three
months lowers the defect removal value.

It is interesting that successful pro-
jects are almost always better than 95 per-
cent in defect removal efficiency, which is
about 10 percent better than the U.S.
average of 85 percent [13].

It is not possible to measure defect
removal efficiency for cancelled projects
since there is no customer usage.
However, for projects that finally get

released to customers – although deliv-
ered late – defect removal efficiency sel-
dom tops 80 percent, or about 5 percent
below U.S. averages and 15 percent below
successful projects. This statement is
based on only about a dozen large sys-
tems because almost universally, projects
that are delayed or over budget do not
have effective quality measurements in
place.

Since the bulk of schedule delays and
cost overruns tends to occur during test-
ing and is caused by excessive defect vol-
umes, it can be hypothesized that lack of
effective quality control on large systems
is a major contributor to both cost and
schedule overruns.

Successful and Unsuccessful
Milestone Tracking
The phrase milestone tracking is ambiguous
in the software world. It sometimes refers
to the start of an activity, sometimes to

the completion of an activity, and some-
times to nothing more than a calendar
date. In this article, the phrase refers to
the point of formal completion of key
deliverables or a key activity. Normally, a
completion milestone is the direct result
of some kind of review or inspection of
the deliverable. A milestone is not an arbi-
trary calendar date.

Project management is responsible for
establishing milestones, monitoring their
completion, and reporting truthfully on
whether the milestones were successfully
completed or encountered problems.
When serious problems are encountered,
it is necessary to correct the problems
before reporting that the milestone has
been completed.

A typical set of project milestones for
successful software applications in the
nominal 10,000-function point size range
would include completion of the follow-
ing:
• Requirements review.
• Project plan review.
• Cost and quality estimate review.
• External design reviews.
• Database design reviews.
• Internal design reviews.
• Quality plan and test plan reviews.
• Documentation plan review.
• Deployment plan review.
• Training plan review.
• Code inspections.
• Each development test stage.
• Customer acceptance test.

Failing or delayed projects usually lack
serious milestone tracking. Activities
might be reported as finished while work
was still ongoing. Milestones might be
simple dates on a calendar rather than
completion and review of actual deliver-
ables. Some kinds of reviews may be so
skimpy as to be ineffective.

Successful projects, on the other hand,
regard milestone tracking as an important
activity and try to do it well. There is no
glossing over of missed milestones, or
pretending that unfinished work is done.
Delivering documents or code segments
that are incomplete, contain errors, and
cannot support downstream development
work is not the way milestones occur on
successful projects.

Another aspect of milestone tracking
on successful projects is what happens
when problems are reported or delays
occur. The reaction is strong and immedi-
ate: corrective actions are planned, task
forces assigned, and corrections occur as
rapidly as possible. Among lagging pro-
jects, on the other hand, problem reports
may be ignored and very seldom do cor-
rective actions occur.

“... it can be
hypothesized that lack

of effective quality
control on large systems
is a major contributor

to both cost and
schedule overruns.”



Project Management

Successful and Unsuccessful
Change Management
Applications in the nominal 10,000-func-
tion point size range run from 1 percent
to 3 percent per month in new or changed
requirements during the analysis and
design phases [8]. This fact was discov-
ered by measuring the initial function
point totals at the requirements stage and
comparing them to the function point
total after design. If the initial function
point total is 10,000 function points and
the post-design total is 12,000 function
points, then the overall growth is 20 per-
cent. If the schedule for analysis and
design took 10 calendar months, then the
monthly growth rate was 2 percent per
month.

The total accumulated volume of
changing requirements can top 50 percent
of the initial requirements when function
point totals at the requirements phase are
compared to those at deployment.
Therefore, successful software projects in
the nominal 10,000-function point size
range must use state-of-the-art methods
and tools to ensure that changes do not
get out of control.

Successful change control for applica-
tions in the 10,000-function point size
range include the following:
• A joint client/development change

control board or designated domain
experts.

• Using joint application design (JAD)
to minimize downstream changes.

• Using formal prototypes to minimize
downstream changes.

• Planned usage of iterative develop-
ment to accommodate changes.

• Formal review of all change requests.
• Revised cost and schedule estimates

for all changes greater than 10 func-
tion points.

• Prioritizing change requests in terms
of business impact.

• Formal assignment of change requests
to specific releases.

• Using automated change control tools
with cross-reference capabilities.
One of the observed byproducts of

using formal JAD sessions is a reduction
in downstream requirements changes.
Rather than having unplanned require-
ments surface at a rate of 1 percent to 3
percent per month, studies of JAD by
IBM and other companies have indicated
that unplanned requirements changes
often drop below 1 percent per month
due to the effectiveness of the JAD tech-
nique.

Prototypes are also helpful in reducing
the rates of downstream requirements

changes. Normally key screens, inputs,
and outputs are prototyped so users have
some hands-on experience with what the
completed application will look like.

However, changes will always occur
for large systems. It is not possible to
freeze the requirements of any real-world
application, and it is naïve to think this
can occur. Therefore, leading companies
are ready and able to deal with changes,
and do not let them become impediments
to progress. Therefore, some form of
iterative development is a logical necessity.

Successful and Unsuccessful
Quality Control
Effective software quality control is the
most important single factor that sepa-
rates successful projects from delays and
disasters. The reason for this is because
finding and fixing bugs is the most expen-
sive cost element for large systems and
takes more time than any other activity.

Successful quality control involves
both defect prevention and defect
removal activities. The phrase defect preven-
tion includes all activities that minimize
the probability of creating an error or
defect in the first place. Examples of
defect prevention activities include JAD
for gathering requirements, using formal
design methods, using structured coding
techniques, and using libraries of proven
reusable material. The phrase defect removal
includes all activities that can find errors
or defects in any kind of deliverable.
Examples of defect removal activities
include requirements inspections, design
inspections, document inspections, code
inspections, and all kinds of testing.

Some activities benefit both defect
prevention and defect removal simultane-
ously. For example, participation in
design and code inspections is very effec-
tive in terms of defect removal, and also
benefits defect prevention. The reason
why defect prevention is aided is because
inspection participants learn to avoid the
kinds of errors that inspections detect.
Successful quality control activities for
10,000-function point projects include
the following:

Defect Prevention
• JAD for gathering requirements.
• Formal design methods.
• Structured coding methods.
• Formal test plans.
• Formal test case construction.

Defect Removal
• Requirements inspections.
• Design inspections.

• Document inspections.
• Code inspections.
• Test-plan and test-case inspections.
• Defect repair inspections.
• Software quality assurance reviews.
• Unit testing.
• Component testing.
• New function testing.
• Regression testing.
• Performance testing.
• System testing.
• Acceptance testing.

The combination of defect prevention
and defect removal activities leads to
some very significant differences in the
overall numbers of software defects com-
pared between successful and unsuccess-
ful projects. For projects in the 10,000-
function point range, the successful ones
accumulate development totals of around
4.0 defects per function point and remove
about 95 percent of them before cus-
tomer delivery. In other words, the num-
ber of delivered defects is about 0.2
defects per function point or 2,000 total
latent defects. Of these, about 10 percent
or 200 would be fairly serious defects. The
rest would be minor or cosmetic defects.

By contrast, the unsuccessful projects
accumulate development totals of around
7.0 defects per function point and remove
only about 80 percent of them before
delivery. The number of delivered defects
is about 1.4 defects per function point or
14,000 total latent defects. Of these about
20 percent or 2,800 would be fairly serious
defects. This large number of latent defects
after delivery is very troubling for users.

One of the reasons why successful
projects have such high defect removal
efficiency compared to unsuccessful pro-
jects is the usage of design and code
inspections [14, 15]. Formal design and
code inspections average about 65 percent
efficiency in finding defects. They also
improve testing efficiency by providing
better source materials for constructing
test cases.

Unsuccessful projects typically omit
design and code inspections and depend
purely on testing. The omission of up-
front inspections causes three serious
problems: (1) the large number of defects
still present when testing slows the pro-
ject to a standstill, (2) the bad fix injection
rate for projects without inspections is
alarmingly high, and (3) the overall defect
removal efficiency associated with only
testing is not sufficient to achieve defect
removal rates higher than about 80 per-
cent.

(Note: The term bad fixes refers to sec-
ondary defects accidentally injected by
means of a patch or defect repair that is

8 CROSSTALK The Journal of Defense Software Engineering October 2004



Software Project Management Practices: Failure Versus Success

October 2004 www.stsc.hill.af.mil 9

itself flawed. The industry average is
about 7 percent, but for unsuccessful pro-
jects the number of bad fixes can
approach 20 percent; i.e., one out of every
five defect repairs introduced fresh
defects [13]. Successful projects, on the
other hand, can have bad-fix injection
rates of only 2 percent or less.)

Conclusions
There are many ways to make large soft-
ware systems fail. There are only a few
ways of making them succeed. It is inter-
esting that project management is the fac-
tor that tends to push projects along either
the path to success or the path to failure.

Large software projects that are inept
in quality control and skimpy in project
management tasks are usually doomed to
either outright failure or massive over-
runs.

Among the most important software
development practices leading to success
are those of planning and estimating
before the project starts, absorbing chang-
ing requirements during the project, and
successfully minimizing bugs or defects.

Successful projects always excel in
these critical activities: planning, estimat-
ing, change control, and quality control.
By contrast, projects that run late or fail
typically had flawed or optimistic plans,
had estimates that did not anticipate
changes or handle change well, and failed
to control quality.◆

References
1. Jones, Capers. Patterns of Software

Systems Failure and Success. Boston,
MA: International Thompson Compu-
ter Press, 1995.

2. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, MA: Addison Wesley
Longman, 2000.

3. Ewusi-Mensah, Kweku. Software
Development Failures. Cambridge,
MA: MIT Press, 2003.

4. Glass, R.L. Software Runaways:
Lessons Learned From Massive
Software Project Failures. Englewood
Cliffs, NJ: Prentice Hall, 1998.

5. The Standish Group. The CHAOS
Chronicles Vers. 3.0. West Yarmouth,
MA: The Standish Group, 2004.

6. Yourdon, Ed. Death March – The
Complete Software Developer’s Guide
to Surviving “Mission Impossible”
Projects. Upper Saddle River, NJ:
Prentice Hall PTR, 1997.

7. Jones, Capers. Estimating Software
Costs. New York: McGraw Hill, 1998.

8. Jones, Capers. Applied Software
Measurement: Assuring Productivity

and Quality. 2nd ed. New York:
McGraw Hill, 1996.

9. Kan, Stephen H. Metrics and Models
in Software Quality Engineering. 2nd
ed. Boston, MA: Addison Wesley
Longman, 2003.

10. Garmus, David, and David Herron.
Function Point Analysis – Measure-
ment Practices for Successful Software
Projects. Boston, MA: Addison Wesley
Longman, 2001.

11. International Function Point Users
Group. IT Measurement – Practical
Advice from the Experts. Boston, MA:
Addison Wesley Longman, 2002.

12. Jones, Capers. “Sizing Up Software.”
Scientific American Magazine 279.6
(Dec. 1998).

13. Jones, Capers. Software Quality –
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

14. Radice, Ronald A. High Quality Low
Cost Software Inspections. Andover,
MA: Paradoxicon Publishing, 2002.

15. Wiegers, Karl E. Peer Reviews in
Software – A Practical Guide. Boston,
MA: Addison Wesley Longman, 2002.

November 3-5
Association for Computing Machinery

SenSys ‘04
Baltimore, MD

www.cse.ohio-state.edu/sensys04

November 7-10
Amplifying Your Effectiveness

AYE 2004
Phoenix, AZ

www.ayeconference.com

November 8-13
13th Conference on Information and
Knowledge Management CIKM 2004

Washington, D.C.
www.ir.iit.edu/cikm2004

November 14-18
SIGAda 2004
Atlanta, GA

www.acm.org/sigada/conf/
sigada2004

November 15-18
4th Annual Capability Maturity Model®

Integration Technology Conference
Denver, CO

www.sei.cmu.edu/cmmi/events/
cmmi-techconf.html

November 15-19
Software Testing Analysis and Review

STARWEST ‘04
Anaheim, CA

www.sqe.com/starwest/

November 17-19
2004 Federal CTO Summit

Washington, DC
www.federalctosummit.com

April 18-21, 2005
2005 Systems and Software 

Technology Conference 

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

About the Author

Capers Jones is founder
and chief scientist of
Software Productivity
Research LLC. He is an
international consultant
on software management

topics, a speaker, a seminar leader, and
author. Jones was formerly at the ITT
Programming Technology Center in
Stratford, Conn., where he was assistant
director of Programming Technology.
Prior to joining ITT, he was at IBM for a
12-year period in both research and man-
agerial positions. He received the IBM
General Product Division’s outstanding
contribution award for his work in soft-
ware quality and productivity improve-
ment methods. Jones has published 12
books on software project management
topics and more than 200 journal articles.
He has given seminars on software pro-
ject management in more than 20 coun-
tries to more than 150 major corpora-
tions, government agencies, and military
services.

Phone: (401) 789-7662
Fax: (401) 782-2755
E-mail: cjones@spr.com


