669

Effective requirement specification as a precondition for successful
software development project

Zeljka Pozgaj
Faculty of Economics, University of Zagreb
J.F. Kennedy Square 6, 10000 Zagreb, Croatia
Tel: +385 1238 32 77, Fax: +385 1 233 56 33
E-mail: zpozgaj@efzg.hr

Hrvoje Serti¢
Research & Development Center, Ericsson Nikola Tesla
Krapinska 45, 10000 Zagreb, Croatia
Tel: +38598 416 777, Fax: +385 1 365 36 10
E-mail: hrvoje.sertic@etk.ericsson.se

Marija Boban
Faculty of Law, University of Split
Domovinskog rata 8, 21000 Split, Croatia
Tel: +385 98 955 08 05, Fax: +385 21 393 597
E-mail: marija.boban@law.pravst.hr

Abstract. Software development is activity
closely connected with requirements. To enable
development of software systems that satisfies
most of customer demands in this work we
propose methodologies for obtaining efficient
requirement management infrastructure on
software development project. We propose
methodologies for requirement discovery and
organization according to competence areas
available on the project and involved risks. We
also propose methodology for managing change
of requirements during software development
project in order to enable prosperous project
conclusion even if major requirement change
occurs. Presented methodologies provide means
of effective requirement management that can
significantly improve quality of complex software
systems.

Keywords. Software development, requirement
management

1. Introduction

Continuous technological progress has enabled
development of complex software solutions with
new, previously unrealizable feawres and
possibilities. Development of such systems is
connected with extremely wide area of
requirements that such software solution must

fulfill. Enormous quantity of requirements that
must be satisfied in 7order to build quality
software solution is the source of many
development problems. There is a huge number
of development projects that have failed simply
because they were unable to define and track
software requirements [3]. This work is focused
to present cffective means of requirement
specification and methodologies that can be used
in order to support and improve requirement
management techniques on software
development projects. Therefore, with this work
we propose methodologies for dealing with
software requircments that should be used in
order to develop successful software solution.
Methodologies proposed in this work are
intended to establish requirement management
environment and connect requirements with
developer’s competences and project risks in
order to enhance realization of complex software
solutions. Since the conditions on today’s global
software market are rapidly changing, change of
requirements during software development is
common situation. Consequently, we have also
proposed methodology for dealing with
requirement change that enables prosperous
project conclusion even if major requirement
change occurs. Presented methodologies are
dedicated to provide effective requirement
management practice and to support

25t Int. Conf. Information Technology Interfaces ITI 2003, June 16-19, 2003, Cavtat, Croatia

670

development of complex software solutions
according to the customer demands.

2. Software requirements

Software requirements can be defined as formal
descriptions of customer demands on software
system solution [3]. These demands are usually
captured as text statements about capabilities of
software system. Software requirements can be
divided into two main categories [3], [4]: (1)
functional and (2) non-functional. Functional
requirements capture and describe system
functionality, while non-functional requirements
capture all other demands on software solution
such as reliability, performance, usability and
quality of service. Functional requirements are
usually considered as more important because
they describe how software system should work.
Non-functional requirements are often forgotten
because system development is focused only to
system functionality. Non-functional
requirements are important because software
system functionality (defined by functional
requirements) must be performed on acceptable
level that is defined by non-functional
requirements or the system is considered as
unsuccessful. Software system functionality is
not satisfying if it is performed well (in
functional terms), but too slow or unreliable.
Therefore, it cannot be stated that one kind of
requirements is more important than other
because software system should provide defined
functionality on highest possible usability and
performance level.

2.1. Software requirement descriptions

Since software requirements are textual
descriptions of customer demands they can be
created on different ways. The main problem
connected with software requirement
descriptions is the content of description, not the
form. The discovery of software system’s
requirements is long and complicated process
that must be considered extremely important in
order to develop successful software solution [1].
However, formal definition of template for
software requirement description is important
precondition for efficient requirement
management because software requirements
must be described in form that is easy to
understand and use [4]. Therefore, with this work
we propose definition of template that should
unify all software requirements descriptions for

software development project. Beside purely
textual definitions, system’s functional
requirement should be illustrated with various
models. Use-case modeling technique [5], [7] is
one of commonly used techniques for creating
functional requirement models. Use-cases are
textual descriptions of interaction between
systems and its users focused to capture events
that are interchanged during system execution
[5]. Requirement modeling techniques such as
use-case modeling are important because they
provide explanation of system requirements in
form suitable for software development. But it
must be noted that requirement description is the
base for all requirement-modeling techniques
that are only a tool used to lighten requirement
understanding. Textual descriptions of software
requirements contain information about actual
customer demands that should be used to guide
software development in order to build right
software solution.

2.2. Software requirements and software
development

Software requirements should be used in all
phases of software development in order to
provide guidelines for development activities [3]
[4]-Today is common to use iterative approach to
software development. In iterative approach, life
cycle of software development is divided into
couple of small project called iterations [1]. Each
iteration contains all phases and activities of
software development, from requirement
definition and modeling, to implementation and
testing. The result of each iteration is build upon
results of previous iterations; so that software
solution is build in incremental manner [1].
Software requirements must be used to guide
such approach to software development, because
each iteration is based on selection of software
requirements that will be implemented [1]. This
approach to software development demands
useful definitions of software requirements
because software requirements are used to plan
software development [8]. However, there are
many problems connected with effective use of
software requirements for guiding software
development such as bad requirement definition,
wrong requirement selection and change of
requirements during software development [1],
[2]. Beside these problems, software
requirements are often badly organized and
difficult to understand. To solve these problems,

671

we propose methodologies for efficient

requirement management.

3. Methodologies for efficient requirement
management

Since software requirements are used in all
phases of development project there are many
possible problems caused by poor requirement
definition, improper requirement use and
requirement change during software
development project. Methodologies presented in
this work focus to complete requirement life
cycle, from discovery and description to
requirement use in all phases of development
project. These methodologies describe activities
that should be performed in order to achieve
efficient requirement management environment
and to effectively use requirements for guiding
complete software development.

3.1. Methodology for requirement
discovery and description

The first proposed methodology focus to the
process of requirement discovery and definition.
The process of requirement discovery is highly
important because all set of requirements must
be discovered in order to build software solution
that satisfies customer demands [6]. Therefore, to
avoid problems connected with late requirement
discovery such as system architecture change
(system architecture can be defined as software
system organization [1] or structure of significant
components interacting through interfaces [8])
and development of wrong software system, a
specific approach to requirement discovery
proposed with this methodology should be taken.
Fig. 1 presents activities defined with
methodology for requirement discovery using
standard object oriented notation’s (UML -
Unified Modeling Language) activity diagrams
[9]. Methodology starts with activities intended
for assessing system scope in order to examine
target system problem area and to define global
project scope in terms of used technology. After
that, a competence based project infrastructure
should be established. This means that
developer’s competences and knowledge should
be assessed because cach member of software
development tecam should be responsible for
tasks that are closely connected with his
competences. After that, system’s requirement
scope should be divided into areas according to

/“Assess system ™\
scope Y,

i
/" Establish project E&ﬁ%gﬁehéé\\
5 infrastructure /

v
Assign requirement area ™\
\\ according to competences /,"

’-l/
/~ Discover and define "\
tem'’s requirements /
L Sysiems requirements /
Define requirement
dependency /

Assign requirements to
‘~\ project members

o

Figure 1: Methodology for requirement
discovery
competences available on the project and
assigned to project members. With this approach,
each project member is responsible for
requirement discovery and definition according
to his competence area, i.e. each project member
should discover requirements only in assigned
requirement area. By dividing requirement area
according to people’s competences we have
created requirement discovery infrastructure that
allows each project member to focus on
requirements only in requirement areas closely
connected with his knowledge and competences.
After requirement discovery, whole set of
requirements should be analyzed in order to find
dependency among them. Information about
requirement dependency is important for
selection of requirements to be realized, because
it is common that realization of one requirement
demands realization of one or more other
requirements [1], [2]. By capturing dependency
information, project team can easily choose
requirements for realization. When the whole set
of requirements is identified, described and
analyzed in terms of dependency, requirements
should be assigned to particular project members
according to their competences and become their
responsibility. Therefore, presented methodology
divides requirements according to knowledge
areas on software development project to
improve requirement discovery and definition
process because project team members will
better understand and capture requirements if

672

they are connected with their

competences.

closely

3.2. Methodology for requirement
organization

The second proposed methodology is focused to
requirements use during software development
life cycle. Methodology presented on Fig. 2
shows activities that should be performed to
create requirement infrastructure suitable for all
phases of development project. Methodology
starts with requirement analysis and definition of
requirement impact to system architecture.
Project members should analyze only the
requirements that are part of their responsibility.
Requirement analysis should be focused to
requirement properties and requirement impact
to system’s architecture based on requirement
dependencies defined by methodology for
requirement discovery. Requirement analysis
should be followed by definition of requirement
probability of change in order to select
requirements with high probability of change.
After in-depth requirement analysis project risks
connected with each requirement realization
should be identified. Usually there is high
number of risk impacts on software development
projects connected with the use of advanced
technologies [6]. Therefore, risks on software
development project should be listed and in-
depth described according to defined
requirement areas. This approach will improve
risk identification procedure because risks will
be explored according to connected
requirements. We propose risk identification for
each requirement regardless to probability of risk
materialization and amount of risk impact,
because probability of risk materialization
usually changes during software development
[2]. Beside risk properties, risks should be
defined according to requirement impact and
probability of change. When all requirement
properties are identified, they should be
described together with requirement itself.
Proper requirement definition and description of
all requirement properties are precondition for
requirement organization [2]. With this
methodology we propose to sort requirements in
each requirement category (defined according to
the competence areas available on software
development project) upon risks connected with
them. With this approach, requirements with
highest risk impact will be first selected for

Analyze requirements and their
impact to system's architecture
Identify probability of change
for each requirement

Identify risks connected
with each requirement
i
/

Create requirement
properties
/ Sort requirements according to
requirement risks

Choose requirements for
N realization

.

Figure 2: Methodology for requirement
organization

realization, therefore enabling the most important
risks to be solved first, when the costs connected
with risk materialization are still small [8].
Proper requircment definition and organization
proposed with this methodology will enable easy
requircment understanding and significantly
improve requirement use on software
development project. The methodology for
requirement organization doesn’t stop with
requirement selection for realization and
implementation. Since the requirements are
assigned to particular project members, they are
responsible for continuous requirement
supervision and tracking of requirement
realization. With this approach, requirements
should be continuously supervised during
complete development [1], [2], [6]-

3.3. Methodology for requirement change
management

Requirement change during software
development is common to most software
development projects [1] and serious threat to
success of software development project because
requirement change can have significant impact
to complete system architecture [2], [7].
Therefore, requirement change management is
essential activity on any software development
project. Requirement change management is

673

considered as important development activity,
but still many development project fail because
of requirement change [2]. In order to
successfully complete software development
project in case of requirement change,
methodology presented on Fig. 3 should be
continuously applied during all development
phases. Requirements with high probability of
change (identified with methodology for
requirement organization) should be
continuously tracked and supervised in order to
discover requirement change as soon as possible.
This is closely connected with requirements
assigned to project members, because each
project member is responsible for supervision of
assigned requirements. Therefore, each project
member should continuously track requirements
assigned to him and promptly identify possible
requirement change. When the indications for
requirement change occur, requirements should
be closely analyzed and requirement change
identified. After requirement change
identification, all consequences of requirement
change must be dissected in order to define facts
for decision about requirement change
implementation. Requirement change analysis
should be focused to two main areas: (1)
requirement change impact to other requirements
[6] and to (2) definition of requirement change
actions. These actions should be defined for all
development areas that are under requirement
change impact to enable immediately response to
requirement change. Definition of requirement
change actions prior to decision about
requirement change realization is important
because project management team should have
complete information about requirement change
impact and consequences to software system.
The purpose of requirement change analysis
actions is to provide sufficient information for
decision about requirement change realization
[1]. Therefore, project management team should
decide for each requirement change request
according to data provided by requirement
change analysis to implement or to refuse
requirement change. With this methodology, we
propose to define special iteration on software
development project that will implement change
of requirements in all phases of software
development, from re-work of requirement
specification to implementation and testing. We
strongly suggest to assess complete project status
after any serious requirement change
implementation in order to supervise requirement
implementation impact to the complete software

Supenvsion of requirements with
high possibility of change
/- Requirement change j

N identification

Analysis of
uequirement change

Definition of requirement
change impact
Definition of requirement
change actions
&Dacision about requirement
\1/ change realization
Implementation of
requirement change
é
Figure 3: Methodology for requirement
change management

system. Presented methodology improves
requirement analysis and focus to requirement
change impact to complete system architecture in
order to improve development capabilities in
terms of requirement change realization [1].

3.4. Relationship and dependency between
proposed methodologies '

Proposed methodologies are closely connected
by means of requirements and development life
cycle because results of activities defined with
methodology for requirement discovery and
description are input to activities defined with
methodology for requirement organization.
Methodology for requirement change
management depends on results from first two
methodologies, properly defined requirements
and corrects these requirements in case of
change. Therefore, proposed methodologies form
a complete approach to requirements use on
software development project.

4. Evaluation of proposed methodologies

In this work we have proposed methodologies
for requirement management based on our

674

experience from several software development
projects. In order to verify proposed
methodologies we have applied them on real
software development project, development of
M2M (Machine to Machine) communication
system based on GPRS (General Packet Radio
Service) technology in Ericsson Nikola Tesla
Company. We have started application of
proposed methodologies when project was in
initial state. Project had six developers involved
beside project manager. First of all we evaluated
competences of these developers and defined
four main competence categories: (1) GPRS
technology (2) Operating systems (3) Hardware
platforms (4) Software development languages
and tools. Those were also main requirement
discovery areas assigned to project members.
Because of initial project phase and small
number of competence categories, we have
discovered that there are many dependencies
between requirements from different categories,
for example, there were several requirements
from GPRS technology category that depended
on Hardware platform requirements. Other
activities in requirement discovery and
requirement organization methodology were
performed according to definition and produced
efficiently organized software requirements for
our system. Since our project was cancelled after
pre-study phase because our organization didn't
find business case for project realization we
haven’t approached any requirement change
demand. Methodology for requirement discovery
and description together with methodology for
requirement organization resulted with most of
system's requirement discovered and defined.
Those requirements were used to create system
prototype that was functional before project was
cancelled. Based on achieved results we can
confirm that proposed methodologies enable
efficient requirement discovery and use on
software development project with one
limitation: requirement categories must be
correctly defined on project start. If requirement
categories are wrongly defined, many problems
may occur because members of project
development team will not be able to efficiently
use their competences. Therefore, proposed
approach is efficient only with correct
competence and requirement area definition.

4. Conclusion

Requirements are the heart of software
development. In order to be successful, software

solution must satisfy many different kinds of
requirements demanded by customer.
Requirements should be used in all phases of
software development, as a guideline that will
lead to software solution capable of satisfying all
customers needs. There are many problems
connected with requirement discovery, definition
and use on software development project that
impact complete software development and
result with software system that fails to meet
customer demands. Requirement change is
connected with another set of problems during
software development because requirement
change usually requires change of software
architecture. To solve these problems and
improve requirement use on software
development project we propose three
methodologies presented in this work. These
methodologies form best practice for
requirement management according to our
experience and should be performed in all phases
of software development project. Proposed
methodologies improve all aspects of
requirement use on software development project
and ameliorate quality of software solutions by
providing infrastructure for software
development according to customer demands.

5. References

[1] Larman C. Applying UML and Patterns.
New York: Prentice Hall PTR; 2002.

[2] Robertson S, Robertson J. Mastering the
Requirements Process. New York: Addison-
Wesley; 1999

[3] Leffingwell D, Widrig D, Yourdon E.
Managing Software Requirements: A
Unified Approach. New York: Addison-
Wesley; 1999.

[4] Wiegers E. K. Software Requirements. San
Francisco: Microsoft Press; 2002

[5] Bittner K., Spence I. Use Case Modeling.
New York: Addison- Wesley; 2002.

[6] Gause D, Weiberg G. Exploring
Requirements: Quality Before Design.
London: Dorset House; 1989.

[71 Cockburn A. Writing Effective Use Cases.
New York: Addison- Wesley; 2001.

[8] Rational Unified Process, online
documentation, http://www.rational.com
[10/02/2003]

[9] UML 1.4 Specification http://www.omg.org
[10/02/2003]

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

