
V
TT PU

BLICA
TIO

N
S 618

Enabling Softw
are Process Im

provem
ent in A

gile Softw
are D

evelopm
ent Team

s and...
O

uti Salo

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951–38–6869–9 (soft back ed.) ISBN 951–38–6870–2 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006 VTT PUBLICATIONS 618

Outi Salo

Enabling Software Process
Improvement in Agile Software
Development Teams and
Organisations

Agile software development has challenged the traditional ways of
delivering software as it provides a very different approach to software
development. In recent decades, software process improvement (SPI) has
been widely studied in the context of traditional software development, and
its strengths and weaknesses have been recognised. As organisations
increasingly adopt agile software development methodologies to be used
alongside traditional methodologies, new challenges and opportunities for
SPI are also emerging. One challenge is that traditional SPI methods often
emphasise the continuous improvement of organisational software
development processes, whereas the principles of agile software
development focus on iterative adaptation and improvement of the
activities of individual software development teams to increase
effectiveness.

The focus of this thesis is twofold. The first goal is to study how agile
software development teams can conduct SPI, according to the values,
principles and practices of agile software development, in tandem with the
successful factors of traditional SPI. The second goal is to study how the
team-centred SPI of agile software development and the traditional view of
organisational improvement can be integrated to co-exist in a mutually-
beneficial manner in software development organisations. The main
research methodology in this thesis is action research (AR). The empirical
data is taken from six agile software development case projects. The results
of this research have been published in a total of seven conference, and
journal, papers.

VTT PUBLICATIONS 618

Enabling Software Process
Improvement in Agile Software

Development Teams and
Organisations

Outi Salo

Academic Dissertation to be presented with the assent of the Faculty of
Science, University of Oulu, for public discussion in the Auditorium L10,

Linnanmaa, on January 12th, 2007, at noon.

ISBN 951�38�6869�9 (soft back ed.)
ISSN 1235�0621 (soft back ed.)

ISBN 951�38�6870�2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1455�0849 (URL: http://www.vtt.fi/publications/index.jsp)

Copyright © VTT Technical Research Centre of Finland 2006

JULKAISIJA � UTGIVARE � PUBLISHER

VTT, Vuorimiehentie 3, PL 1000, 02044 VTT
Puh. vaihde 020 722 111, faksi 020 722 4374

VTT, Bergsmansvägen 3, PB 1000, 02044 VTT
Tel. växel 020 722 111, fax 020 722 4374

VTT Technical Research Centre of Finland, Vuorimiehentie 3, P.O.Box 1000, FI-02044 VTT,
Finland, phone internat. +358 20 722 111, fax + 358 20 722 4374

VTT, Kaitoväylä 1, PL 1100, 90571 OULU
Puh. vaihde 020 722 111, faksi 020 722 2320

VTT, Kaitoväylä 1, PB 1100, 90571 ULEÅBORG
Tel. växel 020 722 111, fax 020 722 2320

VTT Technical Research Centre of Finland, Kaitoväylä 1, P.O. Box 1100, FI-90571 OULU,
Finland, phone internat. +358 20 722 111, fax +358 20 722 2320

Edita Prima Oy, Helsinki 2006

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

 3

Salo, Outi. Enabling Software Process Improvement in Agile Software Development Teams and
Organisations. Espoo 2006. VTT Publications 618. 149 p. + app. 96 p.

Keywords software process improvement, SPI, agile software development, iterative
improvement process

Abstract

Agile software development has challenged the traditional ways of delivering
software as it provides a very different approach to software development. In
recent decades, software process improvement (SPI) has been widely studied in
the context of traditional software development, and its strengths and
weaknesses have been recognised. As organisations increasingly adopt agile
software development methodologies to be used alongside traditional
methodologies, new challenges and opportunities for SPI are also emerging. One
challenge is that traditional SPI methods often emphasise the continuous
improvement of organisational software development processes, whereas the
principles of agile software development focus on iterative adaptation and
improvement of the activities of individual software development teams to
increase effectiveness.

The focus of this thesis is twofold. The first goal is to study how agile software
development teams can conduct SPI, according to the values, principles and
practices of agile software development, in tandem with the success factors of
traditional SPI. The second goal is to study how the team-centred SPI of agile
software development and the traditional view of organisational improvement
can be integrated to co-exist in a mutually-beneficial manner in software
development organisations. The main research methodology in this thesis is
action research (AR). The empirical data is taken from six agile software
development case projects. The results of this research have been published in a
total of seven conference, and journal, papers.

The principal result of the study of project level SPI is an Iterative Improvement
Process which provides systematic, yet agile, SPI mechanisms for agile software
development teams. This process iteratively evolved during the series of case

 4

projects. The empirical evidence of the project level research demonstrates the
ability and willingness of agile software development teams to iteratively
improve their daily working practices by making minor and simple, yet effective
and visible, improvements during their projects. The research data further
indicates the positive effect of iterative team reflection on the satisfaction of
project teams, and confirms the need for systematic mechanisms to carry out SPI
activities in agile project teams. Furthermore, the data shows that external
support for the improvement activities proved to be highly significant for the
success of SPI within agile project teams.

The study of organizational SPI initially focused on integrating agile software
development and continuous improvement of existing organisational practices.
Arising from this stage, several changes to traditional SPI activities were
suggested in order to establish a mutually-beneficial co-existence between
organisational SPI stakeholders and agile software development teams. During
the research a framework for deploying agile practices in organisations was
developed. In this novel framework, the Iterative Improvement Process provides
a mechanism for feedback between the agile software development teams and
continuous organisational improvement activities. The research data further
indicates that documented and validated knowledge arising from the Iterative
Improvement Processes of agile software development teams can be beneficial
in other contexts, such as in analysing and establishing future SPI initiatives in
software development organisations.

 5

Preface

My interest in software process improvement (SPI) developed in the late 1990s
when I was doing my master�s thesis while working as a System Designer in
Elbit Oy. Thus, firstly, I would like to thank my former employer for providing
me with such an interesting topic of research that still interests me. In both my
doctoral and my master�s theses, I have been privileged to have Professor
Samuli Saukkonen from the University of Oulu as my supervisor. In addition to
his supervision, I am also grateful for his encouragement to pursue a career in
research. I would like to express my sincere gratitude to Professor Pekka
Abrahamsson � my supervisor at VTT (VTT Technical Research Centre of
Finland) � for his contribution in supporting and setting the scene for my
research.

At VTT, I have been provided with an ideal environment for conducting my
research. In 2002, VTT launched the UUTE project (New Software
Technologies) to examine agile software development methodologies, which
was where I started the research for this thesis. TEKES (National Technology
Agency of Finland) has been an important funder of the ICAROS (Integrating
End-User Needs and Business Competence to Mobile Software Development
Concepts) and Agile ITEA I and II projects (Agile Software Development of
Embedded Systems) where this research has been carried out. I would like to
sincerely thank all the support personnel of VTT for making our research work
so much easier. On the language front, I wish to thank language consultants
Seppo Keränen and Hilary Keller for their work on my thesis.

Furthermore, I am truly grateful for the very fruitful discussions, valuable
feedback, and support from my fellow-researchers at VTT, especially the
members of the agile research projects, former OTE research group, as well as
the Process Innovations and Mobile Services and Applications research teams
with whom I have had the great privilege to work with during the course of this
study. My special thanks to Annukka Mäntyniemi and Minna Pikkarainen for
their friendship and encouragement throughout. I would also like to mention
Matias Vierimaa, Dr. Seija Komi-Sirviö and Dr. Tua Huomo who have all
encouraged me to finish this work and allocated me time in which to do it. This
study would not have been possible without the enthusiasm and teamwork of the

 6

members of the support and quality teams of ENERGI (Industry-Driven
Experimental Software Engineering Initiative) in all the SPI activities
undertaken, many thanks to Antti Hanhineva, Hanna Hulkko, Tuomas Ihme,
Mikko Korkala, Juha Koskela, and Pekka Kyllönen. The management,
customers and especially the software developers in all the case projects have
been the core of this research and I am very grateful for your collaboration.

The manuscript of this thesis was reviewed by Professor Brian Fitzgerald, of the
University of Limerick in Ireland, and Professor Giancarlo Succi, of the Free
University of Bolzano-Bozen, Italy. Their extremely constructive comments
have greatly improved the final outcome.

Lastly, but most dearly, I would like to express my gratitude to my parents
Kerttu and Lauri Hakala for all their support and encouragement down through
the years, to my husband Petri for his love and patience, to my beloved children,
Joonatan and Samuel, for being an endless source of joy and inspiration, to my
dear sister, Kaisu Hakala, for her true friendship, and my mother-in-law Valma
Salo. I have also been very lucky to have been blessed with great and loyal
friends in my life. You have all put up with me through the times of stress,
shared the joys and sorrows of life with me, encouraged me onwards, helped me
to survive the hectic everyday life, and have had faith in me to get this work
completed. Without your existence and support, this just would not have been
possible. Thank you from the bottom of my heart.

Mäntylä, Oulu, Finland, November 2006.

Outi Salo

�Why worry, there should be laughter after pain
There should be sunshine after rain

These things have always been the same
So why worry now?�

- Mark Knopfler -

 7

List of Original Publications

The following publications have been included in this thesis. They have all been
published either in the proceedings of international conferences with appropriate
review processes, or in scientific journals.

I Salo, O. & Abrahamsson, P. Empirical Evaluation of Agile Software
Development: the Controlled Case Study Approach. PROFES 2004, 5th
International Conference on Product Focused Software Process
Improvement, Keihanna-Plaza, Kansai Science City, Kyoto-Nara, Japan,
April, 2004.

II Salo, O., Kolehmainen, K., Kyllönen, P., Löthman, J., Salmijärvi, S. &
Abrahamsson, P. Self-Adaptability of Agile Software Process: A Case
Study on Post-Iteration Workshops. XP 2004, 5th International
Conference on eXtreme Programming and Agile Process in Software
Engineering, Garmisch-Partenkirchen, Germany, June, 2004.

III Salo, O. Improving Software Process in Agile Software Development
Projects: Results from two XP Case Studies. 30th EUROMICRO
Conference, Rennes, France, August, 2004.

IV Salo, O. Systematical Validation of Learning in Agile Software
Development Environment. LSO 2005, 7th International Workshop on
Learning Software Organisations, Kaiserslautern, Germany, April, 2005.

V Salo, O. & Abrahamsson, P. An Iterative Improvement Process for
Agile Software Development. Software Process Improvement and
Practice. In press to be published in Vol. 12, Issue 1, 2007. Published
online 6th October, 2006 (http://www3.interscience.wiley.com).

VI Salo, O. & Abrahamsson, P. Integrating Agile Software Development
and Software Process Improvement: a Longitudinal Case Study. ISESE
2005, 4th International Symposium on Empirical Software Engineering,
Noosa Heads, Australia, November, 2005.

VII Pikkarainen, M., Salo, O. & Still, J. Deploying Agile Practices in
Organisations: A Case Study. EuroSPI 2005, European Software
Process Improvement and Innovation Conference, Budapest, Hungary,
November, 2005.

Hereafter, the papers will be referred to by their Roman numerals.

http://www3.interscience.wiley.com

 8

List of Names and Acronyms

AL Action Learning

APM Agile Project Management

AR Action Research

AS Action Science

ASD Adaptive Software Development

CMM® Capability Maturity Model®

CMMI® Capability Maturity Model Integration®

CSF Critical Success Factor

DSDM Dynamic Systems Development Method

FDD Feature-Driven Development

GQM Goal-Question-Metric method

EF Experience Factory

ENERGI Industry-Driven Experimental Software Engineering Initiative

IID Iterative and Incremental Development

IS Information Systems

KM Knowledge Management

OSSP Organisation�s Standard Software Process

PAR Participatory Action Research

PIW Post-Iteration Workshop method

pm Person Month

PMA Post Mortem Analysis

 9

QIP Quality Improvement Paradigm

ROI Return on Investment

RUP Rational Unified Process

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SPA Software Process Assessment

SPC Statistical Process Control

SDP Software Development Plan

SPI Software Process Improvement

SPICE Software Process Improvement and Capability Determination
(ISO 15504)

TDD Test-Driven Development

TSP Team Software ProcessSM

TQC Total Quality Control

VTT Technical Research Centre of Finland (i.e., Valtion Teknillinen
Tutkimuskeskus)

XP Extreme Programming

 10

Contents

Abstract ... 3

Preface .. 5

List of Original Publications... 7

List of Names and Acronyms ... 8

1. Introduction... 13
1.1 Background.. 13
1.2 Focus of Research.. 14
1.3 Research Problem.. 15
1.4 Outline of the Thesis ... 15

2. Related Work .. 17
2.1 Process Models of Software Development.. 17

2.1.1 Plan-Driven Models for Software Development..................... 18
2.1.2 Iterative Change-Driven Models for Software Development....21

2.2 Agile Software Development .. 24
2.2.1 History and Fundamentals of Agile Software Development... 24
2.2.2 Current Status of Agile Software Development...................... 27

2.3 Software Process Improvement ... 28
2.3.1 Traditional Elements of SPI .. 29

2.3.1.1 Organisational SPI Models ... 30
2.3.1.2 Standard Processes and Assessments.......................... 32
2.3.1.3 Process Tailoring .. 33
2.3.1.4 Process Deployment ... 36
2.3.1.5 Measurement... 37
2.3.1.6 Experience, Knowledge and Learning........................ 38

3. SPI in Agile Software Development... 41
3.1 The Elements of SPI in Agile Software Development 41

3.1.1.1 Organisational Models .. 41
3.1.1.2 Standard Processes and Assessments.......................... 42
3.1.1.3 Process Tailoring .. 44
3.1.1.4 Process Deployment ... 53

 11

3.1.1.5 Measurement... 55
3.1.1.6 Experience, Knowledge and Learning........................ 56

3.2 Comparison of SPI Elements in Plan-Driven and Agile Software
Development.. 57

4. Research Design ... 66
4.1 Research Methods and Evolution .. 66

4.1.1 Literature Review.. 70
4.1.2 Case Study... 71
4.1.3 Action Research .. 71

4.1.3.1 Conceptual Foundation of AR 74
4.1.3.2 Study Design of AR.. 76
4.1.3.3 Research process of AR.. 78
4.1.3.4 Role Expectations of AR .. 79

4.1.4 Five Cycles of Action Research .. 81
4.1.4.1 Diagnosing.. 83
4.1.4.2 Action Planning .. 85
4.1.4.3 Action Taking ... 86
4.1.4.4 Evaluating ... 88
4.1.4.5 Specifying Learning.. 88

4.2 Research Setting .. 90
4.2.1 Context of Research .. 90

4.2.1.1 Laboratory Research Setting....................................... 90
4.2.1.2 Semi-Industrial Research Setting................................ 92
4.2.1.3 Industrial Context ... 93

4.2.2 Case Projects and Organisation... 94
4.2.2.1 Case Project I: eXpert ... 98
4.2.2.2 Case Project II: zOmbie .. 99
4.2.2.3 Case Project III: bAmbie .. 100
4.2.2.4 Case Project IV: uniCorn.. 101
4.2.2.5 Case Project V: Bubble... 101
4.2.2.6 Case Project VI: Phantom... 102

4.3 Collection of the Empirical Evidence.. 103
4.4 Storing and Analysing the Empirical Evidence................................. 105
4.5 Reporting the Results of Research... 108

4.5.1 Paper I ... 109
4.5.2 Paper II .. 109

 12

4.5.3 Paper III... 110
4.5.4 Paper IV .. 111
4.5.5 Paper V.. 112
4.5.6 Paper VI .. 112
4.5.7 Paper VII ... 113

4.6 Summary ... 113

5. Evaluation of the Research ... 115
5.1 Validity of Research .. 115
5.2 Evaluation of the Results... 118

5.2.1 Implications for the Theory... 119
5.2.2 Implications for the Practice ... 125

6. Summary and Conclusions ... 129
6.1 Summary of the Results... 129
6.2 Limitations of the Study .. 130
6.3 Future Research ... 132

References... 134

Appendices

Papers I�VII

 13

1. Introduction

In the introduction, the background of the research, its focus, research questions
and the structure of the thesis are presented.

1.1 Background

Software process improvement (SPI) has been extensively studied in the past
few decades. In traditional SPI methods and approaches (e.g., Basili 1994, Basili
& Caldiera 1994, SEI 2001), the aspect of organisational improvement has
usually been placed in a central role, due to the fact that the planning and control
of the SPI initiatives are managed by the organisational stakeholders. The
reported positive effects of SPI methods and approaches include reducing time-
to-market, risks and costs, and increasing the productivity and quality in
software development organisations (Krasner 1999, van Solingen & Berghout
1999). However, various negative effects have also been encountered, e.g.
regarding the cost-effectiveness of SPI initiatives, their actual effectiveness in
improving the software development practices of organisations, the volume of
the effort needed to implement SPI initiatives and the low speed at which visible
and concrete results are achieved (Dybå 2000, Goldensen & Herbsleb 1995,
Krasner 1999). In fact, it has been reported that around two-thirds of SPI
traditional initiatives fail to achieve their intended goals (Debou 1999).

From the mid-1990s onwards, agile software development principles and
methodologies have been increasingly challenging the traditional view of
software development. A Forrester Study (Schwaber & Fichera 2005) indicates
that 14% of North American and European companies are already using agile
software development processes, and 19% are interested in adopting them or
planning to do so. In addition, the study reports that while the interest in, and
awareness of, agile software development is increasing, so is the confusion about
what it really means to �go agile� (Schwaber & Fichera 2005, p. 1).

The values and principles of the agile manifesto (Agile Alliance 2001) identify
the central elements of agility that should be embedded in any method claiming
to be agile. Although the research and methodologies of SPI are still limited in
agile software development, SPI has been given a central role in the agile

 14

manifesto principles (Agile Alliance 2001). One of the twelve principles states
that agile teams should regularly reflect on their work in order to become more
effective, while another principle addresses the self-organisation of teams. Thus,
the fundamentals of agile software development address the improvement and
management of software development practices within individual teams. Agile
software development provides a highly untraditional approach to SPI, in which
the process improvement knowledge of software developers and software
development teams is acknowledged and valued. Currently, however, while
numerous agile software development methodologies encourage project teams to
carry out regular reflection, the means for doing so seems to be undefined.

Agile software development provides new possibilities for conducting SPI,
which may well provide grounds for meeting some of the central challenges of
traditional SPI.

1.2 Focus of Research

Two specific perspectives can be identified in this research at project level and at
organisational level. Firstly, the project level SPI of this research examines the
regular process adaptation activities in individual agile software development
teams, emphasised in the principles of agile software development. In this
respect, this thesis aims to identify how process adaptation can be conducted in a
manner that complies with the fundamentals of agile software development
(Agile Alliance 2001) while also fulfilling the criteria of successful SPI methods
(Komi-Sirviö 2004).

Secondly, from the organisational viewpoint, this research focuses on how the
regular SPI activities of individual agile project teams can be integrated into
traditional organisational SPI mechanisms. In this respect, this thesis examines
how agile software development teams, focusing on the immediate improvement
of their daily working practices, can co-operate in a mutually-beneficial manner
with the organisational SPI stakeholders who, in turn, are concerned with the
continuous improvement of organisational software processes. Another
organisational perspective in this study is to examine how the process adaptation
of agile software development teams can benefit the organisational deployment
of agile software development methodologies.

 15

1.3 Research Problem

Due to the explanatory nature of the case studies of the research, the form of the
research questions addresses the aspect of �how� (Yin 2003). The literature
review, conducted at the beginning of the research, revealed the importance of
SPI, visible also in the agile principles (Agile Alliance 2001) in their
encouragement for regular team reflection of agile software development teams
in order for them to become more effective. Although such SPI activities had
been addressed especially on the project level of agile software development, a
very limited amount of empirical evidence or methods had been put forward.
Therefore, the first research problem is:

Q.1. How to conduct SPI in individual agile software development teams?

In the SPI literature, the central and underlying tenet has traditionally been the
continuous improvement of organisational processes in software development
organisations (Zahran 1998). The literature review, however, revealed that this
aspect of SPI principle has not been considered in agile software development.
Thus, this study had to examine how traditional SPI, grounded on organisational
improvement, and the iterative and ongoing improvement of individual agile
software development teams could be adjusted and integrated to co-exist in a
mutually-beneficial manner in software development organisations. Therefore,
the second research problem is:

Q.2. How to integrate the agile SPI activities of individual project teams
into traditional continuous organisational SPI activities?

In this thesis, this question includes the related aspects of continuous
improvement of existing organisational practices, and the deployment of agile
methodologies in organisations.

1.4 Outline of the Thesis

The focus of this research is defined in section 1 of the thesis, in section 2 the
related work is discussed. The related work consists of two main areas: 1) the
models of software development (section 2.1) including the so-called plan-

 16

driven and iterative approaches, and 2) traditional SPI elements (section 2.3). In
this thesis, there are six main elements identified in the core of SPI:
organisational models of SPI, standard processes and assessments, process
tailoring, process deployment, measurement, and also experience, knowledge
and learning. Agile software development is defined as a part of iterative
software development and is defined in more detail in section 2.2. The
traditional mechanisms of SPI are discussed mainly to provide a background and
reference to discuss the beliefs and the differences between SPI in agile and
traditional software development. However, as the traditional SPI mechanisms
are not the direct focus of this study, nor have they been been applied in the
research as such, a thorough analysis of traditional SPI mechanisms and their
practical implementation has been left out of the discussion.

In section 3, there is a discussion of how the traditional elements of SPI have
currently been addressed in the context of agile software development. In
addition, the differences between SPI in the contexts of traditional and agile
software development are summarised and discussed.

In section 4, the research design is described and it presents the different phases
of the case studies as identified by Yin (2003). In section 4.1, the different
research approaches and methods of the research are defined, i.e., literature
review (i.e., preliminary study), case study (i.e., case project I), and AR (Action
Research) (i.e., case projects II�VI). As a central part of this research, the
application of AR characteristics � as identified by Lau (1999) � is described in
section 4.1.3, and the application of the five high-level cycles of AR � as
identified by Susman and Evered (1978) � is presented in section 4.1.4. The
research setting is defined in section 4.2 and sets out the context and
organisation of the research. In addition, the collection, storage and analysis of
the empirical evidence, as well as the reporting of the results of the research (i.e.,
publication process of Papers I�VII) are addressed in the research design section
of this thesis.

In section 5, the validity of the research and the evaluation of the research results
are discussed. Section 6. presents a summary of the research results, the
limitations of the research and outlines future research avenues. The seven
original papers of this research are included as the final part of the thesis.

 17

2. Related Work

In this section, the literature related to the topic of this thesis is reviewed. Firstly,
in order to situate the position of agile software development among the other
software development approaches, sub-section 2.1 includes a discussion of the
evolution of the central process models used in software development. In this
thesis, the software development models are divided into traditional, plan-driven
models and iterative, change-driven models. In addition, the background and
fundamentals of agile software development are defined in section 2.2. In
section 2.3.1, the different elements of SPI are discussed, as defined in the
context of traditional software development.

2.1 Process Models of Software Development

The primary function of software development process models is to �determine
the order of the stages involved in software development and evolution and to
establish the transition criteria for progressing from one stage to the next�
(Boehm 1988, p. 61). During the history of software development, different
models and approaches have been suggested for tackling the complexity and
uncertainty of software development. Figure 1 illustrates the evolution of
process models in the past decades. As can be seen in the y-axis of Figure 1, it
has also been suggested that the evolution of software development models
originates from the problems of ad hoc programming that, at first, led towards
traditional plan-driven models and towards iterative change-driven models of
software development. The original meaning of the Latin term �ad hoc� refers to
a methodology that has been designed for a special purpose (ad hoc = �for the
purpose of�). However, in this context � as often in software engineering
literature (e.g., Basili & Reiter 1981) � the term �ad hoc� is used to refer to the
low degree of methodological discipline. It should also be noted that the
positioning of the different software development models on the y-axis in Figure 1
is illustrative rather than scientific.

 18

1950 1960 1970 1980 1990 2000

Code-and-Fix
Model

Stagewise
Model

Waterfall
Model

Evolutionary
Model

Spiral Model

Agile Software
Development

Ad-hoc

Plan-
Driven

Change-
Driven

Transform
Model

Figure 1. The Evolution of Software Process Models.

In the following sub-sections, the evolution of software development process
models is discussed in more detail.

2.1.1 Plan-Driven Models for Software Development

The plan-driven approaches of software development have been defined as
document-driven, code-driven, and traditional process models (Boehm 1988). As
the names suggest, a common feature for the plan-driven process models is their
emphasis on defining the scope, schedule, and costs of the project upfront
including, for example, an early fixing stage and extensive documentation of the
end product requirements. One common characteristic could also be the recurrence
of the software development phases only once during the development process,
i.e., with only hints of iterativity (Larman & Basili 2003). In the following sections
of this thesis, the process models of this category will be referred to as traditional
software development.

The two-step process model of code-and-fix, used in the early days of software
development, resulted in difficulties that necessitated explicit sequencing of the
phases of software development (Boehm 1988). In particular, the need to design
prior to coding, to define requirements prior to design, and the need for early
preparation for testing and modification were identified (Boehm 1988). One of
the first models to rise to that challenge was the stagewise model as early as in

 19

the middle of the 1950s (Benington 1983). This model evolved from the
problems caused by the increasing size of software programs, which could not
be handled by a single programmer (Benington 1983).

In 1968, the NATO Science Committee held a software engineering conference
in Garmisch, Germany, where the �software crisis�, or �software gap�, was
discussed (NATO Science Committee 1969). A standardisation of the software
development process with an emphasis on quality, costs, and development
practices was the key recommendation of the conference (Lycett et al. 2003).
Soon after this, as a refinement of the stepwise model, the waterfall model was
introduced. The early version of the waterfall model was introduced in 1970 by
Royce (1970) and it has since evolved into a concept consisting of the sequential
phases of requirements analysis, design, and development (Larman & Basili
2003). According to Boehm (1988), the waterfall model provided two main
advances over the stepwise model: it introduced prototyping to parallel the
stages of requirements analysis and design, and provided feedback loops
between the sequential stages. It should also be noted that, already in the early
waterfall model of Royce (1970), it had been realised that it might be necessary
to first build a pilot model of the system, i.e., to conduct two cycles of
development and to obtain feedback to adjust the model. Thus, hints of
iterativity in the model can be seen yet �this iterative feedback-based step has
been lost in most descriptions of this model, although it is clearly not classic
IID� (Larman & Basili 2003, p. 48). Today, the waterfall model has been
adopted for most software acquisition standards in government and industry
(Boehm 1988). While the waterfall model has solved various core problems in
software development, it also includes features not appropriate for every
software development context (Boehm 1988). One central problem of the
waterfall model has been identified as its �emphasis on fully elaborated
documents as completion criteria for early requirements and design phases�
(Boehm 1988, p. 63).

The V-Model can be considered a variation of the waterfall model. The original
V-Model includes similar phases to the waterfall model but its phases are not
defined as a linear activity but form a V-shape. The V-Model first became a
standard for German civil and military federal agencies in 1997, as a result of the
Development Standards for IT Systems of the Federal Republic of Germany. In
this model, the Coding- phase is situated in the intersection of the V, while the

 20

software design � software verification, system design � system verification, and
requirements engineering � system validation form the crescent counterparts
each side of the V-shape. The model emphasises traceability between the
requirements, design and implementation. The latter version of the V-Model, i.e.
V-Modell® XT (KBSt � Federal Government Co-Ordination and Advisory
Agency 2004), however, has been extended to cover the entire system life-cycle
and aims to be compatible with standards such as CMMI and to increase the
scalability and adaptability of the model. In addition, the later version of the V-
Model also perceives the possibility of conducting a series of subsequent V-
cycles which increases the possibility of applying the model in a more iterative
manner.

More commonly, it has been argued, that �no life-cycle scheme, even with
variations, can be applied to all system development� (McCracken & Jackson
1982, p. 30). On the other hand, according to the survey study of Fitzgerald
(1998), despite numerous existing software development methodologies, as
much as 60% of software development organizations do not apply any
development methodologies. An additional problem has been identified in using
a disciplined approach to software development which is that, �rather than
focusing on the end (the development of software), developers become
pre-occupied with the means (the software development method)� (Fitzgerald et
al. 2004, p. 65). In practice, the result may be the disparity between the
organisational software development process and its actual implementation in
the software development teams (Fitzgerald 1997).

Another dilemma identified among plan-driven approaches to software
development, is the pursuit of certainty. The up-front requirements definition,
and locking of the project scope, leads to contracts and decisions based on
estimations of costs, time and resources. However, such estimates have been
found to be highly prone to uncertainty (Morien 2005). Nonetheless, the success
of software projects is often measured against these estimates as it may be
appealing, from the viewpoint of both an acquirer and supplier, to agree fixed
costs, scope and schedule for the project up-front. However, it has been stated
that �certainty is a myth and is the most uncertain part of any project� (Morien
2005, p. 519). In fact, it could be argued that the quest for certainty, in both time
and money, may not only fail to pay off in these respects but may also seriously
affect the quality of the end product.

 21

It can be argued that the plan-driven models of software development can and
should be applied in a dynamic way by repeating the phases or even the entire
process, if necessary. However, the original purpose of these process models
was not to welcome changes during the development, but rather to try to fix
factors, such as scope, time and money, up-front in order to eliminate change
which was considered a risk factor.

2.1.2 Iterative Change-Driven Models for Software Development

The central software development models, developed after the waterfall model,
seem to have the common aim of enabling, at least to some degree, the evolution
of product requirements during the process of software development. This
contributed one main modification to the earlier software development models:
the adoption of the iterative and incremental approach. Iterative development
refers to the overall lifecycle model in which the software is built in several
iterations in sequence (Larman 2004). According to Larman, each iteration can
be considered as a mini-project in which the activities of requirements analysis,
design, implementation and testing are conducted in order to produce a subset of
the final system, often resulting in internal iteration release. An iteration release
has been defined as �a stable, integrated and tested partially complete system�
(Larman 2004, p. 10). Incremental development involves adding functionality to
a system over several releases, i.e., a repeated delivery of a system into the
market or production. Thus, one incremental delivery may be composed of
several iterations. A development approach where the system is developed in
several iterations is called iterative and incremental development (IID), yet it is
often referred to as iterative development. (Larman 2004)

Even though agile software development has recently brought the IID approach
of developing software into the spotlight, the history of these approaches is, in
fact, considerably longer (Larman & Basili 2003). Many of the earlier change-
driven approaches have adopted the ideologies of prototyping, for example,
where the first early prototype gradually evolves into the final software product
with no formal specifications or co-operation with the customer (McCracken &
Jackson 1982). Among the first models that focused on increasing the possibility
of determining product improvements throughout the development process, was
the evolutionary development (Evo) model. This concept was first introduced in

 22

1981 (Gilb 1981) and has been expanded by Gilb (1988, 2005). This method
suggested an iterative development approach in which the product increment
was understood as a delivery to the real customer rather than a prototype (Gilb
1981). While evolutionary delivery also lacks plans for future deliveries, it does
attempt to capture feedback to guide future deliveries. This is in contrast to
�pure� incremental delivery where the plan is drafted for several future
deliveries and feedback is not the sole driving force (Larman 2004).

The evolutionary model was followed by the transform model (Balzer et al.
1983), which is also based on the iterative development model and on adjusting
the product during the development. The transform model, however, had a
strong emphasis on product specifications due to its ideology of focusing on
automatic transformation of specifications into code (Boehm 1988). This
approach had its origin in the problems of the earlier software development
models producing �spaghetti code�, which was difficult to modify and maintain
(Boehm 1988).

The spiral model of the late 1980s (Boehm 1988) typically consists of four
iteratively repeatable steps: 1) determining the objectives, alternatives, and
constraints, 2) evaluating alternatives, and identifying and resolving risks,
3) development and verification, and 4) planning the next phase. Boehm (1988)
defined the spiral model as a risk-driven approach for software development. In
the spiral model, the iteratively evaluated strategy for resolving the risks of the
next spiral has an effect on the choice of the software development approaches
to be adopted. Depending on the risks, the spiral model then allows the adoption
of any mixture of development approached, such as prototyping or elements
from the specification-oriented waterfall approach modified to incremental
development. According to Boehm, the risk-driven approach also means that the
results of each risk analysis activity has an effect on the amount of time and
effort allocated to the different development activities in the following spiral,
while also influencing the required level of completeness, formality, or
granularity of product specifications. (Boehm 1988)

Agile software development, which emerged in the mid-1990s, can also be
classified as an iterative and change-driven software development approach. It
could be argued that at present there is no common agile process model with
specified phases, but there is rather a set of fundamentals (Agile Alliance 2001)

 23

common to the methods claiming to be agile. However, Extreme Programming
(XP) (Beck 2000), which is probably the best-known among the first agile
methodologies, contains an underlying process model for agile software
development that has been adopted and adapted by its successors. Figure 2
illustrates how Beck (1999) has compared the agile development model of XP
with the waterfall model and with the iterative processes.

Waterfall Iterative XP

Analysis

Design

Implementation

Test

Time

Figure 2. Process Models in Comparison (Beck 1999).

The simplified illustration of the different software development models (Figure 2)
provides an overview of the suggested differences between the models.
According to Beck (1999), XP aims at blending the activities of analysis, design,
implementation and testing, a little at a time, throughout the entire software
development process. The common feature of agile methods is the recognition
that software development cannot be considered to be a defined process, but
rather an empirical (or nonlinear) one due to the constant changes that are
welcomed during the development of the software product (Williams &
Cockburn 2003).

According to Larman, �in modern iterative methods, the recommended length of
one iteration is between one and six weeks�, (Larman 2004, p. 11) whereas the
�incremental deliveries are often between three and twelve months� (Larman
2004, p. 20). The principles of agile development suggest a short (i.e., from two
weeks to two months) duration of the development iterations. Evo also promotes
relatively short delivery cycles of few weeks (Larman 2004). Similarly as in the
evolutionary model, agile methods also consider the term �iterative� as referring
to evolutionary advancement of the product rather than just rework (Larman &
Basili 2003).

 24

Agile software development is discussed in more detail in section 2.2.

2.2 Agile Software Development

In this section, the background, fundamentals and current status of agile software
development are discussed.

2.2.1 History and Fundamentals of Agile Software Development

The emergence of agile methodologies can be said to have begun in the mid-
1990s, when software methodologies and techniques such as Extreme
Programming (XP) (Beck 1999), Scrum (Schwaber 1995), eXtreme testing
(Jeffries 1999), Crystal Family of Methodologies (Cockburn 1998), Dynamic
Systems Development Method (DSDM) (Stapleton 2003), Adaptive Software
Development (ASD) (Highsmith 2000), and Feature-Driven Development
(FDD) (Coad et al. 1999) began to emerge. The emergence of agile
methodologies is defined in more detail in, for example, (Abrahamsson et al.
2002, Abrahamsson et al. 2003).

The ideologies of agile software development can be traced back to lean
manufacturing in the 1940s as well as agile manufacturing in the early 1990s.
Lean manufacturing is based on the fundamentals of short-cycle time, reduced
setup, multi-skilling and flow being in place while driving out waste in time,
activity, inventory and space (Ross & Francis 2003). The essence of the agile
approach in manufacturing has been summarised as �the ability of an enterprise
to thrive in an environment of rapid and unpredictable change� (Gould 1997,
p. 28). While the debate between the actual differences of lean and agile is still
going on in the manufacturing sector (e.g., James 2005), the central ideologies of
both can be found in the fundamentals and methodologies of agile software
development. For example, in Lean Software Development (Poppendieck &
Poppendieck 2003) the lean principles are integrated with agile practices.

In software development, the agile �movement� was launched in 2001 when the
various originators and practitioners of these methodologies met to identify the
common aspects of these methods that both combined old and new ideas, and

 25

clearly shared some particular ideologies in common. As a result, the Manifesto
for Agile Software Development was drafted and the term "agile" was chosen to
combine the methods and techniques that would share the values and principles
of agile software development. The values and principles of the Agile Manifesto
(Agile Alliance 2001) set out the central elements of agility that should be
embedded in any method claiming to be agile. The agile manifesto emphasises
the agile values listed below on the left, while the items listed below on the right
are still considered valuable too:

�Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan�

The twelve principles of agile software development (Agile Alliance 2001) are:
1) the highest priority is to satisfy the customer through early and continuous
delivery of valuable software, 2) the welcoming of changing requirements, even
late in development, for the benefit of the customer�s competitive advantage,
3) frequent delivery of working software, the release cycle ranging from a
couple of weeks to a couple of months, with a preference for a shorter timescale,
4) daily collaboration of business people and developers throughout the project,
5) building of projects around motivated individuals by offering them an
appropriate environment and the support they need, and trusting them to get the
job done, 6) emphasis on face-to-face conversation for conveying information
and within a development team, 7) working software is the primary measure of
progress, 8) agile processes promote a sustainable development pace for the
sponsors, developers, and users, 9) continuous attention to technical excellence
and good design enhances agility, 10) simplicity is essential for maximising the
amount of work not having to be done, 11) self-organising teams give best
results in terms of architectures, requirements, and designs, 12) regular reflection
of teams on how to become more effective, and tuning and adjusting its
behaviour accordingly. The principles of agile software development can be
considered as fundamental ideologies that should be embedded in the practices
of any software development method claiming to be agile.

 26

The core features of agility that should be embedded in any true agile method
have been further specified as follows: iterative development of several cycles,
incremental development, ability and permittance of teams to self-organise and
determine the management of work, and emergence of processes, principles, and
work structures during the project (Boehm & Turner 2003a). In addition, the
active involvement of users in requirements and planning, and the importance of
tacit knowledge are identified as further important elements of agile software
development (Boehm & Turner 2003a).

Essentially, many of the ideologies behind the agile software development
methods are not � nor have they been claimed to be � new. Many of these
ideologies and related agile software development methodologies have roots in,
for example, the preceeding iterative methodologies (Abrahamsson et al. 2003)
and agile and lean industrial product development (Poppendieck & Poppendieck
2003). In addition, it has been widely acknowledged prior to the agile movement
that the different methods of software development are far from being neutral
and universally applicable (Malouin & Landry 1983). Benington, among many
others, has earlier considered top-down programming and specification as highly
misleading and dangerous, as it assumes that enough detailed knowledge is
available up-front to precisely know the objectives before producing a single line
of code, and because it erroneously parallels the software development to the
manufacturing industry (Benington 1983). Furthermore, the positive effect of
regular employee involvement in operating decisions and a high degree of
responsibility for overall performance in high team spirit, loyalty, and
motivation have also already been recognised among production workers
(Deming 1990). Neither has the iterative or incremental mode of software
development been invented only by agile proponents, but it has a long history in
software development (see Larman & Basili 2003). However, the agile software
development approach has accomplished a novel mixture of old and new
software development principles that have been gaining increasing interest
among practitioners and researchers alike. Williams and Cockburn suggest that
the novelty of agile software development is, �if anything, the bundling of the
techniques into a theoretical and practical framework� (Williams & Cockburn
2003, p. 40).

In conclusion, the fundamentals of agile software development propose a very
different view to the certainty aspect in the software development process,

 27

compared to the plan-driven approaches (see 2.1.1.). In agile software
development, the uncertainty of schedule, scope and budget of any software
development project can be considered as an baseline assumption. Thus, agile
software development methodologies can be regarded as a means of responding
to the uncertainty of software development, rather than as a means of achieving
certainty.

2.2.2 Current Status of Agile Software Development

Currently, there is considerable discussion in scientific forums both in favour
and against agile methodologies. The early agile methodologies, especially,
received criticism for the lack of scientific evidence (Abrahamsson et al. 2002,
Lindvall et al. 2002), and their suitability only for software development
contexts where small and co-located teams were producing non-safety-critical
products with volatile requirements (Williams & Cockburn 2003).

Since the early days of agile software development, an increasing amount of
interest has been paid to agile methods, by both practitioners and researchers,
thus creating a growing body of empirical data on the different aspects of agile
software development. Apart from the individual methods and practices of agile
software development, problematic issues have arisen, such as the scalability of
agile software development for large and multisite projects (e.g., Eckstein 2004,
Lindvall et al. 2004) and the compatibility of agile methods with existing
standards (Lycett et al. 2003, Paulk 2001, Reifer 2003). Recently, the
organisational and business aspects of agility have been receiving more attention
(e.g., Baskerville et al. 2005, Coplien & Harrison 2005, Oleson 1998).
Accordingly, the early agile methods and techniques have been evolving and are
being updated � e.g., XP (Beck & Andres 2004), Scrum (Schwaber 2004,
Schwaber & Beedle 2002), Crystal (Cockburn 2005), Test-Driven Development
(TDD) (Beck 2003), and DSDM (DSDMConsortium 2003).

Currently, as more empirical evidence on the agile methodologies is available, it
seems that the main arquments for and against their use is nowadays not so
much about their benefits, but rather about the need to extend their scope and
adapt them to organisations with established and mature plan-driven processes
(e.g., Boehm & Turner 2005). For instance, it has been suggested that one major

 28

problem in adopting agile methodologies can be found in balancing the currently
dominating engineering ideologies and methodologies of manageable,
predictable and repeatable processes with agile software development methods,
which again embrace self-organisation, process adaptation and constant changes
(Table 5) (Lycett et al. 2003). Balancing the two approaches has been suggested
in order to benefit from their strengths, and to compensate for their weaknesses
(Boehm & Turner 2003b).

In addition, there has been some confusion regarding the relationship between ad
hoc coding and agile software development. It has been proposed that one reason
for this confusion is the piecemeal approach of agile software development
(Highsmith & Cockburn 2001). For instance, quality in design in agile software
development is prioritised in ongoing design done in smaller chunks instead of
massive up-front design of the system (Highsmith & Cockburn 2001). In fact,
the existing agile methodologies, such as Scrum for agile project management
and XP for implementation of software, all seem to propose a rather disciplined
approach to conducting the tasks of software development. In addition, studies
(e.g., Kähkönen & Abrahamsson 2004, Nawrocki et al. 2001, Paulk 2001)
indicate that by adopting different agile methods and practices, individual agile
software development teams can accomplish a methodology that meets with the
goals of CMMI level 2. However, there still seems to be a need to extend agile
methodologies in order to meet, for example, CMMI requirements related to
more organisational level practices.

2.3 Software Process Improvement

A software process can be defined as �the sequence of steps required to develop
or maintain software� (Humphrey 1995, p. 4), aiming at providing the �technical
and management framework for applying methods, tools, and people to the
software task� (Humphrey 1995, p. 5). However, even the most exquisitely
defined and managed process may still not meet the context specific needs and
objectives of software development organisations and customers regarding, for
example, performance, stability, compliance and capability (Florac et al. 2000).
Thus, Software Process Improvement (SPI) aims at providing software
development organisations with mechanisms for evaluating their existing

 29

processes, identifying possibilities for improving as well as implementing and
evaluating the impact of improvements (Florac et al. 2000).

In this section, firstly, the different SPI mechanisms of traditional software
development (2.3.1) are discussed. Thereafter, there is a discussion on how SPI
is currently addressed in the context of agile software development (3).
Representing the central focus of this research, the emphasis of section 3 is on
the current process tailoring mechanisms of agile software development (3.1.1.3)
and how they are in line with the critical success factors (Komi-Sirviö 2004) of
traditional SPI. In the conclusions section, there is a discussion on how SPI in
traditional and agile software engineering relate to each other.

2.3.1 Traditional Elements of SPI

Traditionally, the ultimate goal of SPI in organisations is to provide a Return on
Investment (ROI) for the organisation through the improvement activities
yielding more money than is spent on them (Rico 2004). ROI has been reported
for various SPI achievements, such as improved efficiency of the development
process and reduction of total software costs, increased quality of the end
product, higher predictability of cost and schedule, and increased level of reuse
(Krasner 1999). The focus on quality in SPI is based on the fundamental
ideology that quality-driven development is likely to yield �not only better
quality but also lower cost and improvement of competitive position� (Deming
1990, p. 181).

One of the characteristics of SPI, as traditionally defined, is its emphasis on the
continuous improvement of organisational software development processes in
terms of performance, stability, compliance, and capability, for instance. Often
the existing SPI methods and approaches seem to enhance the underlying
business goals and needs in the improvement of organisational software
development processes. Florac, for instance, identifies one of the SPI objectives
as planning, justifying, and implementing SPI actions that modify the processes
to better meet the business needs (Florac et al. 2000). Traditionally, SPI
initiatives are also strictly controlled and managed by the organisational
stakeholders (Boehm & Turner 2003b).

 30

In this thesis, six different elements are identified in the context of traditional
SPI: the organisational models of continuous improvement, standard processes
and assessments, tailoring, deployment, measurement, and the utilization of
knowledge and learning in SPI. In the following sub-sections, these aspects of
SPI are discussed in more detail.

2.3.1.1 Organisational SPI Models

A number of different improvement frameworks are used to support continuous,
top-down SPI in organisations, such as Quality Improvement Paradigm (QIP)
(Basili 1989), IDEALSM (McFeeley 1996), and ISO/IEC 15504 Part 7 (ISO/IEC
1998). These frameworks provide organisational procedures for conducting SPI
initiatives in a cyclical and ongoing fashion.

QIP was introduced to provide software development organisations with
process-focused mechanisms to improve the quality and productivity of software
(Basili 1989). The QIP framework originates from the quality improvement
paradigms of the manufacturing industry (Basili & Caldiera 1995), such as the
Shewart-Deming cycle (Deming 1990) and its derivative Total Quality Control
(TQC) (Feigenbaum 1991, Ishikawa 1985). These methods aim at providing �an
effective system for integrating the quality-development, quality-maintenance,
and quality-improvement efforts of the various groups in an organisation, so as
to enable marketing, engineering, production, and service at the most
economical levels which allow for full customer satisfaction� (Feigenbaum
1991, p. 6). In the QIP model, the cycles of corporate and project learning are
identified. The corporate level activities of improvement include the definition
of current status, setting of goals and scheme of improvement, and analysis and
storing of experiences and feedback resulting from the project learning cycle, in
which the SPI activities of implementing and piloting the improvements in
practice and metrics data collection have taken place. In QIP, the reuse of
experiences, utilisation of measurements and learning are in a central role (Basili
& Caldiera 1995).

IDEALSM is an SPI model that defines the steps for planning, conducting, and
managing SPI in organisations (McFeeley 1996). The model consists of five
phases, all of which include different activities for guiding the systematic
improvement approach. Originally, the IDEAL model was a life-cycle model for

 31

SPI based upon the standard process of the Capability Maturity Model®
(CMM®) (Paulk et al. 1993), which has since been revised for broader
application (Gremba & Myers 1997) as in QIP.

In Table 1, the phases of the different organisational SPI models are aligned with
the original Shewart-Deming cycle of improvement originating from a
manufacturing industry (Deming 1990).

Table 1. Organisational Models of SPI and Comparison of Phases.

Shewart-
Deming Cycle QIP IDEALSM ISO/IEC 15504

1. Characterise and
understand 1. Initiating 1. Examine organisation�s

needs

2. Set goals 2. Diagnosing 1. Plan

3. Choose processes methods,
techniques, and tools 3. Establishing

2. Initiate process
improvement

3. Prepare and conduct
process assessment

4. Analyse results and derive
action plan

2. Do 4. Execute 4. Acting

5. Implement improvements

3. Check 5. Execute 5. Acting 6. Confirm improvements

7. Sustain improvement gains
4. Act

6. Analyse
7. Package and store

experience
6. Leveraging

8. Monitor performance

As Table 1 illustrates, the organisational improvement models as such do not
demand or provide any specific SPI methods for conducting different SPI
activities but rather suggest the steps to be taken to achieve continuous
improvement, thus serving as a roadmap for improvement in organisations. All
the models seem to cover the three key SPI objectives defined by Florac et al.
(2000): 1) understand the characteristics of existing processes and the factors
that affect process capability, 2) plan, justify, and implement actions that will
modify the processes so as to better meet business needs, and 3) assess the
impacts and benefits gained, and compare these to the costs of changes made to
the process. The different approaches, however, address the different overall SPI
procedures used within an improvement cycle. For instance, the ISO/IEC 15504

 32

Part 7 bases (phase 3.) the improvement cycle on conducting process assessments
(ISO/IEC 1998), and QIP on the reuse and storing of experience and
measurements. However, the common feature for all the SPI management
models is the setting of improvement goals and needs at the organisational level.
The necessity of statistical methodologies has also been commonly addressed in
the paradigms of process improvement (Basili & Weiss 1984, Deming 1990,
Kuntzmann-Combelles et al. 1992).

2.3.1.2 Standard Processes and Assessments

There are various standard process models, such as CMM® (Paulk et al. 1993),
CMMI® (SEI 2001), ISO 15504, i.e., SPICE (Software Process Improvement
and Capability Determination), Trillium (Bell Canada 1994), and Bootstrap
(Kuvaja & Bicego 1993, Kuvaja et al. 1994) that provide a reference process
model against which organisational processes can be assessed and improved.
Standard software development process models provide a top-down approach for
SPI which offer a framework against which the organisation can evaluate and
improve its own processes and identify practices that would increase the
maturity of the current processes (SEI 2001).

CMM® was originally developed in 1987 by the Software Engineering Institute
(SEI) and it has been the de Facto standard especially in the United States
(Krasner 1999). CMM® has since 2000 evolved into the CMMI® model that, in
addition to its original five stage model designed for evaluatíng the maturity of
an organisation as a whole, includes a continuous model for evaluating the
capability of individual process areas of an organisation. Thus, one goal of
transferring CMM® into CMMI® was to make it compatible with the ISO
15504 reference model. The CMM® model was originally developed to enable a
capability evaluation of suppliers. In other words, a subcontractor would be
requested to submit a software process assessment (SPA) in order to guarantee
an adequate maturity in its software development processes and to find out how
these needed to be improved. However, SPA may also serve company internal
SPI purposes by providing general guidelines about where to start
improvements, and in which order (Briand et al. 1999). Often the standard
process models also provide specific methods, such as Scampi in CMMI®
(Ahern et al. 2005), for conducting an appraisal (Iversen et al. 2002). The
process assessments may be carried out among the first activities of an

 33

improvement cycle (Table 1) and they often serve as the kick-off for an SPI
program, which then focuses on the weak processes identified in the appraisal
(Iversen et al. 2002).

It has been claimed that no single assessment model or method can provide the
best alternative for all situations, but each of them serve different purposes and
have their own strengths and weaknesses (Nielsen & Pries-Heje 2002). For
example, the standard assessments are claimed to require a substantial amount of
cost and effort from the participants of the software development organisation
involved in the different stages of assessment, and also from the external
assessors who usually conduct the assessment (Andersen et al. 2002).
Consequently, lighter assessment methods have been proposed for identifying
the weaknesses of the current software processes. For example, the so-called
problem diagnosis method (Mathiassen et al. 2002) �aims to assist SPI groups in
identifying software problems and solutions based on the opinions and insights
of key organisational actors� (Iversen et al. 2002, p. 164). Other existing
lightweight SPA methods are, for example, RAPID (Rapid Assessment for
Process Improvement for Software Development) (Rout et al. 2000), EPA
(Express Process Appraisal) (Wilkie et al. 2005), and MARES (Anacleto et al.
2004). The selection of an appropriate assessment method can be supported by
existing frameworks for assessment strategy selection as suggested in (Nielsen
& Pries-Heje 2002).

2.3.1.3 Process Tailoring

The traditional software development approaches have often been criticised for
lacking criteria for their applicability and, thus, for being proposed as universally
applicable (Malouin & Landry 1983). It has, however, been realised that no such
universally applicable methods exist and that it would be erroneous to presume
that some method could be transferred with equal success to another context
(Malouin & Landry 1983). The same problem applies not only between
organisations but also within the different projects of one organisation. While it
has become �widely accepted that the methods should be tailored to the actual
needs of the development context� (Fitzgerald et al. 2004, p. 66), it has also been
realized that the methods need a �significant amount of modification to suit
individual development projects� (Kiely & Fizgerald 2005, p. 1).

 34

Some process tailoring approaches can be identified within the traditional SPI
context. Firstly, there are the organisational SPI models, such as QIP and
IDEAL, providing procedures for continuously tailoring the standard software
process (OSSP) of the organisation (Ginsberg & Quinn 1995) in a top-down
manner. In this approach, the focus is on tailoring the standard software
development processes for an organisation on the basis of organisational
business goals and needs. Such OSSP has been stated to �express requirements
that all projects� software development processes must meet� (Ginsberg &
Quinn 1995, p. 29) within an organisation. Traditional SPI methods for metrics
collection and process assessment can, then, be considered as mechanisms used
to support the process-tailoring activities. The reference process for tailoring
often originates from the existing standard process models. However, the
standard process model of CMM, for one, identifies the need for tailoring its key
practices before they can be applied in a specific context. For example, the
CMM tailoring framework aims at supporting organisations in defining a CMM-
based OSSP to fit the organisational needs. It bases its continuous cycle of
tailoring on the IDEAL SPI model. (Ginsberg & Quinn 1995).

Another traditional approach for process tailoring is the definition of the project
specific software process. It has been suggested that it is done either up-front,
while included as a part of a project plan, or conducted as dynamic tailoring
when needed during the software development project (Fitzgerald et al. 2004).
However, the practical guidance to developers is still very limited on how to
approach tailoring (Fitzgerald et al. 2004). In the context of the CMM process
standard, it is suggested that project level tailoring is based on the existing
OSSP�s and organisational tailoring guidelines (Ginsberg & Quinn 1995). The
tailoring guidelines have been defined to include �the means by which the
organization recognizes the project�s responsibility to address the impact of
project-specific needs in the project�s defined software process� (Ginsberg &
Quinn 1995, p. 29). In the CMM tailoring framework (Ginsberg & Quinn 1995),
the project-specific tailoring is said to be controlled by the OSSP tailoring
guidelines, in which �the process elements, the tailorable attributes for each
element, the range for each attribute, and the considerations for selecting a
particular range� (Ginsberg & Quinn 1995, p. 33) are defined. It is suggested
that such project-specific OSSP tailoring is done consistently by applying the
same tailoring guidelines across all projects and basing the tailoring on project-
specific needs. Such tailoring guidelines have been identified as �essential for

 35

risk management and overall project success� (Fitzgerald et al. 2004, p. 70). It
has also been argued that �once an organization reaches the point where it can
identify the various characteristics or contingencies that occur in its development
projects, then it is possible to build flexibility into the method, along with the
rules to allow developers to identify appropriate choices� (Fitzgerald et al. 2004,
p. 70). The sources for defining tailoring guidelines have been proposed, for
example, in the previous project records, the results of project post-mortems and
brainstorming sessions, surveys and feedback from customers, and participant
observations (Fitzgerald et al. 2004). The compilation of this information in
database format or process maps is regarded as valuable to enable constant
review and augmentation as the organisational practices of software
development evolve (Fitzgerald et al. 2004).

Basili and Rombach have further suggested �a methodology for improving the
software process by tailoring it to the specific project goals and environment�
(Basili & Rombach 1987). The methodology considers sound tailoring to require
a characterization of project goals and the environment where the project is to
take place, along with characterising the effect that the candidate methods and
tools should have on achieving the set goals in that specific environment. Basili
and Rombach have suggested the characterisation takes place in a quantitative
manner and by analysing large amounts of data to choose the methods and tools
to fit the project specific goals and the specific environment. An automated tool
called TAME (Tailoring A Measurement Environment) has been proposed to
support such quantitative selection of appropriate methods and tools and to tailor
them to the needs of the project and organisation (Basili & Rombach 1987, Oivo
& Basili 1992). The advantage of the suggested approach is the ability to utilise
data from previous (similar) projects in tailoring the practices of future projects.
The disadvantage, on the other hand, is that the approach measures the impact of
different characterization factors rather than directly measuring environment-
specific factors. (Basili & Rombach 1987).

In general, the project-specific tailoring approach, as a traditional SPI
mechanism, adopts a top-down approach. The CMM tailoring guideline, for
example, suggests creating a project specific software development plan (SDP)
as a result of the project planning activity (Ginsberg & Quinn 1995) at the
beginning of the project. The SDP is defined as �a key element in the
management of the project� (Ginsberg & Quinn 1995, p. 36) and it should

 36

include the project specific version of the OSSP to be used throughout the
project. Thus, tailoring may often be based on the knowledge from the previous
projects (Basili & Rombach 1987) and occur once at the outset of the project.

2.3.1.4 Process Deployment

Process deployment can be considered as one instance of SPI in organisations.
The deployment may include such activities as piloting the processes, methods,
and tools that are identified as potential solutions for the existing goals and
problems, and evaluating their effect on the software development. For example,
it is suggested that �in the Acting phase of the IDEAL model, solutions to
address the areas for improvement discovered during the Diagnosing phase are
created, piloted, and deployed throughout the organisation� (McFeeley 1996,
p. 4) (Table 1). Thus, the organisational models of SPI, such as IDEAL and QIP,
provide an overall framework to be applied in any deployment process. Yet they
do not suggest any specific approach for the deployment of new processes,
practices and tools. In such a traditional deployment approach, the focus is on
the improvement of organisational software processes rather than on deploying
practices for the purposes of individual projects.

Basically, an organisation may adopt a big bang or piecemeal approach for
deploying new processes, practices and tools. The piecemeal, i.e. evolutionary
approach �seems the preferred default approach, implying a prolonged period of
growth within the organisation through smaller phased enhancements� (Sweeney
& Bustard 1997, p. 266) whereas the big bang, i.e., revolutionary, approach
�implies a sudden substantial change to an organisation that results in a
distinctly new way of working� (Sweeney & Bustard 1997, p. 266). The IDEAL
model, for instance, suggests the piecemeal approach where selected solutions
are tested in pilot projects in order to define the needs for tailoring for the rest of
the organisation (McFeeley 1996). It is also suggested that one solution may
require several pilots and iterations before it has been refined and verified as
applicable and ready to be deployed across the organisation (McFeeley 1996).
Several studies have demonstrated the appeal of such piecemeal deployment
among practitioners (Niazi et al. 2003). However, references can also be found
to the preference for big bang approaches in implementing substantial changes
rapidly in order to reach the end state more quickly (Jalote 2002). The piecemeal
approach has, however, also been criticised for requiring repetitive activation of

 37

different deployment-related mechanisms and also for creating resentment
among practitioners due to the constant changes they are requested to implement
(Jalote 2002). Furthermore, the big bang approach has been suggested in cases
where the business is no longer capable of achieving its purpose, where the
external circumstances are changing rapidly or where there is a need to wake up
a sleepy organisation in which the motivation and activity of its members need
to be improved (Sweeney & Bustard 1997).

2.3.1.5 Measurement

It has been argued that �you cannot control what you cannot measure�
(DeMarco 1982). It has also been said that without software measurement the
evaluation and improvement of software processes would be impossible (Arthur
1993). Three main purposes of measurement have been identified: understanding
development and maintenance, controlling projects, and improving processes
and products (Fenton & Pfleeger 1997). Software measurement is defined as a
�continuous process of defining, collecting, and analysing data on the software
development process and its products in order to understand and control the
process and its products, and to supply meaningful information to improve that
process and its products� (van Solingen & Berghout 1999, p. 19).

Various measurement mechanisms aim at providing quantitative support for all
the key SPI objectives; from understanding the current status to planning
improvements and assessing the �rate and level of learning to ensure that gains
have in fact been made� (Garvin 1993, p. 79). It has been stated that the software
processes as well as their outputs �have measurable attributes which can be
observed to describe the quality, quantity, cost, and timelines of the results
produced� (Florac et al. 2000, p. 8). Software metrics are used for measuring
specific attributes of a software product or a software development process. This
is done in order to enhance decision-making by drawing up estimates, tracking
the progress, and evaluating the state of quality. The measurements also serve
for analysing defects, and validating the best practices for development (Grady
1992). Measurement-based SPI also provides a means for evaluating the
effectiveness of the used processes (Pfleeger & Rombach 1994), understanding
the effects of implemented improvement actions (van Solingen & Berghout
1999) and, as a result, also for drawing an objective process model (Pfleeger &
Rombach 1994).

 38

A wide range of measurement methods provides quantitative mechanisms to
support the different activities of continuous SPI in organisations. The GQM
(Goal-Question-Metric) method (Basili 1985, 1994, Basili & Weiss 1984), for
instance, provides a goal-based approach for defining metrics that, in return,
constitute answers to the underlying questions and goals. In GQM, the corporate
improvement objectives lay the foundation for improvement initiatives, whereas
at the project level the measurement data collection activities are usually
performed (van Solingen & Berghout 1999). Statistical Process Control (SPC)
(Florac & Carleton 1999, Florac et al. 2000), on the other hand, aims at stable
processes with predictable results using statistical software process management.

It has been realised that, often, the software developers do not welcome the
effort put into manual metrics collection. In addition, manually-collected metrics
data may often be affected by errors, and thus be unusable. Therefore, automated
tools such as PROM (PRO Metrics) have been proposed for collecting and
analysing metrics data. (Sillitti et al. 2003).

2.3.1.6 Experience, Knowledge and Learning

The value of knowledge, experience and learning should not be underestimated
in the process of continuously improving organisational practices. As Deming
points out, the �waste of knowledge, in the sense of failure of a company to use
knowledge that is there and available for development, is even more deplorable�
than the waste of materials, human effort and machine time (Deming 1990,
p. 466). Deming also argues that �a company must, for its very existence, make
use of the store of knowledge that exists within the company� (1990, p. 466).

Some of the existing SPI methods especially focus on different aspects of
knowledge and experience, and on their utilisation within the improvement of
organisational practices. Basili argues that quality improvement is often
achieved by reusing and modifying a set of elements based on learning from
direct experience (Basili & Caldiera 1994). According to Basili, however,
learning and reuse of knowledge usually only occur because of individual efforts
or by accident (Basili 1989). Furthermore, Basili points out that this inevitably
leads to a loss of the experience and knowledge after the project has been
completed and suggests a reuse-oriented software development process in which
learning and feedback are regarded as integrated components, and experiences

 39

are stored in an experience base called EF (Experience Factory). Rather than
considering just knowledge and experience, it is suggested that the EF also
includes data and information in the form of metrics, for instance.

Project postmortems, i.e., post-mortem analysis (PMA�s) or project retrospectives,
have been suggested for harvesting the experience of success and failure in
previous projects and are claimed to be a valuable tool for organisational learning
(Stålhane et al. 2001) and improving the methods and practices (Collier et al.
1996) for future projects in an organisation. Thus, the project postmortems serve
as a traditional feedback mechanism such as in the QIP learning cycle, to provide
process knowledge from project teams for organisational improvement purposes.
In fact, project postmortems have been claimed to be �an excellent step into
continuous knowledge management and improvement activities� (Birk et al.
2002). Different procedures have been suggested for conducting project
postmortems (e.g., Collier et al. 1996, Kerth 2001). There are also various
techniques available for supporting a post-mortem in a project, such as the time
line technique (Kerth 2001), brainstorming (Rawlinson 1981), the KJ method and
its affinity diagrams (Scupin 1997), as well as Root Cause Analysis (RCA) using
cause and effect diagrams (Ishikawa 1985). Some software development
processes, such as the Team Software ProcessSM (TSP) (Humphrey 2000), have
embedded a project postmortem as the final step in the software development
activities of a project.

The project-based experiential learning model of Dybå et al. (2004) suggests
different kinds of reviews or workshops to be held in a project in order to
enhance the learning before, during, and after the project. The initiating
workshop should serve the purpose of sharing the experiences relevant to the
incipient project among the project members. During the project the project
teams may pause to check if the course is right for the project, and to reflect on
their experiences in order to conduct short-term improvement actions. The after-
project workshops mainly serve the purpose of making the experiences and
learning of the project teams available for later projects and organisational
learning purposes. (Dybå et al. 2004).

The GQM method also suggests holding feedback sessions to discuss the results
of a measurement program (van Solingen & Berghout 1999). Typically, the
GQM feedback sessions are arranged by the organisational SPI stakeholders, and

 40

the purpose of these sessions is to utilise the process and context knowledge of
the software development teams to interpret the metrics data collected from the
project. The collected feedback is used to support both the organisational SPI
and future projects in the organisation.

 41

3. SPI in Agile Software Development

In this section there is a discussion about how the traditional elements of SPI
have been addressed in the context of agile software development. In addition,
the differences between SPI in the contexts of traditional and agile software
development are summarised and the resulting implications are discussed.

3.1 The Elements of SPI in Agile Software Development

When considering the relationship between agile software development and SPI,
there are three principles, in particular, of the agile manifesto that deserve
attention: the valuing of individuals and interactions over processes and tools,
the principle that encourages regular reflection by software development teams
in order to become more effective, and the self-organisation of software
development teams. Taking regular improvement within project teams as one of
the twelve principles of agile software development highlights the importance of
continuous improvement also in the agile software development context. In
order to welcome changes throughout the agile software development project,
whether they concern product requirements or technical aspects, the software
process with its practices, methods, and tools must be able to adapt to the
specific context while also to respond to the changes when needed.

In the following sub-sections, the current methods, research and discussion on
the different SPI elements, in the context of agile software development, are
reviewed.

3.1.1.1 Organisational Models

A limited amount of references were found to directly address the issue of
organisational SPI within the context of agile software development. One reason
for this might be that the focus of numerous agile methodologies is on the
project level activities of software development.

Discussion has arisen about how compatible the fundamentals and
methodologies of agile software development are with standard process models

 42

(e.g., Paulk 2001) based on the organisational models of SPI, e.g., IDEALSM
(McFeeley 1996). Significant organisational tensions have been detected �as the
stability that underpins notions of quality control is overlaid on environments in
flux� (Lycett et al. 2003, p. 79) due to the differences between standardised
engineering approaches and agile methods. In addition, Boehm and Turner
(Boehm & Turner 2005) have addressed the challenges of management in
implementing agile processes in traditional development organisations; the
difficulty of scaling up and integrating agile methodologies into traditional, top-
down systems of development organisations has been identified as a major
challenge. Nonetheless, it is equally important for both approaches to pursue the
aim of �quality of product, service, and process to gain market presence and
competitive edge� (Lycett et al. 2003, p. 79).

The difficulty of adopting agile methods in, for instance, the CMMI® based
environment and the lack of guidance on how to take advantage of the existing
best practices of an organisation in transition towards agile methods, has been
identified as one of the major obstacles in the co-existence of the agile and
traditional approaches (Reifer 2003). In the study of Kähkönen (2005), the
SW-CMM based IDEAL model is considered incompatible as an SPI reference
model for use in the agile software development context. The central limitations
identified in the IDEAL model were the organisational focus of the model, as
opposed to the strong project focus of the first agile development initiatives, and
the conflict of conducting SPI in a plan-driven manner while the adopted method
itself was agile. As a result, Kähkönen proposes a light life-cycle model
especially for projects deploying agile methods.

While the problems of integrating agile and traditional software development at
the organisational level have been identified, there now seems to be an urgent
need to explore their potential solutions.

3.1.1.2 Standard Processes and Assessments

The compatibility of agile software development approaches with the existing
standard process models is one SPI issue that has been addressed in agile
literature. One central problem has been posed as follows: �How do you merge
agile, lightweight processes with standard industrial processes without either

 43

killing agility or undermining the years you�ve spent defining and refining your
systems and software engineering process assets?� (Boehm & Turner 2005, p. 30).

Some agile proponents have argued that �people willing to spend money on
CMM® certification are less interested in the agile value proposition, while those
needing agility for business reasons are less interested in getting CMM or ISO
9000 certification� (Williams & Cockburn 2003, p. 40). Nevertheless, mature
software organisations especially are concerned about how the adoption of agile
processes will affect their assessment ratings (Boehm & Turner 2005).

It has been argued that the synergy (Paulk 2001) and philosophical compatibility
(Reifer 2003) of XP and CMM® have been agreed upon among most of the
leaders in the field (Reifer 2003). However, shortages also between the ISO and
CMM requirements and agile methodologies, such as XP or Scrum, have been
reported, along with a lack of practices to support the commitment of
management to the defined software development process, and also regarding
the setting up and staffing of an independent quality assurance group (Vriens
2003). In addition, the degree of documentation and the infrastructure required
by current process standards for lower-level certification are issues of concern
(Boehm & Turner 2005).

An urgent need has been recognised for a set of guidelines for agility-compatible
standard process maturity assessments and also for a set of standards for the
acknowledgement of agile methods by lead assessors (Boehm & Turner 2005).
In linking the agile methodologies and quality standards, such as ISO 9000 and
CMMI®, Lycett et al. (2003) have proposed a framework for mapping the
candidate process pattern elements, for example from Rational Unified Process
(RUP) (Kruchten 2000) with CMMI® to �supplant repeatability with
consistency, while still providing the audit trail necessary for assessment�
(Lycett et al. 2003, p. 84). In addition, experience reports have been published
suggesting that a certain level of certification of, for example, XP based process
is possible (Paulk 2001), although it has also been suggested to require adoption
of additional software development practices (Kähkönen & Abrahamsson 2004,
Vriens 2003).

The agile assessment method has been suggested as providing a lightweight
approach for assessment to identify and adopt the most suitable agile methods

 44

amongst the existing organisational practices (Pikkarainen & Passoja 2005).
Furthermore, techniques have been suggested for increasing the agility level of a
software development team by assessing the current agility level against the
defined agility goals (Lappo & Andrew 2004). Thus, the current discussion of
process assessments in the agile context does not so much address the
certification or define the maturity of the organisational software development
processes, but rather evaluates the purpose of adopting agile practices.

From 2003 onwards, however, the IEEE Standards Association has
conducted agile standardization work in the IEEE 1648 working group
(http://standards.ieee.org/board/nes/projects/1648.pdf) to establish and manage
software development efforts using agile methods. In the beginning of 2007, the
�P1648 � Recommended Practice for the Customer-Supplier Relationship in
Agile Software Development projects� is in its draft format.

3.1.1.3 Process Tailoring

In agile software development, the concept of universal and repeatable processes
is considered defective and it has been proposed instead that �each situation calls
for a different methodology� (Cockburn 2002, p. 84). Thus, agile software
development calls for flexible software development processes that have been
defined as ��less precise than rigorous ones. For example, the development
processes may not be defined formally, they utilise guides rather than rigid rules,
or they may be applied differently by different teams in the same company or
even within the same product group. A flexible process may not produce the
same results every time, but the results are similar enough for a written
description of the process to benefit the organisation� (Highsmith 2000, p. 228).

Agile specific methods are needed to tailor agile software development practices
within individual projects and within the entire organisation. References can be
found in the agile software development literature to the tailoring activity at the
beginning of the project (i.e., static tailoring) as well as to the continuous
process adaptation, which takes place throughout the life-cycle of an individual
project (i.e., dynamic tailoring).

http://standards.ieee.org/board/nes/projects/1648.pdf

 45

Keenan (2004) suggests three strategies for process tailoring in the context of
agile software development: 1) using a comprehensive pattern based process
framework, such as RUP, as a pool for selecting appropriate elements at the
beginning of each project, 2) defining a set of processes, as in Crystal, and
selecting the best match for the project at hand with possible fine tuning, and
3) defining a tailored process for the project by blending ideas and techniques
from best practices and local experience. The two former ones are considered as
static tailoring prior to the project, as is characteristic of traditional software
development, whereas the last strategy is suggested as a dynamic approach for
tailoring occurring also during the development (Keenan 2004).

Lycett et al. (2003) have proposed that one primary challenge between agile
principles and plan-driven software development is the balancing between
implementing repeatable processes while still allowing the nuances in a
particular development context. They also discuss the gap between the
management expecting predictable processes to produce the highest quality with
minimal cost and factual software development where uncertainty and
contextual differences are present (Lycett et al. 2003). As a result, a more agile
approach to tailoring was proposed by: 1) factoring a core set of process
artefacts suitable for a wide range of developments, 2) identifying candidate
patterns for core types of development as well as for contextual application of
activities, artefacts, and guidelines, and 3) producing a skeletal framework for
selecting patterns based on project, product, team, and organisational
characteristics (Lycett et al. 2003). This pattern-based approach for agile process
tailoring also suggests that the reflection of project teams on the experiences of
applying selected patterns should contribute to the organisational pattern
catalogue. However, the framework does not suggest any specific procedures for
attaining the organisational improvement of patterns.

Cockburn has suggested a methodology shaping technique for tailoring a starter
methodology for a project and building an organisational library of experiences
(2005). This methodology consists of interviews to harvest the experiences of
the project team members and members of other projects, as well as a
brainstorming workshop where the starter methodology is agreed upon. The
methodology is based on the fixed rules of software development in the
organisation, while it also relies on the �liked/keep� and �disliked/avoid�
decisions of the project team. Thus, the formulation of the software development

 46

process is strongly grounded on the experience and knowledge of the software
developers.

In APM (Agile Project Management), a specific practice of �process and
practice tailoring� is introduced. Its objective is to define �the approach the
project team will use to deliver a product� (Highsmith 2004, p. 118). The
suggested tailoring approach �starts from the organisation�s standard framework,
and then the project manager and team tailor it to their needs within the
framework�s constraints� (Highsmith 2004, p. 118). In addition, it is stated that
nothing in APM is static � neither the product nor the practices � and the teams
are �encouraged to adapt everything except the base essential policies and
process framework to the reality of the actual situation as it unfolds� (Highsmith
2004, p. 119). Thus, the APM process and practice tailoring approach includes
both static tailoring at the beginning of the project and dynamic tailoring
throughout the project, to be conducted even iteratively. Furthermore, APM
recognises the broad process framework set by the organisation, which can be
adapted by the team with certain limitations.

The dynamic process tailoring, especially during and within the ongoing
software development projects, has been highly valued in the principles of agile
software development. The agile principle of �regular team reflections of
software developers in order to become more effective� relates directly to the
continuous and dynamic project-specific tailoring activity, whereby the
organisational base process is iteratively tailored throughout the project by the
software development team. Furthermore, the self-organising principle of agile
software development dictates that �the working framework should grant the
team as much flexibility and authority to make decisions as possible�
(Highsmith 2004, p. 220). Thus, numerous references to process adaptation can
be found in the existing agile methodologies. Interestingly enough, the first
versions of XP (Beck 2000) and Scrum (Schwaber & Beedle 2002) still largely
ignored the aspect of tailoring, team reflections and SPI. In the later versions of
these methods (Beck & Andres 2004, Schwaber 2004), however, proposals for
conducting such practices have been made (Table 3). The use of retrospectives
throughout the project has been suggested to solve the problem of traditional
retrospectives, as the changes can be immediately incorporated into the project�s
processes (Koch 2005). The problem of traditional methods has been the lack of
mechanisms to ensure subsequent utilisation of the lessons learned from finished

 47

projects (Koch 2005). Furthermore, Koch argues that, while there still is the
problem of sharing the learning beyond single software development teams, the
shift of personnel from one project to another enables the memorisation and
transfer of practical solutions.

Based on a number of reported SPI initiatives, Komi-Sirviö (2004) has built a
framework of Critical Success Factor (CSF) criteria to be used to evaluate SPI
methods. In the framework, a total of 15 factors found to facilitate successful
SPI have been identified. In Table 2, the CSF factors identified by Komi-Sirviö
are presented. The columns titled �Main class�, �Sub-classes�, �CSF�, and
�Evaluation� present the definitions of the original framework. In addition, the
column of �Evaluation of agile process adaptation� suggests an interpretation of
each CSF in the context of any successful SPI method claimed to be suited for
process adaptation among agile software development teams.

 48

Table 2. CSF Framework and its Interpretation among Process Adaptation
Methods of Agile Development Teams.

Main class Sub-classes CSF Evaluation Evaluation of agile process
adaptation

General
guidance 1

Does the method
support different
SPI approaches?

Is the method linked to an overall
improvement approach?
Are alternative techniques
proposed for use in the process
adaptation?
Are organisational guidelines
suggested to support project
specific process adaptation?

2

Does the method
support the
participation of
all affected
parties?

Are all the parties identified and
involved in those practices that on
which the process adaptation has an
effect? Staffing the

SPI initiative

3

Does the method
support co-
operation with
software
engineers?

Vice versa: Does the method
support team co-operation with
other organisational SPI
stakeholders?

Improvement
Management

Training 4

Does the method
support planning
and carrying out
training as a part
of the initiative?

Is there an organisational
facilitation available to assist
software developers in practice?

5

Does the method
support the
commitment of
top managers?

Are the top managers provided
with feedback on the SPI activities
of process adaptation among
project teams (why, how, how
effectively was the process
adapted)? Manager

Commitment

6

Does the method
support the
commitment of
middle
managers?

Are the middle managers provided
with feedback on the SPI activities
of process adaptation among
project teams (why, how, how
effectively was the process
adapted)?

Commitment

Engineer
Commitment 7

Does the method
support the
commitment of
software
engineers

Is the software development team
provided with support to implement
the process adaptations?

Culture 8

Does the method
support
developing
improved
solutions on a
case-to-case
basis?

Does the method support the
process adaptation based on the
context specific needs and daily
problems of the software
development team?

 49

Main class Sub-classes CSF Evaluation Evaluation of agile process
adaptation

Current State
Analysis 9

Does the method
support clarifying
the current status
of processes?

Does the method support
identifying the strengths and
weaknesses of the daily working
practices of the software
development team?

10

Does the method
support establish
a link between
the business and
improvement
goals?

Does the method support
continuous co-operation between
organisational SPI stakeholders and
agile software development teams? Goal

Definition

11

Does the method
support
measurable
improvement
goals?

Does the method support the
setting of goals for process
adaptation actions?

Plan

Improvement
Planning 12

Does the method
support
generating an
improvement
plan?

Does the method provide a means
for generating an improvement
plan?

Do 13

Does the method
support the
testing of
developed
solutions in a
pilot project?

Does the method support the
follow-up of the process adaptation
actions?
Does the method support the
validation (qualitative/quantitative)
of the process adaptation actions
during the ongoing project?

Check 14

Does the method
support using
metrics in
monitoring
improvement
actions and
results?

Does the method support the
organisational monitoring of
process adaptation actions?

Act 15

Does the method
support the
sustainability of
an improvement
initiative?

Does the method support the
storing of the process adaptation
knowledge of software
development teams?
Does the method support
organisational utilization of process
adaptation knowledge of software
development teams?

Table 3 presents how the current agile software development methods of
dynamic tailoring seem to meet the previously defined criteria of the CSF
framework (Table 2). In the evaluation, the following marks are used to define

 50

how each method/activity meets the CSF: 1) X = the means to accomplish the
issue has been defined, 2) / = the importance of the issue has been
acknowledged, and 3) - = the issue has not been included or considered in the
method/activity.

Table 3. Evaluating the SPI Activities of Agile Process Adaptation.

Method of CSF

Origin

Process Adaptation
Activity/Technique

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

XP
Reflection (XP
principle) (Beck &
Andres 2004)

- / - - - - - / / - / - - / -

Scrum

Sprint Retrospective
Meeting (Schwaber
2004), (Schwaber &
Beedle 2002)

- X / X - - - X / - - - - - -

Crystal
Reflection workshop
technique (Cockburn
2002, 2005)

- X - - - - - X X - - X - - -

APM
Process and practice
tailoring (Highsmith
2004)

X X - - - - - X X - - - - - -

-
Postmortem review
technique (Dingsøyr
& Hanssen 2002)

- X - - - - - X X - - - - - /

As can be seen in Table 3, the existing agile mechanisms of process adaptation
seem to fall short regarding the aspect of general guidance (CSF 1). Only APM
seems to address the idea of the project teams actually working within an
organisational framework of processes and practices, and propose that
organisational guidelines should exist to support the process adaptation of
software development teams (Highsmith 2004). Furthermore, some of the
methods suggest specific techniques to be used in SPI but do not seem to offer
any alternatives.

All the suggested techniques seem to address the staffing of the SPI initiative to
some degree. Each of the methods identifies the stakeholders who should attend
the process adaptation within agile software development projects (CSF 2).
Naturally, the central group of actors identified by all the adaptation approaches
is the software development team itself. However, Scrum (Schwaber 2004) also

 51

promotes the role of the Scrum Master in facilitating the process adaptation
activities as well as acting as a middleman to gain organisational support for the
problems of the project team (Schwaber & Beedle 2002). In other words, in
Scrum the importance of collaboration between the organisational and project
level stakeholders in SPI has been addressed (CSF 3). In addition, the proposed
facilitator in Scrum also relates to CSF 4 (training), as in the CSF framework
this has been defined as one way of providing training for software development
teams in their SPI initiatives (CSF 4).

Neither the role of top (CSF 5) and middle managers (CSF 6) nor their
commitment has been addressed in the existing process adaptation techniques.
None of the methods, for example, suggests that the management should be
provided with knowledge and feedback on how the individual project teams are
adapting their processes and how successfully. Nor has there been a discussion
in the existing methods about how the commitment of the software developers
(CSF 7) should be addressed to ensure their regular effectiveness in conducting
process adaptation. An important aspect for such commitment, especially in the
agile software development context, might be the constant support and feedback
of the organisational SPI stakeholders for the developers.

Commonly, the agile specific methods of process adaptation propose that the
adaptation should be conducted within individual project teams and that it
should be based on the experiences of success and failure of software
developers. Thus, the context specific adaptation and the case-to-case basis for
identifying improvements (CSF 8) are in a central role in the methods. This also
refers to the fact that the methods suggest that the adaptation should be, at least
to some degree, based on an iterative identification of the current status of the
software development process of the software development team regarding its
weaknesses and rewards (CSF 9). Thus, rather than defining the current status of
the organisational software development process, agile process adaptation
focuses on evaluating a specific instance of the process in a specific instant of
time in a specific software development project. In addition, the Crystal, APM,
and postmortem review techniques suggest specific techniques for assessing the
current problems in the process. Crystal, for instance, suggests using reflection
workshop flip-charts, APM advocates using a team self-assessment chart, and the
postmortem review technique proposes the KJ method of Scupin (Scupin 1997).

 52

The existing process adaptation methods do not specifically discuss the
definition of goals (CSF 10 and 11) in the process adaptation. In project-centred
process adaptation, the link between the business goals with the project level SPI
actions (CSF 10) may not be of immediate concern from the viewpoint of an
individual project team. However, an organisation may still wish to establish the
linkage between the two levels. In this case, the SPI co-operation between the
two levels should be addressed. In any case, every SPI action of the software
development team should be clearly linked to a specific improvement goal �
whether organisation or project-specific � to provide a basis for appropriately
evaluating whether the improvement has been successful (CSF 11, CSF 13, and
CSF 14). Furthermore, the current process adaptation methods seem to focus on
the identification of causes of improvements rather than the goals. For example,
the postmortem review technique suggests a root-cause analysis for clearly
determining the cause of problems.

Surprisingly, the existing methods largely lack the means of adequately defining
and planning (CSF 12) the process adaptation as well as means for systematic
follow-up and validation (CSF 13) of the changes that the team implements in
the process. Traditionally, however, these have been considered central aspects
of SPI. The reflection workshop method (Cockburn 2005) includes a generation
of flap-sheet �keep these� and �try these� issues to be posted on the wall in the
office-space of software developers. The suggested output format, however, still
lacks the aspects of �what exactly�, �how�, �who�, �when�, and �why�, for
instance. As a result, there is no means for the project team to recall exactly what
is needed to be done nor to assess whether the project team actually followed the
process adaptations as agreed (CSF 13), or if the changes were successful or not
(CSF 13). In fact, the validation of the SPI actions taken by the project team �
quantitative or qualitative � has not been addressed in the existing methods in
any way. In XP it is still acknowledged that the project team should be able to
evaluate the effects of the changes if the team is allowed to adapt their daily
working procedures (Beck 1999). However, the iterations of agile software
development seem to provide an ideal context for conducting process
adaptations in a systematic and validated manner in which the SPI actions are
implemented and tested rapidly in an iterative fashion during the ongoing
project.

 53

An organisational monitoring of project level process adaptation activities (CSF
14) or an organisational utilisation of project specific SPI knowledge for
organisational SPI purposes (CSF 15), both seem to be out of the scope of the
existing agile software development methodologies and their process adaptation
activities. In summary, it could be argued that the existing process adaptation
methods currently provide very little information on how to actually conduct
process adaptation. Some of the methods suggest specific techniques to be used
in some specific tasks. At best, techniques are proposed for identifying the
problems and their causes in the process, and for discussing improvement
actions. However, extensive procedures for conducting process adaptation
activities systematically within agile project teams do not seem to exist and
many aspects identified as critical SPI success factors are not addressed,
including the systematic and validatory nature of SPI actions and the
organisational involvement in the project level SPI activities.

Many of the agile methodologies also refer to the traditional PMA techniques for
conducting process adaptation (e.g., Cockburn 2005). Some of the tasks of
process adaptation may, indeed, largely benefit from the techniques of
traditional PMAs. However, the PMAs also lack mechanisms for piloting,
validating and following up improvement actions, for instance, as they are
simply designed to harvest knowledge from finished projects instead of
improving the practices of ongoing projects.

3.1.1.4 Process Deployment

It has been stated that the way of introducing agile processes in an organisation
has a significant impact on the ultimate success of the process change (Cohn &
Ford 2003). It has been also suggested that agile processes should be introduced
one technique at a time and address the most pressing problem first (Eckstein
2004). Many of the current agile methodologies seem to support the �big bang�
approach or at least they do not seem to provide any criteria for a stepwise
adoption of the suggested practices, methods and tools. For example, Crystal, in
its early version (Cockburn 2005), simply proposes that the size of the project
and the criticality of the product should be used as the selection criteria between
the lighter and heavier versions of the Crystal family of methodologies.

 54

RUP (Kruchten 2000) provides a large number of process artefacts that can be
selected for a process model. RUP proposes a step-by-step process for its
implementation in an organisation (Kruchten 1999). The deployment process
consists of six steps: 1) assess the current state, 2) set (or revise) goals,
3) identify risks, 4) plan process implementation, 5) execute process
implementation, and 6) evaluate process implementation. Thus, the process
seems to be well in line with the organisational models of SPI (2.3.1.1) and it
also provides detailed guidelines for deployment. In RUP, it is also proposed
that a pilot project should be conducted before extending the RUP practices to
the entire organisation (Kruchten 1999).

One major obstacle has been identified in adopting agile methodologies: the lack
of mechanisms to adopt agile methods within projects with established plan-
driven processes (Reifer 2003). The mixing of plan-driven and agile approaches
is also considered acceptable as it can benefit from the strengths while also
compensating for the weaknesses of these approaches (Boehm & Turner 2003b).
It has also been suggested that a gradual transition from plan-driven into agile
processes could make the change easier for the development team (Cohn & Ford
2003). Cohn and Ford (2003) have referred to a number of possible setbacks or
errors that may occur when an organisation is transitioning from plan-driven
towards agile processes. The problems are mainly caused by resistance to, or
overenthusiasm for, agile practices within a software development team. Many
of the problems also seem to be caused by the lack of transparency between the
different organisational levels resulting from undefined and inadequate
operations between agile project teams and different organisational stakeholders.
Such problems may be due to, for example, a lack of established organisational
practices for project-tracking, an inadequate understanding of the payback of
new software development practices such as pair programming, and a lack of co-
operative mechanisms in the project teams and at the organisational level.
Further factors which can cause problems are an ill-defined means of
collaboration between the agile project and other development teams, and the
effect of agile methodologies on customer contracts regarding such issues as
product features, project duration and cost (Cohn & Ford 2003).

Kähkönen (2005) has proposed a life-cycle model consisting of high-level steps
to support improvement projects deploying agile practices. The deployment
steps identified in the model include decision-making on behalf of agile

 55

methods, selecting an approach for deployment, selecting methods to deploy,
initial deployment, iterative adaptation of process, and ensuring the use of
process knowledge in the future. When addressing the project level improvement
activities, the model of Kähkönen also indicates that the best way to retain and
make use of the accumulated process knowledge is to move the whole team to a
new assignment or to organise project post-mortems like those used in plan-
driven development models. The model does not, however, address the
organisational adoption of agile practices or suggest any specific methods to be
used in the deployment process. Despite the fact that agile assessment
(Pikkarainen & Passoja 2005) aims at providing a means for identifying and
selecting agile practices in a goal driven and context specific manner (see also
3.1.1.2), the organisational methods identifying and selecting potential agile
methodologies have been sparse.

3.1.1.5 Measurement

It has been stated that the traditional �measurement techniques might be
inadequate to support agile processes� rapid pace� (Boehm & Turner 2005,
p. 34). One reason for this can be found in the highly different work breakdown
structures of the two approaches. In agile software development, the traditional
progress measures, for instance, have been successfully substituted with backlog
lists of stories (Schwaber & Beedle 2002) and their state of completion (Boehm
& Turner 2005).

The previous claim applies not only when considering the measurement as a
controlling tool in projects, but as a tool for improving processes and products in
agile software development. On the one hand, organisations conducting agile
projects are still likely to need measurement as traditionally used in
organisational SPI (2.3.1.5), but also in supporting the more agile-specific
activities of software development teams. As discussed in the earlier sub-
sections, the current SPI activities in agile software development methodologies,
however, largely ignore the issue of metrics and validation. In addition, the
project level SPI activities are still not, to a large extent, linked to organisational
SPI activities where, traditionally, metrics have played a significant role. It
seems, in fact, that measurement is not much addressed among the different SPI
related issues within the context of agile software development. In certain agile

 56

software development methodologies, however, some references can be found to
the topic. In XP, for instance, it has been acknowledged that the process
adaptation within software development teams requires mechanisms for
assessing the effects of the changes (Beck 1999). Traditionally, metrics have
been the main tool of such evaluation. Highsmith (2000), on the other hand, has
discussed the uncertainty of the problem-solving being always able to find the
right solution. He has argued that �while we can surround problem-solving with
more rigorous data-gathering or documentation processes, it is important that we
remember that problem-solving is an emergent process � one that defies strict
cause-and-effect analysis� (Highsmith 2000).

In agile literature, however, the importance of metrics has been addressed in, for
example, project management. For instance, in the Scrum approach for project
management it is suggested that �if you measure the right things, improvements
can be made� (Schwaber 2004, p. 114).

3.1.1.6 Experience, Knowledge and Learning

Experience, knowledge and learning are highly valued in the context of agile
software development, especially among individual software development
teams. One clear example of the emphasis on collective learning and experience
of software developers, is the agile principle suggesting that the teams should
regularly reflect on their work in order to become more effective and to be able
to tune their behaviour accordingly. In XP, the role of team learning is defined
as: �good teams don�t just do their work, they think about how they are working
and why they are working. They analyze why they succeeded or failed. They
don�t try to hide their mistakes, but expose them and learn from them� (Beck &
Andres 2004, p. 29). From another angle, learning among agile software
development teams is based on the experience on �doing�. In other words,
�learning is action reflected� (Beck & Andres 2004, p. 30). It has even been
claimed that �the Agile methods all recognise the importance of the learning that
both the customer and developers experience� (Koch 2005).

In agile software development, the face-to-face communication is emphasised
also in learning activities. For example, in the agile process adaptation activities
of different agile software development processes the idea is for the project team
to regularly gather together to discuss and collectively learn in order to improve.

 57

The role of facilitator has also been highlighted, especially in holding effective
face-to-face meetings (Highsmith 2000). In addition, traditional postmortems
have been suggested to be conducted after agile software development projects,
e.g. in ASD (Highsmith 2000).

3.2 Comparison of SPI Elements in Plan-Driven and Agile
Software Development

In this section, the earlier discussion of software development and different
elements of SPI in the context of plan-driven (2.3.1) and agile (3) software
development approaches are summarised. The aim of this section is to compare
the fundamentals of traditional and agile software development from the
viewpoint of the six identified SPI elements (i.e., organisational models,
standard processes and assessments, process tailoring, process deployment,
measurement, as well as experience, knowledge and learning) and to discuss
how the different viewpoints of SPI are relevant in this line of research.

As Table 4 illustrates, some of the fundamental aspects of software development
in plan-driven and agile approaches can be considered contradictory. For one,
the traditional goal of a software process is to provide high predictability,
stability, and repeatability using highly managed and quantitatively monitored
software development processes. On the other hand, agile principles highlight
the need for the software process to be flexible, to be able to rapidly respond to
the constant changes and context specific needs of software development. As a
result, traditional software development emphasises up-front contract
negotiations where the requirements, cost and schedule of the product
development are fixed (i.e., schedule) and the end product will be delivered at
the end of the project lifecycle. In this mode of software development,
traditionally, extensive documentation and quantitative monitoring of the
product development process plays a central role. The principles and practices of
agile software development, in turn, address the constant changes. For instance,
it is suggested that the requirements may not always be definable up-front, and
that higher customer satisfaction and a higher quality of end products can be
accomplished through continuous collaboration with the customer and
incremental delivery of working software. In this mode of development, the

 58

emphasis is put on face-to-face communication, self-organisation of teams, and
flexible and context specific software development processes.

Table 4. Fundamentals.

Characteristic Plan-Driven View Agile View

High predictability and stability of
software development (Lycett et al.
2003)

Rapid response to constant changes

Software
Process

Repeatable, well managed, and
measurable software processes

Context specific and adaptable
software process

Goals of product and productivity
fixed beforehand

Product requirements rapidly change
throughout the development

Extensive documentation Light documentation (simplicity = the
art of maximising the work not done)

Quantitative monitoring Face-to-face communication

One-off delivery of end-product Continuous, iterative delivery of
working software

Software
Development

Monitoring and management of
software development

Self-organisation of teams
Regular team reflections to become
more effective

From the viewpoint of the different SPI elements, the differences between the
traditional and agile approaches are, to some extent, contradictory. In Table 5 the
traditional viewpoint of organisational SPI is set against the agile viewpoint.

 59

Table 5. Organisational SPI Models.

Characteristic Plan-Driven View Agile View

SPI Approach Top-down Bottom-up

Adapting the process to the contextual
needs of individual project teams

Primary Goal

Organisational procedures for
improving the organisational
software process(es) Improving the effectiveness of

individual project teams

SPI Control Organisational control of SPI Self-organisation of teams

Knowledge
Transfer

Explicit knowledge: external
knowledge capture and inert
knowledge transfer to support a
learning paradigm (Lycett et al.
2003)

Face-to-face communication Tacit
knowledge: Establishing and updating
project knowledge in the participants�
heads rather than in documents.
(Boehm & Turner 2005) O

rg
an

is
at

io
na

l S
PI

 M
od

el
s

Basis for
Improvement

Organisational Goals
Measurements

Contextual needs
Experience and Learning of Software
Developers
Regular team reflections

Traditionally, SPI has been approached in a top-down manner, in which the
organisational level has played a major role in defining the goals of SPI and
planning, managing, and controlling the SPI initiatives. In the agile software
development context, on the contrary, the experience and knowledge of software
developers and the self-organisation of software developers in improving and
adapting their daily working practices have been clearly placed in a central role.
In the agile approach, the role of management is to organise and co-ordinate
rather than plan, execute, or control. Furthermore, the contextual needs for
improving and adapting processes throughout the entire development process are
emphasised, rather than the organisational goals in the regular SPI activities of
development teams.

In Table 6, the process standards and assessments are compared in the context of
traditional and agile software development.

 60

Table 6. Standard Processes and Assessments.

Characteristic Plan-Driven View Agile View

Assess and improve the
organisational software process
against a standard reference
process model

Assess and improve the
organisational software process by
identifying the potential agile
practices

Evaluate the maturity of the
organisation as a whole
Evaluate the capability of
individual process areas of the
organisation

The standard based evaluation of
maturity not currently addressed in
agile sotware development1

St
an

da
rd

 P
ro

ce
ss

es
 a

nd
 A

ss
es

sm
en

ts

Primary
Goals(s)

Certify the maturity level of the
organisation

Traditionally, standard process models, such as CMMI, have played a central
role in organisational SPI initiatives (Table 6). Different assessment methods
have been used to provide support for evaluating the maturity and capability of
organisational software processes against the standard process models. In agile
software development, the standardization work is currently ongoing. This work
aims at the recognition of agile methodologies, practices and principles as part of
commonly accepted standard process models. Currently, the assessment methods
in standard processes do not define how to appraise agile software development
processes. Various independent assessment methods have, however, been
suggested to provide organisational mechanisms for the assessment and selection
of potential agile methods.

In Table 7, the process tailoring aspect of SPI is considered from the viewpoints
of traditional and agile software development.

1 Currently, the standardization work of the IEEE 1648 working group
(http://standards.ieee.org/board/nes/projects/1648.pdf) for establishing and managing software
development efforts using agile methods is ongoing. The relation of agile software development
and standard processes and assessments is yet undefined.

http://standards.ieee.org/board/nes/projects/1648.pdf

 61

Table 7. Process Tailoring.

Characteristic Plan-Driven View Agile View

Continuous tailoring/improvement
of organisation�s standard software
process(es) (OSSP)

Tailoring (at the beginning of a
project) a project specific software
process from OSSP using
organisational tailoring guidelines

Primary Goal(s) Static tailoring, i.e., one-off,
up-front definition of a project
specific software process using
organisational guidelines and
process libraries)

Dynamic tailoring, i.e., continuous
adaptation of project specific
software processes during the
ongoing project
Self-organisation of development
teams

Organisational goals, SPI
initiatives, Pilot projects,
Process Measurements, Process
Assessments, Project post-mortem,
observation, brainstorming
sessions, surveys, analysis methods,
etc.

Comprehensive pattern based
process framework
Defined set of organisational
processes to select the best method
for the project

Pr
oc

es
s T

ai
lo

rin
g

Supporting
Mechanisms Organisational tailoring guidelines

Organisational process library
Quantitative selection of project
specific methods and tools
Databases and process maps to
capture criteria and information for
process tailoring

Regular team reflections in a face-
to-face manner for explicit
collective learning and process
adaptation
Organisational guidelines for
tailoring

In the fundamentals of agile software development, the process tailoring is likely
to be the most visible and central SPI element. Traditionally, process tailoring is
often understood as an activity in which the organisational software processes
are modified or where the organisational process is tailored for a specific project
as a one-off activity at the beginning of a project (Table 7). This activity has
been traditionally supported by organisational process libraries, standard process
models, tailoring guidelines, and quantitative mechanisms for evaluating suitable
methods and tools. In addition, the role of capturing, storing and analysing
learning from previous projects (e.g., project postmortems) has been
traditionally a main means of defining the existing practices of software
development and organisational guidelines for process tailoring. In the agile
context, on the other hand, the tailoring has been characterised as on ongoing
dynamic process in which the experience and collective face-to-face learning of

 62

the software development team is the main source for guiding the context
specific process adaptation. Thus, unlike in traditional SPI, the process
adaptation in agile software development can be considered to apply a bottom-
up approach in contrast to the more top-down project level process tailoring. So
far, this activity has been only loosely linked with organisational SPI.
Furthermore, only rarely (e.g., Highsmith 2004) has the relevance of
organisational framework of processes and practices, or that of organisational
guidelines, in the process adaptation of agile software development teams been
acknowledged.

In Table 8, the process deployment mechanisms of traditional and agile software
development are compared.

Table 8. Process Deployment.

Characteristic Plan-Driven View Agile View

Primary Goal(s)

Introducing new process model/
methods/tools in an organisation

Introducing agile processes in
projects
Transitioning from traditional to
agile processes

Supporting
Mechanisms

Organisational SPI Models
Piloting

Piloting
Iterative deployment Pr

oc
es

s D
ep

lo
ym

en
t

Approach(es) Big-bang/Piecemeal Big-bang/Piecemeal

An organisation can select between the big-bang and piecemeal approaches in
the deployment of agile or traditional software development process models,
methods and tools. In traditional deployment, the organisational viewpoint of
piloting, and evaluating new practices and their deployment in organisational
software processes have been in a central role, which has been supported by
organisational SPI models. The agile deployment mechanisms have largely
focused on mechanisms for supporting the deployment of new practices
especially within individual project teams. For example, the iterative process
model has been advocated for a piece-meal deployment of agile practices
(Kähkönen 2005). In addition, some specific methods have also been recently
suggested for supporting the identification of potential agile practices, methods
and tools in organisations (e.g., Pikkarainen & Passoja 2005). Agile software

 63

development has been said to lack mechanisms to support the deployment of
agile practices in organisations which currently often base on maturity oriented
plan-driven processes (e.g., Boehm & Turner 2005).

Table 9. Measurement in SPI.

Characteristic Plan-Driven View Agile View

M
ea

su
re

m
en

t

Primary
Goal(s)

Identify weaknesses in software process
and set improvement goals
Identify improvement opportunities in
software process
Verify the effect of process improvements
Monitor the process improvement
initiatives

Managing of software
development projects

In SPI, traditionally, process measurement (Table 9) plays a central role. For
example, metrics have been used to identify weaknesses in the current status of
organisational software development, setting improvement goals, verify the
effects of improvements and also to monitor SPI initiatives by organisational SPI
stakeholders. In the context of current agile SPI mechanisms, however, the role
of measurement has not been specifically addressed. The need to evaluate the
effects of the process changes made by the software development teams (e.g.
through regular team reflections) has been addressed (Beck 1999) but no
quantitative mechanisms have been suggested. The role of metrics has, however,
been addressed more in the context of agile project management (Highsmith
2004, Schwaber 2004).

Table 10. Experience, Knowledge, and Learning.

Characteristic Plan-Driven View Agile View

Primary Goal(s)

Harvesting and utilization of
knowledge and experience to
improve organisational practices
Supporting SPI initiatives

Improving and adapting the
software process continuously
during the ongoing project

Ex
pe

rie
nc

e,
 K

no
w

le
dg

e
an

d
Le

ar
ni

ng

Supporting
Mechanisms

Storing the experience in a
database for retrieval & analysis
Project PMA�s
Interpreting metrics data

Regular team reflections to
identify weaknesses and
improvement opportunities in
software process

 64

While measurements play a central role in traditional SPI, the role of experience,
knowledge and learning has been highly valued in agile software development
(Table 10). Traditionally, the knowledge and learning of software developers has
been utilised in SPI by harvesting experiences from finished projects for
organisational analysis and for improving organisational software development
practices for future projects. The contextual knowledge of software developers
has traditionally also been utilised to interpret metrics data collected from pilot
projects, for instance.

The role of experience and learning is somewhat different in agile software
development. The benefits brought by learning to immediately improve the
practices of the ongoing project are emphasised by conducting regular team
reflections among the software development teams. Thus, the experiences and
learning of software developers are used to guide the SPI within the project
teams. For example, the software developers make decisions on how they will
change their daily working practices by analysing, e.g., the impediments of the
previous iteration. Thus, whereas in traditional SPI the metrics play an important
role in the identification of SPI goals, the knowledge and learning of software
developers is the corresponding tool in agile context.

Currently, organisations are often running traditional and agile software
development projects simultaneously. Thus, it has been realised that there is a
need to fit agile software development methodologies and ideologies into
organisations using mainly established and mature plan-driven processes (e.g.,
Boehm & Turner 2005) and to extend the scope of existing agile software
development methodologies. Thus, there is a strong case for balancing the
currently dominating traditional SPI ideologies and methodologies with the
fundamentals of agile software development in order to benefit from the
strengths of these approaches while also compensating for their weaknesses
(Boehm & Turner 2003b, Lycett et al. 2003).

Despite some fundamental differences, both the traditional and agile approaches
to SPI include valuable aspects that should be taken into consideration when
contemplating SPI in organisations. From the first viewpoint of this research,
i.e., project level SPI of agile software development teams, there are certain
issues of traditional SPI that cannot be overlooked. For one, even though the
team reflections of agile software development teams place high emphasis on the

 65

learning and process (improvement) knowledge of software developers, the
measurement of the software process and product to support quantitative and
qualitative verification of the process improvements might still be in place. In
addition, especially in large organisations, it may not be appropriate to leave the
individual project teams to self-organise and adapt their process without any
management control. This highlights the importance of defining the
organisational guidelines for the dynamic process tailoring that takes place
within teams throughout the software development project.

From the second focus of this research � i.e., integrating the SPI activities of
agile software development teams and continuous organisational improvement �
there are certain issues of agile software development that cannot be overlooked.
Firstly, it seems as if the face-to-face communication and collective and iterative
learning among agile software development teams provides new kinds of
opportunities for organisations to learn. However, the traditional mechanisms for
harvesting, storing, analysing and disseminating process knowledge from
projects to the organisation might require significant adaptation to fit the agile
software development context. For example, the light documentation of agile
software development does not encourage the documentation of the learning that
takes place within agile software development teams. However, the utilisation of
this knowledge on an organisational level would require some means of
capturing the very valuable yet context-specific process knowledge of individual
teams.

Even though the agile software development values, principles and practices
have been the starting point for this research, the above differences, benefits, and
challenges in both traditional and agile approaches to software development and
SPI have been a guiding influence in this research.

 66

4. Research Design

In this section, the research approaches and methods, and the evolution of the
research are defined. This section contains a description of the research setting
including the contexts of the research and a description of the case projects. In
addition, the collection, storage, analysis, and reporting of the results of the
research are described. Finally, the research design is summarised.

4.1 Research Methods and Evolution

This study can be classified as applied research and, more specifically, as
constructive research. Järvinen (2001) defines constructive research as typically
involving the building of a new innovation based on existing (research)
knowledge and new technical or organisational advancements. Furthermore,
Järvinen suggests that constructive research also involves an evaluation of the
innovation. According to Järvinen, in constructive research it is possible to
accept a prototype or even a plan as a research outcome instead of a final
product. Following the classification of research epistemologies into positivist,
interpretive or critical (Chua 1986), this study can be characterised as qualitative
research that adopts an interpretive stance of investigation. The nature of
interpretive research has been defined as based on the assumption that social
constructions are the basis of our knowledge of reality and, rather than
predefining dependent and independent variables, the focus is on the
�complexity of human sense making as the situation emerges� while attempting
�to understand phenomena through the meanings that people assign to them�
(Klein & Myers 1999). In addition, this study can be claimed to adopt
pragmatism as its underlying philosophy, as suggested is the case in most forms
of AR (Baskerville & Myers 2004). In this study, the practical implications of
SPI activities are considered vital components in understanding the meaning and
truth and their effect on the theoretical implications.

In the research framework of March and Smith (1995), two types of science are
identified: natural science and design science. From the viewpoint of this
classification, this research falls into the category of design science as it
�attempts to create things that serve human purposes� (March & Smith 1995,

 67

p. 253) rather than trying to understand reality as such. As constructive research,
the framework of March and Smith defines �build� and �evaluate� as the basic
activities of design science, and distinguishes them from the �theorization� and
�justification� activities of natural science. Järvinen (2001, p. 89) defines the
building activity as �a process of constructing an artefact/innovation for a
specific purpose�, which consists of three steps: initial state, building process,
and target state. In addition, Järvinen defines the evaluation activity as �a
process of determining how well the artefact performs� (Järvinen 2001, p. 89)
which requires metrics to support the assessment of the accomplishment. Within
this research, both the build and evaluation activities were implemented in the
case studies (Table 11).

Table 11. Research approaches and methods applied.

Research
Approach

Research
Methods

Empiria of Evaluation
(Case Project(s))

Evaluation of
the Output

Evaluate Case study research I Paper II

Build-Evaluate Action research �
Case study research II (and I) Paper III

Build-Evaluate Action research �
Case study research IV (and I�III) Paper IV

Build-Evaluate Action research �
Case study research V (and I�IV) Paper V

Build-Evaluate Action research �
Case study research V (and I�IV) Paper VI

Build-Evaluate Action research �
Case study research VI (and I�V) Paper VII

In the first case project, the evaluation was conducted based on research data
gathered from a finished project. From the second case project, the building-
evaluation activity was used iteratively, complying with the cycles of agile
software development of the case projects. The evaluation of the results occurred
in more irregular cycles and was published in scientific papers (Table 11). It
should be also noted that, when available, the evaluation activity always
included the empiria from multiple case projects (Table 11).

The research framework of March and Smith (1995) identifies four types of
design science products: concepts (i.e., constructs), methods, models, and

 68

implementations (i.e., instantiations). In this research, two types of research
outputs can be identified: methods and models. March and Smith define the
method as “ways of performing goal-directed activities” (1995, p. 253) or,
alternatively, as “a procedure or process for attaining an object” (Merriam-
Webster Online Dictionary 2006). The project level SPI method (Iterative
Improvement Process) (Paper V), which was iteratively designed during the
research and the framework for deploying agile practices (Paper VI), can be
considered as such outputs. In addition, March and Smith define model as a
higher order construction used for describing tasks, situation, or artefacts,
whereas Järvinen (2001) defines model as “a set of propositions or statements
expressing relationships among constructs”. Within this research, the integration
of a project level SPI method for agile software development in the context of
organisational SPI can be regarded as such a construction (Paper VII).

Figure 3 illustrates the evolution of the research. Seven main stages of research
can be identified: a literature review, a case study (case project I), and five main
AR cycles (case projects II–VI). In addition, each of the AR cycles consists of
multiple internal iterations described in more detail in 4.1.4.

Figure 3. Evolution of Research.

02–04/
2005

08–09/
2004

05–07/
2004

Current Status of Agile Software Development

Organizational Level SPI Activities

Agile Deployment
Mechanisms

Project Level SPI Activities

Increase of
Research Focus
& Understanding

Time

Literature
Review

Case
Study I

Case
Study II

Case
Study IV

Case
Study VI

Case
Study III

03–09/
2003 10–12/

2003

Case
Study V

02–04/
2003

02–04/
2004

 69

.

A literary review of agile methodologies conducted in 2002 can be regarded as
the starting point of this research. The review provided an important input for
the research by offering knowledge of the current state of agile methods at that
point in time. The six case projects of this research were conducted between
spring 2003 and spring 2005 (Figure 3). These six case projects form a multiple-
case study. According to Yin (2003), multiple-case studies enable broad
generalisations based on the collective case study evidence. The consecutive
arrangement of the case projects also enabled a longitudinal case study, which
allowed the evolvement of certain phenomena to be studied over time (Yin
2003). Furthermore, the case studies of this research can be regarded as
explanatory studies as they focus on �operational links needing to be traced over
time, rather than mere frequencies or incidence� (Yin 2003, p. 6).

The focus of the study was adjusted throughout the research process based on
the increased understanding of the topic. The AR approach in five of the case
projects (II�VI) (sub-section 4.1.4), in particular, provided an opportunity for the
researcher to iteratively re-adjust the focus of the research based on the results of
the previous cycle. Figure 3 illustrates the study of existing literature, which was
emphasised at the beginning of the research but which was also carried out as a
continuous activity all through the research project. The three first case projects
focused mainly on the project level SPI activities of agile project teams. Once
the importance of organisational level SPI activities in the agile software
development context was realised, the focus of the study was extended to this
area (case studies III�VI). Finally, also the mechanisms of deploying agile
software development were addressed in case project VI. It should be noted that
the research of organisational SPI mechanisms provided new knowledge also
from the viewpoint of project level SPI among the agile project teams. Thus, the
focus of research was continuously expanded rather than changed.

In the following sub-sections, the different stages of this research are discussed
in more detail. Firstly, the literature review is addressed; secondly, the first case
study (case project I) is presented and, finally, the AR approach, as applied in
case projects II to VI, is discussed.

 70

4.1.1 Literature Review

The first preparatory stage of this research was conducted in 2002 as a literature
review on agile software development. As suggested by Cooper (1984), the
literature review aimed at defining the research topic�s current state of
knowledge. More specifically, the research aimed to identify the fundamentals
of agile software development and to study the existing agile software
development processes as well as to chart the available empirical evidence on
the topic � scientific as well as anecdotal. The results of the literature review
were published in (Abrahamsson et al. 2002).

According to Cooper, the cumulative nature of science requires trustworthy
accounts of past research to form a necessary condition for orderly knowledge
building (Cooper 1984). In this research, the literature review contributed to
determining the focus of the incipient research in the field of agile software
development, and developing insightful research questions on the topic, as
suggested in (Yin 2003). The literature study revealed, among other issues, that
the evidence on agile methods was, at the time, based largely on anecdotal rather
than scientific evidence. Concurrently, this observation was also made elsewhere
(Lindvall et al. 2002). Furthermore, an important input for the topic of this thesis
was the finding from the initial literature review that only a few methods
suggested any means for conducting SPI within agile project teams, even though
such an activity was highly rated in the principles of agile software development
(Agile Alliance 2001) and had been recognised by agile proponents. One of the
twelve principles of the agile manifesto (Agile Alliance 2001) states that �at
regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly�. Also Cockburn � one of the original
signatories of the agile manifesto � has stated that �each situation calls for a
different methodology� (Cockburn 2002). Furthermore, the XP practice of �just
rules� declared that �the team can change the rules at any time as long as they
agree on how they will assess the effects of the change� (Beck 1999). However,
the existing agile methodologies, including XP, did not seem to provide a means
for accomplishing such an iterative improvement. The preliminary study on agile
methodologies revealed two existing methods that were to be an important
starting point of the SPI research described in this thesis: the methodology-
growing technique (Cockburn 2002) by Cockburn and a learning mechanism
called postmortem reviews by Dingsøyr and Hanssen (2002). The empirical

 71

evidence on SPI in the context of agile software development was still nearly
non-existent (Dingsøyr & Hanssen 2002). Thus, it was clear that research was
needed in the field of SPI in agile software development.

4.1.2 Case Study

The research method applied in the case projects of the research can be
categorised as a case study. As suggested by Yin (2003), the research focused on
a contemporary set of events and it relied on multiple sources of empirical
evidence, both qualitative as well as quantitative.

The research method of the first case project also included elements of the
history method (Yin 2003) as the researcher did not have any virtual access or
control over the events, but rather the main source of research was the
documentation of a finished project (Yin 2003). For example, a transcribed
interview and data from the project retrospectives (Dingsøyr & Hanssen 2002)
were available to the researcher; these had been collected by other stakeholders
prior to the involvement of the researcher. However, the researcher did not
completely rely on the past as there were relevant persons available to report on
the events, as was recommended for a distinctive contribution of a history (Yin
2003). Even though the researcher had no opportunity to observe the events, she
still had the opportunity for retrospective discussions with the software
developers as well as other stakeholders of the project. The developers even
participated in the publishing of the results in paper II.

4.1.3 Action Research

From the second case project onwards, the AR method was adopted. AR has
been identified as constructive (Järvinen 2001) and qualitative research (Avison
et al. 1999), which is one form of case study (Cunningham 1997). Unlike other
types of case studies, the purpose of the AR case study is to develop �concepts
which help facilitate the process of change� and where �theory emerges in the
process of changing� (Cunningham 1997, p. 403). Furthermore, the AR process
incorporates both building and evaluation sub-processes (Järvinen 2001) that are
identified in the research framework of March and Smith (1995).

 72

AR has been argued to provide highly relevant research results due to its
foundation on practical action, which aims at solving an immediate problem
situation, while also contributing to the theory (Baskerville 1999). AR originates
from the field of social sciences in the 1940s (Lewin 1946). Since then AR has
been suggested to solve the practical problems in the fields of organisational
science (Susman & Evered 1978) and education in which it has also been
accepted as a valid research method (Baskerville & Myers 2004). The
importance of AR has also increased in IS (Information Systems) studies
towards the end of the 1990s (Lau 1999) even though it is still largely ignored
(Avison et al. 1999). Actually, it has been arqued that, still today, the �IS
researchers continue to struggle to make excellent research practically relevant�
(Baskerville & Myers 2004, p. 329) while acknowledging the potential of AR
methods in providing a means to improve the practical relevance of their
research (Baskerville & Myers 2004).

In the 1970s Susman and Evered identified a crisis in organisational science;
while the practical problems of members, groups, organisations or networks of
organisations were partially solved by using research methods that where able to
generate knowledge to improve the effectiveness and efficiency of organisations,
this was often accomplished at the expense of the quality of the working life of
their employees (Davis & Taylor 1972). This was caused by highlighting the
neutrality of how knowledge was created and, as a result, the underlying
meanings and latent values were often not recognised (Susman & Evered 1978).
Thus, the AR method aims at providing a means to perceive the interaction
between the human social systems and information technologies as a whole
entity, the parts of which affect each other (Baskerville 1999). In addition, AR
aims at contributing to both science and practice (Rapoport 1970, p. 499)
through iterative change and reflection (Susman & Evered 1978). On the one
hand, it aims at contributing to the science �by joint collaboration within a
mutually acceptable ethical framework� (Rapoport 1970, p. 499). On the other
hand, AR is concerned with contributing �to the practical concerns of people in
an immediate problematic situation� (Rapoport 1970) in a given social context.
According to Susman and Evered (1978), one aim of AR is also to develop
competencies of self-help for people facing problems.

AR has been defined to always involve a team that includes researchers and
subjects as co-participants in the enquiry and change experiences (Baskerville

 73

1999). Through interaction and personal understanding, the researcher also
becomes part of the study (Baskerville 1999) while also adopts a helping role
with practicioners (Baskerville & Myers 2004). The application domain of AR
ideally includes active involvement of the researcher with expected benefit for
both research and practice, immediately adopting the obtained knowledge, and a
cyclical process where theory and practice are linked (Baskerville 1999). Such
an approach seems to be extremely well suited for the domain of this research, in
which the iterations of agile software development were used to evaluate and build
SPI mechanisms. At project level, the collaboration of the researcher and the
software developers aimed at providing mechanisms for immediate improval of
the daily working practices of developers, while gaining research knowledge on
how to conduct agile process adaptation among agile software development teams.

At an organisational level, the co-operation of the researcher and the Software
Engineering Process Group (SEPG) aimed at improving the organisational
software development process while gaining research knowledge on how to
integrate agile software development and organisational SPI mechanisms. The
project level improvement workshops, i.e., Post-Iteration Workshops (PIW�s) at
project level, the SEPG meetings at organisational level and the role of the
researcher as a facilitator in both provided the researcher with an opportunity to
iteratively intervene, influence, support and take part in the defining and
planning of the actual process improvement actions and building of SPI
mechanisms along the way. Thus, the SPI processes within the case projects
were conducted in co-operation between the researchers and the software
developers, all of them being �mutually dependent on each other�s skills,
experiences, and competency� (Lau 1999, p. 154).

AR is not a single research method, but refers to a class of research approaches
(Baskerville 1999). Lau (1999) has identified four streams of AR: action
research (AR), participatory action research (PAR), action science (AS), and
action learning (AL). Unlike in traditional AR, the practitioners in PAR are
involved as both subjects and co-researchers and �solve problems themselves by
setting their own research agenda, collecting and analyzing the data, and
controlling overuse of the findings� (Lau 1999, p. 150). In this research,
however, the practitioners� focus was on solving the practical problems of their
daily software development work. The purpose of the metrics data collection and
analysis conducted by the software developers was thus also to provide SPI

 74

knowledge for practical use. The researcher was able to utilise the knowledge for
research purposes too. The emphasis of AS is on studying the �participants�
behaviours as theories-in-use versus their beliefs as espoused theories� (Lau
1999, p. 150). In this research, however, the focus was not so much on the social
behaviour of participants, but on how they put their knowledge and learning into
action. AL varies from the traditional AR in the sense that its participants
typically come from different situations and have been involved in different
activities and face different problems. Thus, the learning goal in AL is individual
rather than collective. In this research, however, the software developers worked
in a single workspace and aimed at collective learning to improve their common
working practices. Thus, in the AR categorisation of Lau, this research falls into
the category of traditional AR.

Various frameworks have been suggested for evaluating the quality of AR
studies. For example, Davison has defined a set of principles for canonical AR
(Davison et al. 2004), and Hult and Lennung propose a set of major AR
characteristics (Hult & Lennung 1980). A framework for evaluating AR studies
especially in the context of IS studies has been proposed by Lau (1999). In the
following sub-sections, the characteristics of this research are defined using
Lau�s AR framework and its four AR dimensions: 1) conceptual foundation, 2)
study design, 3) research process, and 4) role expectations. The goal is to
provide a definition of how AR was actually applied within the last five case
projects of this study. It should also be noted that, in the following sub-sections,
the criteria of each dimension is defined with reference to the respective parts of
this thesis where the issue is defined in more detail.

4.1.3.1 Conceptual Foundation of AR

The dimension of �conceptual foundation� is first defined to include the research
aim as well as the theoretical assumptions in order to provide the intellectual
framework for the research. Furthermore, the criteria of perspective/tradition
aims at defining the researcher�s philosophical stance while the stream of AR is
used to distinguish the intent of the study (Lau 1999). In Table 12, the
�conceptual foundations� of this research are defined using Lau�s framework.

 75

Table 12. Conceptual Foundations of AR in the Research.

Criteria Classification/Evaluation Criteria in this Research Further
Definition

Research aim
or question

Is the research aim or
question authentic and
practical in addressing a
practical problem in an
immediate situation?

� A new SPI method for conducting
process adaptation (SPI) among
agile software development teams

� A tentative model for integrating
traditional SPI of organisational
level and agile process adaptation
of software development teams

� Integrating the agile process
adaptation mechanisms as a part
of an agile specific deployment
framework (to support the
deployment of agile software
practices in organisations)

Papers II, III, V

Papers IV, VI

Paper VII

Assumptions

Is some form of theory,
theme or concept
included?

The underpinning of the research is
in the theories and concepts of SPI
and traditions of software
engineering.

Underlying
theories and
concepts are
defined in
section 2.

Perspective
/tradition

What is the adopted
investigative stance?

Interpretive investigative stance
Pragmatism as underlying
philosophy
Explanatory case study

Section 4.1
Section 4.1

Section 4.1.2

Stream

What AR type is used
(AR, PAR, AS or AL
streams) and is it
described consistently?

This research is defined to follow
the AR stream.

Section 4.1.3

From a theoretical perspective, the aim of this research is to build SPI methods
for agile software development teams and organisations applying and deploying
agile methodologies. From a practical viewpoint, the goal is to provide software
development teams and organisations with mechanisms for identifying and
resolving immediate problems faced both by software developers and software
development organisations, and for improving their (daily) software
development practices. Thus, the underlying concepts of this research can be
found in the theories of SPI and in both the traditional and agile software
engineering methodologies (defined in Section 2 of this thesis). The research
design of this study is presented in Section 4 along with the perspectives,
traditions, streams and methods adopted in the course of the research.

 76

4.1.3.2 Study Design of AR

The dimension of �study design� describes the methodological details of the
study (Lau 1999). In Table 13, the multiple criteria proposed by Lau for defining
AR �study design� are presented along with a description of their use within this
research.

Table 13. Study Design Dimension of AR within this Research.

Criteria Classification/Evaluation Criteria in this Research Further
Definition

The research contexts of this
research are defined

Section 4.2.1
Papers I, VII

The six case projects of the research
are defined

Section 4.2.2

Background

Does the background
information provide a
sufficient understanding of
the research context?
� organisation of research
� nature and extent of its

problems/needs

Various kinds of organisational
needs defined:
� Improvement of daily working

practices of software developers
� Improvement of organisational

software process
� Deployment of agile software

development methods

Section 4.1.4.2

Intended
change

What is the nature and
extent of planned change?

Details of the change were not
defined in advance, but the planning
and implementation of change were
done iteratively in co-operation
among the respective organisational
participants: researchers, software
developers, management, and SEPG.

Section 4.1.4.2

Site

Is the involvement of
site(s) and organisation
defined?

Six individual and consecutive case
projects were conducted in various
organisational settings: laboratory,
close-to-industrial, and industrial.

Sections 4.2.1,
4.2.2

 77

Criteria Classification/Evaluation Criteria in this Research Further

Definition
Who are the participants? The relevant stakeholders of the

research and their roles within the
SPI activities were defined.

Section 4.2.2

Participants

Are the participants
directly affected by the
problem and benefiting
from the intended changes
to be made to address that
problem or need?

� The project level SPI mechanisms
developed to address the
problems identified by the
software development teams
supported these teams directly in
adapting/improving their daily
working practices iteratively.

� The developed organisational SPI
mechanisms directly supported
the organisational improvement
of the organisational agile
software development process/the
organisational deployment of
agile practices

Papers II�VII

Multiple data sources and data
collection mechanisms were used
and defined.

Section 4.3

Data sources

Is the data credible,
dependable and
confirmable?

The validity of the research was
evaluated using Yin�s framework.

Section 4.1

Duration

Is there enough time for
problem diagnosis, action
intervention, and reflective
learning to take place?

The timeline of the research, the
schedule of the case projects and
also the number and length of the
project iterations were defined. The
research was pre-defined on a case-
to-case basis.

Section 4.1:
Figure 3
Section 4.2.2:
Table 19

Degree of
openness

Is the process conducted as
planned or will it evolve
over time?

The AR process was defined on a
case-to-case basis in an evolutionary
manner.

Section 4.1

Are the intended type,
level, and extent of access
to the organisation
defined?

The entry at the launching of each
project/duration and the schedule of
case projects were defined.
The access of the researcher was
arranged through the role of the
researcher as a facilitator of SPI
activities.
The occurrence of SPI activities was
defined for each case project.

Section 4.2.2:
Table 19

Access/exit

Is the exit point of the
study defined?

The role of the researcher as a
facilitator was pre-defined along
with the exit at the end of a pre-
defined project life-cycle.

Section 4.2.2

Presentation

Does the reporting provide
sufficient information for
judging its quality? What
is the reporting style?

The central results of the research
have been published in various
scientific forums and have also gone
through an appropriate review
process.

Section 4.5

 78

As illustrated in Table 13, the design of the research is defined throughout
section 4 of the thesis. As AR is regarded as one form of case study
(Cunningham 1997) the research design follows Yin�s categorisation of case
study stages (Yin 2003).

4.1.3.3 Research process of AR

The �research process� dimension is identified as the sequence of steps through
which AR is conducted (Lau 1999). The sequence of steps for conducting AR
makes it distinct from other research methods (Lau 1999). AR has been defined
to consist of one or more iterations of problem diagnosis, action interventions
and reflective learning (Lau 1999). Susman and Evered (1978) have also
proposed an iterative cycle of AR, including the steps of diagnosis, action
planning, action taking, evaluation, and specifying learning. In Table 14, the
criteria of the �research process� dimension are defined.

Table 14. Research Process Dimension within the Research.

Criteria Classification/
Evaluation Criteria in this Research Further

Definition

Problem
diagnosis

Are practical problems
or needs identified?

Practical problems of software
development iteratively identified
and used as a basis for SPI
activities.

Section 4.1.4.1
(Diagnosing)

Action
interventions

Are planned and
implemented actions
identified?

Planned and implemented SPI
actions iteratively identified (as a
part of the adopted and developed
SPI method)

Section 4.1.4.2
(Action planning)
Section 4.1.4.3
(Action taking)
Paper V

Reflective
learning

Are reflections
identified and explicit?

� SPI actions iteratively validated
among the case project teams

� SPI methods iteratively updated
� Results published throughout the

research in scientific forums

Section 4.1.4.4
(Evaluating),
Section 4.1.4.5
(Specifying
learning), Table 18

Papers II�VII
(Section 4.5)

Iteration

Is there an iterative
process planned as part
of the study?

Five case projects of AR
consisting of multiple iterations:
Case project II: 5 iterations of AR
Case project III: 5 iterations of AR
Case project IV: 5 iterations of AR
Case project V: 5 iterations of AR
Case project VI: 4 iterations of AR

Section 4.1.1

Section 4.2.2

General
Lessons

Are there general
lessons from the study?

General lessons derived and
published in scientific forums.

Papers II�VII
(Section 4.5)

 79

This research consists of five AR case projects, each of which can be regarded as
one cycle of AR. Furthermore, each case project embodies several iterations of
agile software development processes, each of which can also be considered a
cycle of AR. Thus, the steps of problem diagnosis, action intervention, and
reflective learning occurred iteratively during the individual case project as well
among the individual case studies. The two-level cycles of AR in this research
are defined in more detail in section 4.1.4 using the AR steps of Susman and
Evered (1978). Furthermore, the general lessons of this research have been
published in various scientific forums in order to submit the empirical evidence,
its analysis and conclusions for review and feedback.

4.1.3.4 Role Expectations of AR

Lau suggests the dimension of �role expectations� to clarify how the researcher
and other participants of the study are involved and what their capacities and
expectations are (Lau 1999). In Table 15, Lau�s criteria of role expectations in
AR are presented in the context of this research.

 80

Table 15. Role Expectations Dimension within the Research.

Criteria Classification/
Evaluation Criteria in this Research Further

Definition

Researcher
What is the
role of the
researcher?

Researcher in the role of a facilitator of SPI
activities at project and organisational levels.

Section 4.2.2,
Table 20

Participants

What is the
role of
participants?

Depending on the case project, the research
included various participants, of which the
software development teams were in a central
role. The participants and their roles in the
research are described in detail in section 4.2.2.

Section 4.2.2,
Table 20

Competency

What
improvement
in competency
is planned for
participants?

� The competency of software development
teams in iteratively self-improving their daily
working practices.

� The competency of organisational SPI
stakeholders in supporting the process
adaptation of agile software development
teams and learning in a bottom-up manner.

� The software developers identified the
improvement goals of their software
development iteratively

Ethics

What ethical
issues need to
be addressed?

� An open manner of reporting the problems
among the software development teams
enhanced in PIW�s.

� No traceability provided between negative
findings of software process and the origin
(an individual software developer) beyond a
PIW session/software development team.

� The confidentiality issues agreed upon.

As in an emergent form of AR (Lau 1999), the researcher was in a role of
facilitating the SPI activities of the case project teams. The various participants
of the different case projects are defined in more detail in section 4.2.2. In a
central role, however, were the software development teams iteratively
conducting the activities of problem diagnosis, action interventions, and
reflective learning, which were built on the mechanisms of the Iterative
Improvement Process of SPI (Paper V). Accordingly, they were iteratively
dealing with and addressing the practical problems of software development,
thus aiming at improving the organisational base process to better fit their
context specific needs. On the other hand, the organisational stakeholders were
adopting SPI mechanisms in order to support the project teams in their SPI
activities while they were also systematically dealing with the SPI knowledge of

 81

software development teams in order to improve the base process and practices.
Thus in the context of this research, competency refers to the ability of the
organisational stakeholders to improve the working practices and, as a result, to
increase the efficiency of the production of software and the satisfaction of
software developers in their daily working practices.

The ethical issues addressed within the research concerned, firstly, the non-
transparency between individual software developers and the resulting SPI
activities among software development teams. Secondly, the issue of
confidentiality was discussed and agreed upon among the research and customer
organisations of the research.

4.1.4 Five Cycles of Action Research

Susman and Evered (1978) have identified a cyclical and iterative process of AR
that consists of five steps: 1) diagnosing, 2) action planning, 3) action taking,
4) evaluating, and 5) specifying learning.

Figure 4. Susman and Evered�s Cyclical Process of AR (Susman & Evered 1978).

 82

The immediate client-system infrastructure (Figure 4) of this research can be
regarded as that of a software product being developed, but also as a software
development process that was collectively evolved by the software developers,
SEPG of the research organisation and the researchers. However, whereas the
software developers adapted (i.e., tailored) the underlying software development
process to fit their context specific needs in PIW�s, the SEPG meetings were
held to enhance long-term improvement of the base process (Mobile-D�)
(Abrahamsson et al. 2004, Ihme & Abrahamsson 2005).

In this research, two different levels of the AR cycle can be identified: 1) the
agile software development iterations within each of the case projects, and 2) the
six cycles of case projects conducted in the continuum of the research. The first
type of AR cycle involves the software developers and SEPG team members as
practitioners and the researcher as facilitator of the SPI meetings of the two
stakeholder groups. In fact, the AR cycles within a case project are run
concurrently with the cycles of the Iterative Improvement Process cycle (i.e., the
cycle of conducting PIW sessions). In the latter, the developers aim to adapt and
improve their daily working practices with the help of the facilitator (the
researcher acting as a facilitator), and the researcher gains knowledge for the
research purposes. The steps of the Iterative Improvement Process are defined in
detail in Paper V. Part of the AR cycles also included in the iterative
organisational SPI activities of the SEPG team that also involved the researcher
as a facilitator.

The second type of AR cycle involves the researcher�s activities to analyse data
from the previous case project(s) in order to further improve the SPI
mechanisms for the next project and, then, to evaluate the effects of the changes
afterwards. Each case project provided an AR loop in which the focus of
research could be readjusted based on the results of the previous iteration. The
short iterations of agile software development during the case projects also
provided an opportunity for the researcher to rapidly take and evaluate actions
concerning, for example, changes in the evolved SPI method in collaboration
with the software development teams and SEPG.

The central focus of this research � SPI both within project teams and at
organisational level, and the evolvement of the SPI mechanisms for project and
organisational purposes � involve the six central characteristics of AR identified

 83

by Susman and Evered (1978): 1) orientation towards creating a more desirable
future for people dealing with practical concerns, 2) collaborativeness between
the researcher and the client system, where the research process will benefit both
parties, 3) the focus on generating convenient procedures for communication and
problem-solving and its modification for the relevant environment, 4) generation
of theory grounded in action in cyclical process (Figure 4), where the theory
benefits the action and vice versa, 5) the re-examination and reformulation of the
theories and prescriptions in every new research situation, and 6) the realisation
that the events and relationships between people, for example, are functions of
each situation yet often invariant. Thus, it could be argued that the AR method
and the focus of this research represent an ideal match, as has also been
suggested more generally in IS research and AR (Avison et al. 1999).

In the following section, Susman and Evered�s (1978) AR steps are defined in
the context of this research.

4.1.4.1 Diagnosing

In the diagnosis of the problems and goals of improvement in this research, the
practice informed the research and vice versa, a unique characteristic of AR as
suggested by Avison et al. (1999). Two cycles can be identified in which the
activity of �defining of the problem� was conducted: between case projects and
iteratively during the project. First, by analysing the research data from the
finished and previous projects, the researcher was able to reconsider the focus of
the research while identifying weaknesses in the adopted SPI methods.
Secondly, the software development teams (in PIW�s) and the SEPG groups (in
SEPG meetings) together with the researcher (i.e., facilitator) iteratively defined
the problems and the possible solutions concerning both project specific and
organisational software development process. The improvements also concerned
the SPI mechanisms adopted within the project. In Table 16, the different
diagnostic activities, their occurrence, immediate target and also the
participatory actors and utilised inputs for the diagnosis are summarised.

 84

Table 16. Diagnosing Activities in the Case Projects.

Diagnosis During the Case Projects

Activity Occurrence Target of Improvement Actor(s) Input

PIW�s
(experience
collection
step)

4/4/4/4/3

Practice: Project specific
software development
process/effectiveness of the
software development/
motivation of software
developers
Research: Project level SPI
method in agile software
development

Development
Team,
Researcher,
i.e., facilitator

Experiences
Knowledge
Feedback
Metrics

SEPG
meetings 0/1/6/4/1

Practice: Organisational
software development
process/Organisational SPI
mechanisms
Research: Integrating SPI
method of agile project teams
and organisational SPI practices

SEPG team,
Researcher,
i.e. facilitator,
(software
developers)

PIW results
Postmortem results
Metrics
Experience
Knowledge

Diagnosis Between the Case Projects

Activity Occurrence Target of Improvement Actor(s) Input

Data
Analysis

5
(II�VI case
projects)

Research: Research
focus/Project level SPI method
and organisational SPI model
Practice: Base SPI method and
activities for future project and
SEPG team

Researcher PIW data
Postmortem results
Metrics
SEPG meeting data
Experience
Knowledge

During the five AR case projects, a total of 19 PIW�s were iteratively held
among the software development team with the researcher acting as a facilitator.
The field �occurrence� in Table 16 defines the number of PIW�s and other SPI
activities within the different AR case projects. The PIW�s were placed as the
first activity of each software development iteration. In practice, the goal of the
PIW�s was to involve the software developers in identifying the problems in
their daily working practices (experience collection step) in order to accomplish
improvements and, consequently, to increase the effectiveness of the software
development process and its appeal to the software developers. In the SPI

 85

processes, the knowledge and experience of the developers were in a central
role, while the metrics data was also utilised.

Between the case projects, the researcher analysed the data from the previous
and preceding projects. The goal was to diagnose � on a case-by-case basis � the
future direction of the research as well as to define the next versions of the
research outputs. From the viewpoint of practice, the diagnosis between the case
projects resulted in a revised SPI method to be adopted in the next project team,
and also enhanced organisational SPI mechanisms for the SEPG group.

4.1.4.2 Action Planning

The selection of alternative actions to be taken was in a clear continuum with the
activities of diagnosis (sub-section 4.1.4.1). Thus, the action planning was done
between case projects by the researcher and iteratively during the project in
collaboration with the software development teams (in PIW�s) and SEPG group
(in SEPG meetings) (Table 2). During the case projects, the planned actions
concerned both project and organisational level SPI activities. The implications
for practical project-level action planning focused on the adaptation of the
software development process adopted by the development team, also including
the SPI method itself as a part of the software development process. On the
organisational level, the action planning within the SEPG team aimed to
improve the underlying base process (i.e., Mobile-D�) based on the
improvement opportunities identified by the project team (in PIW�s and project
postmortems), measurement data and the process (improvement) knowledge of
SEPG team members.

Between the case projects, the action planning was concerned with the definition of
the research focus for the following case project. In addition, based on the diagnosis,
the action planning also focused on how the SPI method adopted in the previous
case project should be improved for the next project team, and how the
organisational SPI mechanisms should be readjusted for the following case project.

The overall action plan of the research had a dual goal: to provide added value
for both research and practice. From the research viewpoint, the goal was to gain
understanding and knowledge of SPI within the projects and organisations
conducting agile software development in order to build and further refine the

 86

existing SPI mechanisms in this specific context. In practice, the more
immediate goals were: 1) to improve the effectiveness of software development
in agile software development projects, 2) to improve the satisfaction of
software developers in their daily work, 3) to provide mechanisms to improve
the organisational agile software development process (Mobile-D�), and 4) to
support the organisation in deploying the agile software development process.

4.1.4.3 Action Taking

Baskerville (1999) defines the action-taking step as involving the collaboration
of researchers and practitioners in an active intervention, in which certain
changes are made. In this research, the action-taking during the software
development projects concerned the implementation of the process
improvements identified, agreed and defined in collaboration with the software
developers and the researcher. The action-taking occurred in the iterative cycles
of agile software development. As the improvement actions concerned the
working practices, the action-taking, logically, took place during the software
development activities. The same iterative cycles of action-taking were
conducted at the organisational level SEPG meetings (case projects III�VI),
where the organisational level SPI actions were identified. In Table 17, the
number of actions taken by the software development and SEPG teams of each
case project is presented.

Table 17. Actions Taken in the Case Projects.

Level of Action Case Project Number of Identified Actions Main Actor

I 16
II 56
III 33
IV 27
V 26
VI 24

Project Level

Total 182

Software
Development

Team

III 25
IV 57
V 30

Organisational Level

Total 112

SEPG

 87

In total, it was agreed that 182 actions would be conducted at project level
within the case project teams. This number includes the actions related to the
improvement of practice within the case projects and, thus, it does not include
the actions that were taken by the researcher on the SPI methods in between the
case projects. At project level, two types of actions could be identified:
1) actions directly related to SPI issues such as working procedures and tools of
software developers, and 2) actions related to other concerns of developers such
as acquisitions concerning the working environment. The SPI actions jointly
identified by the developers and the facilitator (i.e., researcher) also included
improvements directly-related to the SPI method itself as it was part of the
software development process. The project level actions were carried out by the
software development team, yet a proportion of the actions also required the
support or action-taking from other organisational stakeholders, such as the
support team.

At the organisational level, a total of 112 actions were taken by the SEPG. The
number includes data from case projects III�V during which the organisational
SPI methods were actively built and conducted. Furthermore, the data of the
organisational SPI activities of case project VI is excluded due to the different
role of the researcher in that context. The organisational action-taking
considered several issues that were identified largely by analysing the SPI
actions of the project teams. The organisational level improvements concerned,
for example, training, software development tools, data collection mechanisms,
the underlying software development process model (Mobile-D�), and support
of project teams in their SPI activities during the projects.

In AR, the role of an action researcher is defined as being active in discovering
improvements, as well as in controlling that the improvements are properly
applied (Chein et al. 1948). The actions taken during this research included, for
example, the building and evaluation of follow-up and validation mechanisms
for the project and organisational SPI methods in order to provide a means, for
both practice and research, to evaluate whether the actions were actually taken
and how successful they were (see Papers IV, V, and VI).

 88

4.1.4.4 Evaluating

In AR, once the actions are completed, the researchers and practitioners should
collaboratively evaluate the outcomes (Baskerville 1999). In the case studies, the
iterative cycles of agile software development provided an adequate setting for
evaluating the process improvement actions of software development teams. In
fact, the Iterative Improvement Process (Paper V) has been built to include an
activity of follow-up and evaluation (see Paper V), in which the software
developers and the facilitator systematically assess how effective the
improvements are and if they should be embedded in daily working procedures
or disregarded. These activities of follow-up and evaluation can be considered as
evaluating the implications of AR in practice, i.e., assessing whether the
software developers are provided with adequate support and mechanisms for
actually improving their software development process and whether the effects
are considered as positive.

On the other hand, the implications of AR for research had to be evaluated. In
this research, the active participation in the SPI activities provided the researcher
with immediate feedback from software developers and experience on whether
and how the SPI mechanisms needed to be modified. Thus, the researcher was
continuously and iteratively evaluating the SPI methods as well as the effects of
the changes made to them during the case projects (after each PIW and SEPG
meeting) and also between case projects based on the research data gained from
the project.

4.1.4.5 Specifying Learning

Baskerville (1999) considers �specifying learning� as an ongoing process, in
which three targets for disseminating the results knowledge gained in the AR
can be identified: 1) organisation of research, 2) preparation for further AR
intervention, and 3) scientific community. In the research, the specifying
learning activities were, indeed, conducted in an ongoing fashion and with
multiple targets. Firstly, from the viewpoint of the scientific community, the
research findings were published in various scientific forums (see more in
section 4.5) so as to report the results of the research in its different stages and to
gain feedback from the scientific community. From the viewpoint of further AR
intervention, the learning was also suggested by the researcher for use in

 89

readjusting the research focus especially between case projects. In this task, the
researcher needed to consider various alternatives for broadening and re-
adjusting the research focus based on the experiences and research data gained
form the previous project(s). As a result, a number of modifications to the
research focus can be identified (Figure 3). The evolution of the SPI
mechanisms, methods and techniques used during the case projects provides an
overview of the learning that occurred during the case projects (Table 18).

Table 18. Evolution of the SPI Mechanisms in the Case Projects.

Case
Project

Project Level: Iterative Improvement
Process Organisational Level: SEPG activities

I
• KJ method
• Flap-sheet of action points

-

II
• Action point document
• Systematic follow-up procedures
• More exact action points

-

III

• Action point template
• Quality team feedback in PIW�s
• Action points with responsibilities,

schedule, and request for external support
• Qualitative validation of process

improvements

• Establishment of be-weekly SEPG
meetings for systematic evaluation of
org. level action taking

• Support mechanisms for project team
SPI activities

IV
• Be-weekly stand-up PIW
• Quantitative validation of process

improvements

• Quantitative feedback for project
teams

V • No alterations in the method • Organisational metric set for
analysing project level SPI

VI • No be-weekly stand-up PIW�s • SEPG meeting at the end of the
project

Table 18 illustrates the evolution of the �specifying learning� activities
throughout the overall project. Analysis of the research data between the case
projects, and gathering direct feedback from the developers iteratively during the
project, revealed opportunities for building SPI mechanisms and activities at
both project and organisational levels. In Table 18, it can also be seen how the
need to alter especially the project level SPI mechanisms diminished towards the
end of the series of case projects.

 90

Furthermore, from the viewpoint of the research organisation, the SEPG team
analysed the learning of project teams in SEPG meetings in order to utilise it in
addressing the relevant organisational issues, e.g., content of training, the
organisational software development model and its description, software
development tools, and data collection mechanisms. From the viewpoint of
customer organisation, the learning was embedded in the end product being
developed, in its quality, content, and the efficiency of its development process.
Throughout the case projects, the customer was participating in the different
software development activities where the product was defined (e.g., iterative
planning) and evaluated (e.g., iterative customer testing). In case project VI, the
specification of learning also involved the evaluation of the pilot project in order
to specify how the Mobile-D� process model would fit in the overall
organisational context.

4.2 Research Setting

This research involves six case projects. A description of the research
environments (4.2.1) as well as the case projects and their organisation (4.2.2)
can be found in the following sub-sections.

4.2.1 Context of Research

The six case projects of this research were conducted in three different research
contexts, which could be characterised as: laboratory setting, semi-industrial
research setting and industrial research setting. The context in which both the
laboratory and semi-industrial research was conducted, i.e., the ENERGI
(Industry-Driven Experimental Software Engineering Initiative) research
context, has been defined in detail in Paper I. Similar research environments for
studies on agile software development have been, later on, proposed also
elsewhere (Back et al. 2005).

4.2.1.1 Laboratory Research Setting

A preliminary study on agile methods (Abrahamsson et al. 2002) conducted at
VTT revealed that, at the time of launching the research of this thesis, the

 91

empirical evidence on the actual benefits and suitability of agile methods in
different contexts was based largely on anecdotal evidence rather than on
scientific knowledge. The urgent need to empirically assess the applicability of
agile methods in a structured manner (Lindvall et al. 2002) was evident in order
to benefit both the research and industry. Thus, the ENERGI environment was
established at 2003 to further study, evolve, experiment, and empirically
evaluate the proposed agile methods prior to their launching in an industrial
context and employed in implementing real software products. In other words,
ENERGI was designed to provide an environment for conducting software
projects with both research and business objectives and to enhance the close
collaboration of research and industry. In ENERGI, the research organisation
provides the software development teams with the physical environment with
office-space, equipment, training, support and, most importantly, the software
development processes and methods. In return, the research organisation is
provided with the benefits of extensive and ongoing research throughout the
development process. On the other hand, the customer organisation is provided
with the experiences of novel software development methods in addition to the
actual software development product.

The first two case projects of ENERGI, however, were conducted in an
environment that could be characterised as a laboratory setting (Figure 5). In
other words, the end product was implemented for internal and research use
without any external customer organisation being involved. In consequence, the
internal customer of the research organisation was taking part in the
development activities. In addition, the software development team was formed
from university students in the final stages of their studies and inexperienced in
using agile software development methods. The team was working in an office-
space located in the facilities of a research organisation. The reason for
conducting the first case projects in such a controlled setting was to gain a high
degree of research control, which would allow the influence of certain variables,
such as business pressure and influence of external stakeholders, to be
eliminated. Thus, the aim was not so much to control the behavioural events or
to �sample over the variables that are being manipulated� (Wohlin et al. 2000,
p. 12) as in experimental research but rather to �sample from the variables
representing the typical situation� (Wohlin et al. 2000, p. 12). The AR team, on
the other hand, had an active role in training, supporting, and coaching the
software development teams throughout the case projects while conducting

 92

research. The researchers in the AR team were involved in the activities of
quality and support teams (Table 20) and they all had their own special focus
and field of know-how in the agile software development methods applied in
ENERGI projects. As a result, multiple master�s theses (e.g., Hanhineva 2004,
Hulkko 2004, Kyllönen 2005) along with other scientific publications (e.g.,
Abrahamsson 2003, Hulkko & Abrahamsson 2005, Korkala & Abrahamsson
2004, Koskela & Abrahamsson 2004, Kähkönen & Abrahamsson 2004) have
been published in the different areas of agile software development.

Research Organisation

AR Team

Customer

Management

Software Development Team

Figure 5. Laboratory Setting of Research.

4.2.1.2 Semi-Industrial Research Setting

In case projects III to V, the research was conducted in the semi-industrial
context of ENERGI (Figure 6).

 93

Research Organisation Customer Organisation

AR Team

Customer

Management
Management

Software Developers

Software Development Team

Figure 6. Semi-Industrial Research Setting.

While the software development was conducted in the premises of the research
organisation, the participation of, and collaboration with, the customer
organisation was extensive. Firstly, the customer organisation provided software
development teams with their experienced software developers who also
possessed valuable knowledge of the end product that was being developed for
the customer organisation. Furthermore, the customer organisation provided the
off-site customer for the case projects, who was actively participating in the
defined activities of the development team. The development was managed in
collaboration with the customer and research organisation. For more details,
refer to Table 20 and sub-section 4.2.2.

4.2.1.3 Industrial Context

In case project VI, the research and the SPI methods were transferred to an
industrial context (Figure 7). The customer organisation was interested in
exploring the opportunities of agile software development, firstly in a pilot
project. Thus, the Mobile-D� (Abrahamsson et al. 2004) process that was
developed within the five ENERGI case projects was adopted in the case project.
The reason for selecting Mobile-D� was its suitability regarding the mobile
product that was to be implemented and the availability of expertise regarding
the Mobile-D� process and its practices. The goal of the customer organisation
was to gain experiences concerning the software development process of the

 94

pilot project in developing an organisation specific agile process model
alongside the traditional process model.

Research Organisation Customer Organisation

AR Team

Customer

Management
Management

Software Development Team

Software Developers

Figure 7. Industrial Research Setting.

The case project was conducted in the premises of the customer organisation.
The software development team mainly consisted of the software developers of
the customer organisation while it was also strengthened with members of the
research organisation (i.e., AR team members and additional software
developers) (see sub-section 4.2.2). Thus, the AR team of the research
organisation was actively participating in the pilot project. Furthermore, the
management of the pilot project was conducted in close collaboration between
the research and customer organisations. The customer for the agile software
development project was naturally provided by the customer organisation.

4.2.2 Case Projects and Organisation

Table 19 provides an overview of the characteristics of the six case projects.

 95

Table 19. Characteristics of the Case Projects.

Characteristic Project I Project II Project III Project IV Project V Project VI

Context Laboratory Laboratory Semi-
Industrial

Semi-
Industrial

Semi-
Industrial Industrial

Product Intranet
Application

Mobile
Software

Mobile
Software

Mobile
Software

Mobile
Software

Mobile
Software

Iterations 6 6 6 5 (planned)
9 (actual) 5 5

Duration 9 weeks 9 weeks 9 weeks
9 weeks (p)

11 weeks (a)
8 weeks 8 weeks

Schedule 02�04/2003 10�12/2003 02�04/2004 05�07/2004 08�09/2004 02�04/2005

Development
Effort in person
months (pm)

7.5 pm 10 pm 5.5 pm 5.2 (total
9.1) pm 7.1 pm 7.2 pm

Project Level
SPI activities 5 PIW�s 4 PIW�s

1 PMA
4 PIW�s
1 PMA

4 PIW�s
1 PMA

4 PIW�s
1 PMA

3 PIW�s
1 PMA

Organisational
SPI activities - - 1 SEPG

meeting
6 SEPG
meetings

4 SEPG
meetings

1 SEPG
meeting

Process XP Mobile-D�
0.1

Mobile-D�
0.2

Mobile-D�
0.3

Mobile-D�
0.4

Mobile-D�
0.4

The two first projects were conducted as laboratory experiments, case projects
III�V as semi-industrial case projects, and the last project VI as an industrial
case project (see sub-section 4.2.1.1). All the projects, except for the first one,
focused on the development of mobile software for various mobile devices.
Thus, all the case projects produced a real software product, even though the
outputs of the first two projects were mainly built for research purposes. All the
projects adopted an agile software development process model with several short
iterations (Table 19). The software development process was incrementally built
during and in between the case projects and evolved from XP to various versions
of the Mobile-D� process. The improvement of the underlying software
development process model was conducted on two levels: at project level (i.e.,
iteratively within the development teams) and, in the four last projects, at
organisational level. The methods of SPI were incrementally developed during
this research and, altogether, 24 PIW�s, 5 project postmortems, and 12 SEPG
meetings were held in the course of this study (Table 19).

 96

The focus of the PIW�s was to provide the project team with mechanisms to
adapt the base process of software development iteratively throughout the
project. The main focus of the SEPG meetings was to improve the specific agile
software development process of the given research context. In the SPI
activities, metrics data and the process expertise of SEPG were utilised, while
the process knowledge of the development teams (PIW�s and PMA�s) was also
given a central role.

In the case projects, the SPI activities involved various stakeholder groups:
software engineering process groups (SEPG) and support teams consisting of
AR team members, software development teams, and customers, typically of
agile software development (Beck & Andres 2004). The composition and the
goals of the different stakeholder groups varied between the different projects
(Table 20).

Table 20. SPI Organisation of Case Projects.

Case
Project SEPG Support Team Project Team Customer

I -
Management (1)

AR team (4)
4

Research

On-Site

II -
Management (1)

AR team (4)
~5.5

Research

Off-Site

III
Support team

Facilitator
AR team (7) 4

Industrial

Off-Site

IV
Support team

Facilitator

AR team

(7+2 external)
4,5

(originally 6)
Industrial,

Off-Site

V
Support team

Facilitator

AR team

(8 + 2 external)
4�6

Industrial,

Off-Site

VI

Management (1)

Facilitator (1)

Architect (1)

Development Team

(2 internal + 3 external)
Customer (1)

QE team (3)

Management (1)

External AR team (2)
(as project manager

and developer)

5
(+ 3 external QE team)

Industrial,

In-house,

Off-Site

 97

The central tasks of the support team was to provide training for the software
developers concerning the agile software development process that was adopted
and to coach and support the project team throughout the project in the process,
tools, methods, and the infrastructure of the project. Furthermore, the support
team was responsible for providing the mechanisms for the metrics data
collection and supporting the project level SPI activities among the software
development team. Thus, one of the support team members had the role of a
facilitator and participated and conducted the PIW�s and PMA�s among the
development teams. The support team consisted of the researchers that formed
an AR team in which everyone had specific expertise in agile software
development and a specific focus of research. In addition, the last case project
team was strengthened with a Project Manager and two software developers
from the research organisation. The Project Manager and one of the software
developers were also members of the agile AR team of the research organisation.
Thanks to their previous experience and knowledge of agile methods, tools, and
procedures, they were able to provide timely support for the rest of the project
team, who had little experience of agile software development. A management
representative also participated in some of the informal meetings of the support
team, which were held during the first two case projects. Furthermore, in the last
case project, the management provided continuous organisational support for the
development team in deploying agile software development methods.

The project teams were in a central role regarding the SPI activities throughout
the case projects. For one, they adopted the Iterative Improvement Process
(Paper V) in which they iteratively conducted PIW�s and PMA�s together with
the facilitator in order to systematically adapt their base process and to provide
the organisational level with SPI requests and opportunities (Paper VI). In case
project VI, the project team also included an external quality engineering team,
which was responsible for the testing activities of software development (except
for unit testing).

The SEPG was established at the end of case project III, once the organisational
SPI activities had been established. In case projects III-V, the researcher took the
role of a facilitator in the organisational SPI meetings. The rest of the SEPG
team included support team members who had both experience and knowledge
of certain aspects of the agile software methods used in the case projects. In
addition, two external researchers participated in the SEPG team meetings in

 98

case projects IV�V. In case project VI, the SEPG meeting was held at the end of
the pilot project in order to improve the organisational agile software
development process. In this SPI activity, the meeting was facilitated by the
management, while the role of the external PIW facilitator was to provide SPI
knowledge when needed. In addition, other stakeholders of the pilot project
participated in the SEPG meetings (Table 20).

In all the case projects, the customer was in a central role by iteratively
evaluating the quality of the end product. Occasionally, the customers also
participated in the PIW�s in order to provide their experience regarding, mainly,
the product quality aspect rather than the software development process itself.
Furthermore, in case project VII, the customer and the management took part in
the PMA activity at the end of the project.

In the following section, the contents of the case projects are discussed in more
detail.

4.2.2.1 Case Project I: eXpert

The first case project of this thesis was also the first project of the ENERGI
initiative. Thus, at that time the research into agile methods in practice was in its
early stages and also new to the researchers involved. For this reason, a decision
was made to first start by building a software product for an internal customer
and mainly for research purposes. In the first case project, the research focused
on building an intranet application for managing research data. Consequently,
the first project team was fully formed from experienced university students. It
was also decided that the starting point would be to employ the XP (Beck 2000)
method and its practices as a base process for the project. One reason for
selecting XP was the fact that, at the time, XP was one of the most documented
agile methodologies (Abrahamsson et al. 2002) and provided specific
descriptions for the agile software development process.

The timeframe as well as the cost of the project were fixed prior to the project, yet
the requirements of the product were flexible and subject to change throughout the
project. The duration of the eXpert project was set at eight weeks and it took place
between February and April 2003 (Table 19). In all, six software development
iterations were conducted in the project. The first three iterations lasted two weeks

 99

and the last three iterations one week each. The last iteration was concerned with
system-testing and final fixing of the defects found in the product.

The software development team of eXpert consisted of four developers, all of
whom were 5�6th year university students with 1�4 years of industrial
experience in software development. None of the team members had any earlier
experience in using agile methods. The project team was working fixed office
hours (24 hours a week) in an open-office space throughout the project. In the
project, an on-site customer was present in the open-office space at an average
of 83% of the development time (Koskela & Abrahamsson 2004).

4.2.2.2 Case Project II: zOmbie

The second case project on the ENERGI case projects focused on the
development of mobile software. This was yet another new territory for the
researchers, for which reason it was essential to have a high degree of control
and low degree of business pressure by implementing the end product for an
internal customer. The goal of the software development team was to implement
a service enabling mobile stock exchange.

Project II employed the first version of Mobile-D� software development
process. It was evolved on the practices of XP, which were enhanced during the
project and thereafter to better suit the mobile software development context.
From this project onwards, the central SPI goal of the ENERGI organisation was
to develop an agile software development process model especially for mobile
software development.

The timeframe as well as the cost of the project were fixed prior to the project,
while the requirements of the product were flexible and bound to change
throughout the project. The duration of the zOmbie project was set at nine weeks
and it took place between October and December 2003 (Table 19). In all, six
software development iterations were conducted in the project. The first iteration
lasted one week, the second, third and fourth two weeks, and the last two
iterations one week each. The last iteration was the system testing and fixing
phase to detect and fix the defects in the product.

 100

The project team consisted of five experienced university students (i.e., 5�6th
year students in information processing science) and one software developer
with several years of industrial experience, who also had a research interest in
the project. He was also acting as a valuable project manager and an on-site
coach for the project team due to his experience with both agile software
development and the Mobile-D� process, both of which were new to the rest of
the development team. The project team was working 24-hour weeks in an open-
office space.

4.2.2.3 Case Project III: bAmbie

In the third case project, the software product development focused on
implementing a mobile software product as an extension to an existing software
product of the customer organisation. Thus, the business pressure and the quality
requirements for the end product were high. The software development process
was conducted with the second version of Mobile-D� and involved an active
off-site customer from the customer organisation who was participating in the
different activities of the development process, such as the planning of iterations.

The timeframe as well as the cost of the project were fixed prior to the project,
while the requirements of the product where flexible and bound to change
throughout the project. The duration of the bAmbie project was set at nine weeks
and it took place between February and April 2004 (Table 19). The resulting end
product consisted of 3800 (logical) lines of code implemented in a total of 5.5
person months. In all, six software development iterations were conducted in the
project. The first iteration lasted one week, the second, third and fourth for two
weeks each, and the last two iterations one week each. The last iteration was the
system testing and fixing phase to detect and fix the defects in the product.

The project team consisted of an experienced software developer from the
customer organisation as well as three experienced university students (i.e., 5�6th
year students of information processing science). Furthermore, an off-site
customer from the customer organisation was iteratively participating in certain
activities of the software development, such as the planning game (Beck 1999).
The project team worked 24-hour weeks in an open-office space.

 101

4.2.2.4 Case Project IV: uniCorn

The focus of the uniCorn project was to produce a mobile software product for an
external customer organisation as an extension of their existing software product.
The business pressure, time constraints and quality requirements for the end
product were, once again, high. The timeframe as well as the cost of the project
were fixed prior to the project and the requirements of the product were expected
to change throughout the project. Originally, the duration of the bAmbie project
was set at nine weeks and it took place between May and July 2004 (Table 19).
However, the uniCorn project faced personnel problems during the two first
iterations, which resulted in changes in the team structure as well as in the duration
and total effort of the project and the composition of the iterations. As a result, the
planned project of nine weeks and five iterations (four two-week iterations and a
one-week system test and fix iteration) evolved into a total of nine iterations and
11 weeks. After the first two iterations, the project was re-launched. The first two
iterations consisted of 3.9 man months of effort and the seven one-week iterations
consisted of 5.2 man months. In total, the effort of the software developers in
uniCorn was 9.1 person months (see Table 19).

Originally, the project team consisted of an experienced software developer from
the customer organisation as well as four experienced software developers, who
were taking a one-year Symbian OS intensive course for professionals and doing
their half-year training in ENERGI. The project team worked 24-hour weeks in
an open-office space. The customer organisation, including the off-site customer
and the software developer, was the same as in project III. Thus, one of the team
members had earlier experience of Mobile-D�, agile software development and
of the end product. At the end of the second iteration, the size of the project team
diminished from six to four software developers. However, from the third
iteration onwards, an experienced Project Manager (the Project Manager in case
project II and software developer in case project I) joined the team, on a part-
time basis (see Table 19).

4.2.2.5 Case Project V: Bubble

The focus of the Bubble project was to produce a mobile software product for an
external customer organisation. The timeframe as well as the cost of the project

 102

were fixed prior to the project. The duration of the Bubble project was eight
weeks and five iterations (1 x 1 weeks 3 x 2 weeks, and 1 x 1 weeks) and it took
place between August and September 2004 (Table 19). The project was
conducted in a total of 7.1 person months. The size of the project team varied
between four to six developers for the different iterations, including an
experienced project team from the uniCorn project, which was complemented
with an external TDD expert. The customer organisation also provided an off-
site customer for the project.

4.2.2.6 Case Project VI: Phantom

In the Phantom project, the entire process model of Mobile-D� � as evolved
during the incipient case projects of ENERGI � was transferred for piloting in an
industrial context. Accordingly, the Iterative Improvement Process (Paper V)
was adopted. The researcher took part in the project in the role of facilitator in
the project level SPI activities.

The project was conducted in the premises of the case organisation and focused
on the development of a mobile security product. The timeframe as well as the
cost of the project were fixed prior to the project. Some central requirements as
well as the architectural structure of the product were fixed beforehand and the
product evolved on an existing prototype. The duration of project VI was set at
eight weeks and it took place between February and April 2005 (Table 19). A
total of five iterations were conducted with 7.2 man months of software
development effort for the project team.

The project team consisted of two experienced software developers from the
case organisation and three software developers from the research organisation,
who were members of the AR team of ENERGI. The latter were included to
provide knowledge and experience on the adopted tools and practices of Mobile-
D�. An in-house, on-site customer was available in the same premises yet not
in the same open office-space and can, thus, be regarded as an off-site customer.
The project team worked 24-hour weeks in an open-office space. The case
organisation also included active management support and decision-making
concerning the piloting, along with an external quality assurance team and an
architect (Table 19). The ENERGI organisation provided the members of the
support team (i.e., AR team) in the case project. The researcher was acting as an

 103

external facilitator, who was responsible for conducting the SPI related activities
and reporting the outputs iteratively to the management. The support team, as in
ENERGI, was not available in the case organisation but an SEPG meeting was
held at the end of the project. It comprised the developers participating in project
VI, the management, and the on-site customer. The central goal of the group was
to contribute to an organisation-specific agile software development process
(paper VII). During the project, the facilitator provided the organisational
management with iterative action point reports on how the project team was
adapting their processes and why. This was done to enable the involvement of
the management in the SPI activities during the project.

4.3 Collection of the Empirical Evidence

According to Yin (Yin 2003), �the use of multiple sources of evidence in case
studies allows an investigator to address a broader range of historical, attitudinal,
and behavioural issues� (Yin 2003, p. 98). Furthermore, the multiple sources of
empirical evidence provide an opportunity for triangulation in order to make any
finding or conclusion of the study more convincing and accurate (Yin 2003). Yin
identifies six sources of evidence: documentation, archival records, interviews,
direct-observation, participant-observation, and physical artefacts (Yin 2003).
The multiple sources of evidence (Table 21) of this research include both
qualitative and quantitative research data in various forms of documentation,
archival records, interviews, and participant-observation.

During the research, 39 SPI related workshops were conducted within the
project teams and for organisational purposes. This formed the main source of
empirical evidence in this research consisting of, for example, experience notes
from software developers and individual SPI actions (Table 21). Furthermore,
the format as well as the content of the action point lists evolved throughout the
research in line with the evolution of the applied SPI method. In Table 21, the
number of data sources is defined as appropriate, regarding the resulting case
documents.

 104

Table 21. Collection of empirical material from the case projects.

Case Project Source of Evidence Data type Origin
1 2 3 4 5 6

Qualitative: personal experiences
from previous iteration

Software
Developers
/PIW�s

10 8 8 8 8 6

Flap-sheets Qualitative: Personal experiences
and lessons learned from entire
project

Software
Developers
/PIW�s

2 2 2 2 4

Project level
SPI action
point lists

Qualitative and quantitative:
(Action points, responsibilities2,
follow-up1, and qualitative
validation2

Software
Developers
/PIW�s 5 41 42 4 4 3

Spread sheets
Quantitative validation data of
SPI actions (analysed metrics)

Software
Developers
/PIW�s

 x x x

Spread
sheet1/
TaskMaster
tool2

Quantitative: Time Software
Developers x1 x1 x2 x2 x2 x2

Spread sheets Qualitative and quantitative:
Defect data

Software
Developers x x x x x

Qualitative and quantitative:
improvement action points,
responsibilities, follow-up, and
qualitative validation during and
between projects

SEPG
meetings

 1 6 4 0

Documen
tation

SEPG action
point lists

Qualitative: Feedback to project
team

SEPG
meetings x x x

Survey

Qualitative: Feedback on project
level SPI activities

Software
developers,
customer,
management

 x

Developers�
diaries

Qualitative: Developers� notes Software
Developers 4 5 4 5

Archival
Records

LOC counter Quantitative: Logical size of end
product

Software
Developers x x x x x x

Final
interviews

Qualitative: Developers
perceptions and experiences

Software
Developers x x x x x x Inter-

views Scientific
publication

Qualitative: Project team
participation in Paper I

Software
Developers 1

Field notes Qualitative: participating project
level SPI workshops

Researcher 1

Field notes Qualitative: facilitating project
level SPI workshops

Researcher 4 5 5 5 4

Field notes Qualitative: participating SEPG
meetings

Researcher 1

Partici-
pant
Obser-
vation

Field notes Qualitative: facilitating SEPG
meetings

Researcher 1 6 4

 105

In this research the data was collected from multiple sources using multiple data
collection techniques including observation, collection of documentary evidence,
focus group interviews (Morgan 1984, 1988, Patton 2002) and surveys. The
multiple data sources were used within each of the case projects and the
corresponding evidence was also collected from all the case projects of this
research when possible, as illustrated in Table 21.

The SPI activities within the case projects as well as at organisational level
provided qualitative output in the form of action point lists and flip chart -sheets
with experience notes from the software developers, which were grouped by
applying the KJ method (Scupin 1997). The first two project teams also
collected time, size, and defect data in spread sheets, whereas the last four
projects adopted a database tool (i.e., TaskMaster (Kyllönen 2005)) for the
metrics data collection. The extensive data collection enabled quantitative
validation of various SPI actions of the project teams and added the analysed
metrics sheets, as well as the interpretations of the project teams in the selection
of empirical research material. An LOC counter was used to systematically
monitor the implementation of logical code lines in a quantitative manner. After
each ENERGI project a final interview was held to record the perceptions and
experiences of the software developers. The taped interviews were then
transcribed for analysis. In project I, the project team also participated in the
writing process of paper II, by collectively documenting their perceptions of the
iterative team reflections that had been held. Furthermore, the author also took
field notes throughout the case projects while participating in different SPI
activities of the project team.

4.4 Storing and Analysing the Empirical Evidence

Yin (2003) addresses the lack of a formal database as a major shortcoming of
most case studies and argues for its importance in constructing validity and
reliability of the empirical evidence (Yin 2003). In the course of this study, a
database was established in which the empirical material of the study was stored
and made available for independent inspection, as suggested by Yin (2003).
Figure 8 provides an overview of the structure, the contents, and the
relationships between the data items stored in the database.

 106

Figure 8. Empirical SPI evidence in Database Format.

The database supported a systematic classification of the individual experiences
of the software developers and that of each of the resulting SPI actions in a
manner that also would assure their linkage to each other and enable retrieval
and analysis of the data in an effective manner. Thus, as suggested by
Baskerville (1999), it was necessary to carry out a qualitative interpretation of
the data through mapping, indexing, and scaling in order to enable any
quantitative analysis. Other empirical evidence, such as metrics data collected
and analysed in the case projects, interview material, field notes and survey
results were stored in the same physical location in an appropriate format.

Following Yin�s categorisation of strategies for analysing case study evidence
(2003), this study falls into the category of developing a case description.

 107

Although the objective of this research was not to be a descriptive one, the
approach helped to identify the appropriate links and causalities in the empirical
evidence, as suggested by Yin (2003). Furthermore, the descriptive insight
provided in the empirical SPI material made it possible to tabulate the
descriptive elements in a database form that also enabled its quantitative analysis
(Yin 2003). The systematic transcription of the action point lists after each SPI
session provided the researcher with an opportunity to simultaneously �play with
the data�, which is identified by Yin (2003) as a fruitful activity for generating a
general strategy for data manipulation. As a result, the data items of SPI-related
evidence and their relations were identified and it was realised that the extent,
causality and the complexity of the available SPI-related research data would
require effective analytic manipulation in some form or another to enable its
management and analysis. The creation of a matrix placing the evidence within
its categories, as suggested by Miles and Huberman (1994), was regarded as one
way of manipulating the research evidence.

Yin�s (2003) category of analysis techniques includes cross-case synthesis,
which was applied throughout the multiple-case study of this research. Yin
suggests that �cross-case synthesis can be performed whether the individual case
studies have previously been conducted as independent research studies
(authored by different persons) or as a predesigned part of the same study� (Yin
2003, p. 133) and if, at least, two cases are available for analysis. In connection
with this study, the results of the analysis were published in scientific forums.
Table 22 illustrates how the results of different publications were derived from
both individual and cross-case analysis. As the study proceeded, it was possible
to strengthen the findings by including an analysis of multiple case projects to
draw cross-case conclusions on the current research focus.

Table 22. Focus of Papers.

Paper Focus Case Projects of Analysis

I Research Context -
II Project Level SPI Activities I
III Project Level SPI Activities I�II
IV Integration of Project and Organisational SPI I�IV
V Project Level SPI method I�V
VI Integration of Project and Organisational SPI I�V
VII Deployment of Agile Methodologies VI

 108

4.5 Reporting the Results of Research

�Reporting a case study means bringing its results and findings to closure� (Yin
2003, p. 141). Yin (2003) suggests that some of the results should be composed
early rather than waiting till the end of the data analysis process. In this research,
seven scientific papers were published throughout the research process (Figure
9) to gain feedback continuously from the scientific community and to ensure
the right orientation of the research. Thus, despite the written form of reporting
the results, papers I, II, III, IV, and VII were also orally presented by the author
in the corresponding scientific conferences.

1.3.2002 1.5.2006

1.1.2003 1.1.2004 1.1.2005 1.1.2006

3.2002 - 9.2002
Literature Study

2.2003 - 4.2003
Case I

2.2004 - 4.2004
Case III 5.2004 - 7.2004

Case IV

10.2003 - 12.2003
Case II

8.2004 - 9.2004
Case V

1.2.2005 - 10.4.2005
Case VI

Paper
I
Paper

II
Paper

III

Paper
IV

Paper
VI &
VII

Paper V
(Accepted)

Figure 9. Publishing Process of the Research.

For all the papers, the publication forums have been carefully selected. The
appropriate review process was one of the major requirements for the selection
of the forums. Furthermore, the compatibility of the papers with the focus of the
scientific publication forums was carefully considered prior to submitting each
paper. One of the influencing factors was also the kind of audience that was
regarded as important from the viewpoint of appropriate feedback. For instance,
an early paper published on SPI in agile software development (paper I) was
targeted at practitioners of agile software development (XP 2004), whereas
Paper IV was submitted at LSO 2005, where experts of organisational SPI,
addressed in the paper, were gathered.

 109

Table 22 illustrates how the focus of the papers was defined on the basis of the
increased understanding and readjusted focus of research. The seven papers of
this research compose a continuum, where the results of the previous cycle of
analysis are directing the focus of the research. In the following sub-sections, the
focus and central conclusions of each paper are defined in more detail.

4.5.1 Paper I

Paper I introduces the context of the research that was applied in the first five
case projects of this thesis, i.e., ENERGI. In the paper, a new concept of
studying agile software development in close-to-industrial settings is suggested.
From the viewpoint of this research, it was considered very important to gain
acceptance from the scientific community in the form of positive feedback for
applying such a research approach.

In paper I, there is a discussion on how the proposed research approach is
constructed on the strengths of both the case study and experimentation research
approaches. The paper provides a context for conducting research-oriented
software development in a way that will benefit both research and industry.

The author of this thesis is the principal author of the paper and is the main
contributor in documenting the novel research context that was evolved and
applied at VTT. Professor Pekka Abrahamsson has had a central role in
innovating and establishing the ENERGI research context. The ENERGI context
is further discussed in section 4.2.1.

4.5.2 Paper II

In paper II, the focus is on the project-level process-adaptation mechanisms
within agile software development teams. The researcher is the first and main
author of the paper. The project team members, however, have contributed to the
paper by writing their perceptions and, naturally, by participating in the SPI
activities throughout the project. In Paper II, the research data from case project
I was analysed in order to provide empirical evidence on process adaptation
within the agile project team, by combining elements from both Cockburn�s

 110

team reflection workshop (2002) and the lightweight postmortem review
technique suggested by Dingsøyr and Hanssen (2002).

From the viewpoint of the SPI method used, one central finding of the analysis
was that the process adaptation method did not provide a means by which to
evaluate the effects of the adaptation on, for example, the efficiency of the
development or quality of the product. The major deficiency identified was the
lack of follow-up and validation mechanisms in the current process adaptation
methods. Essentially, validation has been identified as one of the critical success
factors of SPI (Komi-Sirviö 2004). Another important finding of the study was
that the adopted techniques as well as the SPI ideologies of agile software
development failed to address the learning of project teams across projects rather
than merely focusing on improving the performance within individual project
teams.

In general, one central finding in Paper II was the positive attitude and
willingness of the software developers to take part in the process adaptation
activities. This was regarded as an important finding, as both the lack of
participation and commitment can be seen as major failure factors in traditional
SPI initiatives (Abrahamsson 2002, Komi-Sirviö 2004). The research data from
case project I implies that such positive perceptions are caused by the immediate
visibility of the process improvements for the developers as well as by the
possibility to influence the daily working practices in a specific way.

4.5.3 Paper III

The focus of paper III is on the project-level process-adaptation activities among
the agile software development teams. In paper III, the author is the main and
sole contributor.

In paper III, the conclusions and empirical research data from the first case
project are compared with case project II in order to find correlations and
deviations between the findings. The quantitative and qualitative data again
suggest that, among agile software development project teams, process
adaptation is regarded by the developers as a specific way to improve and adapt
agile software processes during the iterative cycles of software development.

 111

Thus, the findings of Paper III suggest that process adaptation should be
regarded as a useful part of agile software development projects, especially if the
existing methods are supplemented by follow-up and validation of process
improvements. The findings in case project III reinforce the findings of case
project II, regarding the positive effects of iterative SPI workshops on the
satisfaction and learning of software developers in their daily working practices.
However, in Paper III it became clear that measurement data for validating the
process improvements should be considered to provide a means to evaluate the
effects of the change, as suggested in (Beck 1999). It is also suggested that the
existing techniques fail to address the integration of the extensive learning of the
project teams in organisational SPI activities.

4.5.4 Paper IV

Based on the findings of case projects I and II reported in papers II and III, paper
IV focuses on defining mechanisms to integrate agile adaptation of project teams
in a larger organisational SPI context. Accordingly, the focus of case projects III,
IV, and V increasingly aim to provide solutions for such collaboration between
agile software development teams and organisational SPI stakeholders.

Paper IV, despite being a short workshop paper, can be regarded as an important
publication, where the central issues for improving the existing iterative SPI
workshop techniques are suggested, as they were encountered and implemented in
the first four case projects of the research. The means for a systematic follow-up
and validation of process improvements as well as a structured documentation on
relevant information of SPI actions and their results, are proposed in order to link
the team-centred SPI within agile software development with the concepts of
organisational learning and organisational SPI.

In paper IV, the author is the main and sole contributor. In consequence of the
paper, the author was also invited to give a panel statement and to participate in
the panel discussion at the LSO 2005 to discuss the topic of �Spreading software
engineering experience through communities of practice and experience
packaging�. This was an important forum for the researcher in terms of gaining
direct feedback on the results of the research from the specialists of the field.

 112

4.5.5 Paper V

In Paper V, which was a journal paper, an Iterative Improvement Process is
proposed. The paper includes the empirical evidence and analysis of the first five
case projects. This paper represents the culmination of the project level SPI
focus of this study. While the Iterative Improvement Process aims at providing
an SPI method to be used in an iterative improvement and adaptation of
individual agile software development project teams, it also aims at providing
clear links to enable the integration of project level improvement activities and
organisational SPI. In addition, the evidence from the case projects indicate the
capability and willingness of agile software development teams to improve their
development processes with small and simple, yet effective and visible
improvements during the projects. However, it is also proposed that systematic
SPI mechanisms and organisational support are of central importance in iterative
improvement in agile software development teams.

4.5.6 Paper VI

In Paper VI, as in paper IV, the focus is on providing a tentative model for
integrating the adaptation activities of agile software development and the
traditional activities of organisational SPI stakeholders to enable a mutually
beneficial existence of the two. In Paper VI, the empirical results from a
longitudinal case study over five software development projects (case projects I�
V) are presented to support the integration of agile software development and
organisational SPI. The study reveals the great importance of close collaboration
between the organisational and project levels throughout the project. The
suggested SPI model identifies the organisational and project level SPI activities,
the relevant stakeholders, and identifies and defines the activities needed to
enhance SPI within agile projects and at an organisational level, these activities
include constant collaboration, support, continuous monitoring and feedback,
facilitation, and packaging of process knowledge.

In paper VI the researcher in this thesis is the first author and the main
contributor.

 113

4.5.7 Paper VII

In paper VII of this thesis, a framework for deploying agile practices and
processes in software development organisations is proposed. The framework
was designed as it became evident that software development organisations were
increasingly interested in adopting agile processes and practices, while lacking
procedures and methods for supporting a systematic selection and deployment of
new agile practices, and tailoring them to suit the organisational context. In the
paper, the central results of the earlier research of this thesis (such as the
Iterative Improvement Process) are integrated in the process of deploying agile
practices. Thus, in paper VII, the application of the iterative improvement in an
industrial context (i.e., case project VI) is reported. It illustrates how the method
can be used in an organisation when adopting and adapting agile practices and
providing validated feedback for agile assessments.

The author of this thesis is the first author of paper VII jointly with Mrs. Minna
Pikkarainen. The two researchers designed and reported the agile deployment
framework in close co-operation and equally sharing the main contribution to the
paper. The parts of the paper which deal with agile assessments were mainly
provided by Minna Pikkarainen, whereas the author of this thesis has been
responsible for designing and reporting the Iterative Improvement Process
related issues in the paper. The author of this thesis has also conducted the
iterative improvement sessions (i.e., PIW�s) and the related research in the case
organisation. Mr. Jari Still has been managing the SPI activities in the case
organisation and, thus, has had an important role in conducting different agile
deployment activities in the case organisation.

4.6 Summary

The research is based on empirical evidence from six case projects that were
conducted within a period of over two years, between February 2003 and April
2005. In addition, a literature review was conducted before the case study
sessions to provide a theoretical basis for the research. Various research methods
were used during the study and seven main stages of the research can be
identified within the evolution of this research: the literature review, the case
study (case project I), and five cycles of AR (case projects II�VI).

 114

The different stages form a continuum in which the focus of research was
continuously adjusted based on the results of the previous stages. The first two
case projects, and, consequently, papers II and III, and V, focus on process
adaptation activities among agile software development teams. From project III
onwards, the research also included the organisational SPI aspect and its
integration into the process adaptation activities of software development teams.
The results were published in Papers IV and VI. In Paper I, the context of the
research in case projects I�V is defined. In addition, Paper VII proposes an agile
deployment framework and suggests how the process adaptation method built
during this research can be implemented as a useful part in deploying agile
software development methodologies in software organisations.

 115

5. Evaluation of the Research

In this section, the different issues addressed by this research are evaluated.
First, in sub-section 5.1, describes how the selected research methods were
applied in the research. In sub-section 5.2, the results of the research are
evaluated from the viewpoints of theory (5.2.1) and practice (5.2.2).

5.1 Validity of Research

In all the six case projects of this research, the case study method was applied. In
addition, the last five case projects were conducted as AR case studies. The
quality of any empirical social research, including case studies, can be evaluated
by four tests: construct validity, internal validity, external validity, and reliability
(Yin 2003). Furthermore, Yin has suggested (2003) various tactics for �dealing
with these four tests when doing case studies� (Yin 2003, p. 34). In Table 23, the
four tests and the tactics recommended by Yin are presented in grey sections.
The white sections of Table 23 summarise how each of the recommended tests
and tactics were accomplished in the case projects of this study and in which
part of the thesis the tactics are reported in more detail.

In this research, the construct of validity was ensured by multiple sources of
evidence including four of six identified data sources by Yin (2003):
documentation, archival records, interviews and participant observations (see
Figure 8). The construct of validity was further ensured by submitting reports of
case studies continuously throughout the case projects (Papers I�VII) to be
reviewed and published in various, carefully selected publication forums (4.5).
The papers included citations of various evidentiary sources of the case study
database to maintain the chain of evidence. The reports were targeted at a
diverse set of audiences, including academic colleagues and practitioners, as
suggested by Yin (2003). The ongoing publication process ensured for the
researcher continuous feedback on the validity and usefulness of the research. In
addition to the case study reports, the case study database also included an
evidentiary base (Yin 2003) where a quantity of empirical evidence was
systematically stored in tabular format for retrieval and analysis (Figure 8). The
evidence in documentary form was stored in the same location.

 116

Table 23. Case Study Tactics in the Case Projects.

Test Case Study Tactic Implementation Definition

Use multiple sources of
evidence

Documentation
Archival records
Interviews
Participant-observations

Section 4.3
Table 21

Establish chain of evidence
Case study reports
(Papers I�VII)
Creation evidentiary database

Section 4.5

Section 4.4, Figure 8

Construct
Validity

Have key informants review
draft case study report

Publication process of case
study reports (Papers I�VII)

Section 4.5, Figure 9

Internal
Validity

Pattern-matching
Explanation-building
Addressing rival explanations
Logic models

Pattern-matching
Explanation-building
Addressing rival explanations

Papers II�VII

Use theory in single-case
studies External

Validity Use replication logic in
multiple-case studies

Series of case studies
(VI case projects)

Section 4.3

Use case study protocol

Reliability
Develop case study database

Data collection methods,
procedures
Sources of evidence
Evidentiary database
Case study reports
(Papers I�VII)

Section 4.3, Table 21

Section 4.3, Table 21
Section 4.3, Table 21
Section 4.4, Figure 8
Section 4.5

Yin suggests pattern-matching as one of the most desirable techniques for case
study analysis (2003). In this study, the pattern-matching was done by exploring,
for example, regular trends among the number of iteratively generated findings
of software developers on the weaknesses and strengths of the software process
and the number of generated SPI actions. This pattern-matching enabled further
evaluation of the identified patterns in order to seek explanations among rival
explanations � between and within the case projects. An example of this was the
attempt to find and verify different explanations behind the downward trend in
positive findings among the software developers, while the downward trend in
corresponding negative findings strongly implied iterative improvement of the
software process.

 117

Due to the explanatory nature of the case studies of this research, explanation
building was found to be a relevant tactic for ensuring the internal validity of the
research (Yin 2003). In the publications of this research a narrative form of
explanation building supported by quantitative evidence was used to illustrate
the chain of evidence of why, how and with what effects the project teams used
quantitative validation of SPI actions, i.e. if the quantitative validation actually
could be demonstrated to provide added value for the SPI among project teams
(Paper V).

According to Yin, external validity refers to the problematic issue of
generalising the results of case studies (2003). Case studies rely on analytical
generalisation where �the investigator is striving to generalise a particular set of
results to some broader theory� (Yin 2003, p. 37). Yin suggests that the
replication of case studies in a context �where the theory has specified that the
same results should occur� (2003, p. 37) provides a basis for accepting the
results provide strong support for the theory. In this research, increased versions
of SPI activities in the agile software development context were conducted in six
consecutive case projects. This provided an opportunity to evaluate whether or
not the SPI mechanisms actually seemed to have parallel effects in different
project teams. The first five case projects were conducted in fairly similar, close-
to-industrial research contexts (Paper I), where various independent variables
remained unchanged. This provided an opportunity to validate the research from
the viewpoint of external validity. The last case study, which was conducted in a
fully industrial context, also provided an opportunity to evaluate to what extent
the results could be considered generalisable. Naturally, the ENERGI case
projects provide (case I�V) a limited and novel context of research and, thus,
limit the opportunities for drawing broad generalisations. The implementation of
the results of this research in diverse industrial settings would highly increase
the validity and generalisability of the results.

Yin suggests enforcing the reliability of research �to minimize the errors and
biases in a study� (2003, p. 37). A reliable case study is defined as one that can
be conducted again by another investigator with the same findings and
conclusions. Yin further notes that �the emphasis is on doing the same case over
again, not on �replication� the results of one case by doing another case study�
(Yin 2003, p. 37). The tactics suggested for ensuring the reliability of a case
study are to use the case study protocol and to develop a case-study database. A

 118

case-study protocol is especially essential when conducting a multiple-case
study, as in this case. Furthermore, it has been defined to contain the
instruments, procedures, and general rules to be followed along the research
including an overview of the case projects, field procedures, case study
questions, and a guide for reporting the case study (Yin 2003). In addition, the
researcher�s role as a facilitator and her active involvement with expected
benefit for both research and practice � as suggested to be the case in AR
(Baskerville 1999) � can be considered as a factor of bias in this research.

In the line of this research, a preliminary case study protocol was established and
incrementally complemented along the research. A proportion of the protocol
could be defined up-front and systematically followed throughout the multiple-
case study including, for example, final interviews and researcher diaries as
qualitative data collection mechanisms. However, due to the adoption of the AR
method from the second case project onwards, and the close link between the
research data collection and the SPI methods under investigation, it was also
necessary to continuously modify certain aspects of the case-study protocol
throughout the study. For example, the database tool for metrics collection
(Table 21) and the structured template for storing SPI action points among
project and SEPG teams (Table 18) were defined during the research project as a
result of the research itself. However, even though new data items were added to
the sources of evidence and the data collection and storage procedures were
enhanced and adopted along the research, so as to make sure that all the
preliminarily defined data items were still collected within all the projects of the
multiple-case study. In addition, the systematic storing of empirical evidence
was planned and conducted by reporting the results of the study as well as
establishing an evidentiary database for the research data.

5.2 Evaluation of the Results

In the research four specific outputs can be identified:

1) a Controlled Case Study approach for integrating agile software
development research and production (Paper I),

2) a project level method for conducting process adaptation activities, i.e.,
Iterative Improvement Process (Papers II, III, and V),

 119

3) a tentative model of integrating the traditional SPI activities of
organisational stakeholders and the Iterative Improvement Process
activities of software development teams (Papers IV and VI), and

4) an agile deployment framework in which the Iterative Improvement
Process is a central feedback mechanism (Paper VII).

In this section, the outputs of this research are evaluated from the viewpoints of
theory and practice.

5.2.1 Implications for the Theory

From a theoretical viewpoint, the aim of this study was to increase and extend
the body of SPI knowledge in the area of agile software development concerning
the following issues:

1) how to conduct SPI in individual agile software development teams, and

2) how to integrate the agile SPI activities of individual project teams and
traditional continuous organisational SPI activities.

Firstly, the aim of the researcher was to apply AR in order to construct an SPI
method suitable for individual agile software development teams. During the
research, it became evident, that the gaps in the existing agile SPI methods often
concerned aspects considered as critical in the context of traditional SPI.
However, it was evident that, in order to maintain the fundamentals of agile
software development, the traditional SPI mechanisms would not apply as such.
The Iterative Improvement Process (Paper V) embodies the findings and
learning from the SPI activities conducted together with the researcher and the
six case project teams. It can be considered as the main outcome of the project
level SPI research of this study and proposes how to conduct SPI in individual
agile software development teams. In the SPI process, however, the integration
points between continuous organisational learning and iterative reflection of
agile software development teams are identified (Paper V).

The starting point for the proposed SPI process was in the existing agile SPI
methods, especially the Reflection workshop technique (Cockburn 2002, 2005)

 120

and Postmortem review technique (Dingsøyr & Hanssen 2002). The resulting
SPI process aims at identifying the improvements in an iterative manner by
providing systematic yet rapid procedures, to further defining and documenting
the resulting actions and to follow-up with qualitative and quantitative validation
of their implementation and success. From the viewpoint of traditional SPI with an
organisational improvement focus, this provides an opportunity to gain validated
process improvement knowledge from agile software development teams.

Various problems have been encountered in the context of traditional SPI
regarding, for example, the low commitment to SPI activities (Abrahamsson
2002), their actual effectiveness in improving the software development
practices of organisations, the volume of effort needed for implementing the SPI
initiatives and the low speed at which visible and concrete results are achieved
(Dybå 2000, Goldensen & Herbsleb 1995, Krasner 1999). In fact, it has been
reported that approximately two-thirds of traditional SPI initiatives fail to
achieve the intended goals (Debou 1999). Abrahamsson (2001) proposes that
through voluntary involvement and by embedding SPI in the daily routines of
software engineering, the commitment towards SPI activities would increase.
The empirical evidence of this research implicates that the iterative process
adaptation of agile software development teams provides opportunities to
respond to the core problems of traditional SPI. For one, both the qualitative and
quantitative data of this research indicate that the agile teams were both capable
and willing to improve their development processes by participating in the
activities of the Iterative Improvement Process. Such a positive attitude on the
part of developers to participate in SPI activities was, according to the
developers, caused by having an opportunity to actually affect the daily working
practices, the fact that the agreed improvements were actually implemented and
supported, as well as the visibility and rapid execution of the improvements.
With 1.9% of the total effort of software development, the five project teams
identified, planned and agreed a total of 182 improvements. Thus, for one, it can
be argued that this research supports the suggestion of Abrahamsson
(Abrahamsson 2002) that voluntary involvement and embodying SPI as a part of
software engineering practices will have a positive effect on the commitment of
software professionals towards SPI. Respectively, the research results indicate
that the agile approach to SPI, i.e., the regular reflection of software
development teams, will also have positive effects on the speed and visibility of
SPI, especially from the viewpoint of software developers. However, the

 121

research data also indicates that without organisational participation and support,
as much as 33% of the planned improvement actions will fail. Thus, the
empirical evidence of this research also indicates that one critical success factor
of Iterative Improvement Process is the participation and support of
organisational stakeholders rather than leaving the individual software
development teams to reflect and adapt the process by themselves.

The second focus of this research was to study how the agile SPI activities of
individual project teams and traditional continuous organisational SPI activities
could be integrated in a mutuallybeneficial manner. It has, indeed, been claimed
that there is a need to extend agile methodologies and adapt them to
organisations with established and mature plan-driven processes (e.g., Boehm &
Turner 2005). In addition, one major issue in adopting agile methodologies in
organisations is the problem of balancing the currently dominating engineering
ideologies and methodologies of manageable, predictable and repeatable
processes with the agile software development methods, which again embrace
self-organisation, process adaptation and constant changes (Lycett et al. 2003).
In this study, it is suggested that the reflection activity (i.e., the Iterative
Improvement Process) of agile software development teams can co-exist with
traditional continuous organisational improvement activities (Papers IV and VI).
During the research it was revealed that while the development teams external
support and participation, the organisational stakeholders in turn benefit from the
iterative process improvement knowledge of software development teams. The
mechanisms for bidirectional knowledge transfer (Paper IV) and mutually
beneficial collaboration (Paper VI), however, needed to be put into place. In
addition, the organisational aspect of this research results in an agile deployment
framework, which incorporates Iterative Improvement Process as a rapid
feedback mechanism in a traditional QIP cycle and, thus, provides an integration
point between software development teams and organisational SPI stakeholders
(Paper VII).

Komi-Sirviö (2004) has studied a wide range of SPI literature in order to identify
the critical success factors (CSF) of SPI methods. In Table 24, this CSF
framework is used to evaluate the theoretical implications of the central results
of this research. The goal is to examine how well the proposed SPI process for
agile software development teams corresponds to the factors proposed as critical
for any SPI method.

 122

Table 24. Evaluating the Results of the Research Using CSFs.

CSF Framework Research Results

Main
Class CSF CSF Evaluation Definition Reference

Yes. The Iterative Improvement Process
activities are integrated into the
continuous improvement cycle of QIP.

Papers
IV, VI

Yes. Various methods and techniques are
suggested in Iterative Improvement
Process activities to support the process
adaptation among software development
teams.

Papers
II�VI

Yes. Organisational guidelines and
facilitation are suggested to be used in
the Iterative Improvement Process.

Papers
V, VI

1 Does the method support
different SPI approaches?

Yes. The Iterative Improvement Process
is integrated as part of the organisational
process deployment framework.

Paper VII

2
Does the method support
the participation of all
affected parties?

Yes. SPI participants and activities of
both organisational and project levels are
identified: software development team,
facilitator, and SEPG, and management.

Papers
II�VII

Yes. The method of Iterative
Improvement Process enhances the
control of software developers in SPI
activities.

Papers
II�VII

Yes. The iterative and continuous co-
operation activities between software
developers and SEPG are addressed and
defined.

Paper VI
3

Does the method support
co-operation with
software engineers?

Yes. The continuous co-operation
between management and software
developers is addressed.

Paper VII

Im
pr

ov
em

en
t M

an
ag

em
en

t

4

Does the method support
planning and carrying out
training as part of the
initiative?

Yes. It is suggested an SPI facilitator
assists software development teams in
the Iterative Improvement Process.

Papers
II�VII

5
Does the method support
the commitment of top
managers?

C
om

m
itm

en
t

6
Does the method support
the commitment of
middle managers?

Yes, partially. Mechanisms for providing
SPI knowledge and improvement
opportunities from projects to
organisational utilisation have been
established.
Partially. The active participation of
organisational stakeholders has been
addressed and defined.

Papers
IV, VI,
VII

 123

CSF Framework Research Results
Main
Class CSF CSF Evaluation Definition Reference

Yes. The Iterative Improvement Process
identifies the software developers as a
central origin of SPI actions.
Yes. The method of Iterative
Improvement Process addresses the rapid
and visible implementation of SPI
activities.

Papers
II�VII

Yes. Mechanisms are established to
provide software developers with
iterative SPI feedback from
organisational stakeholders.

Paper VI

7
Does the method support
commitment of software
engineers?

Yes. Mechanisms are established to
provide software development with
continuous support in their Iterative
Improvement activities.

Papers
IV, VI

C
ul

tu
re

8

Does the method support
developing improved
solutions on a case-to-
case basis?

Yes. The process adaptation among
Iterative Improvement Process occurs in
individual project teams and, thus is
context specific and based on the
experiences and knowledge of software
developers.

Papers
II�VII

Yes. The Iterative Improvement Process
is identified as a feedback mechanism for
organisational SPI, e.g., process
assessments.

Paper VII

9
Does the method support
clarifying the current
status of processes? Yes. The software development teams

iteratively assess the weaknesses and
strengths of their current software
processes.

Papers
II�VII

10

Does the method support
establishing a link
between business and
improvement goals?

Yes, partially. The defined co-operation
between organisational SEPG and
software development teams and the role
of the facilitator enable establishing a
link between project and organisational
SPI goals.

Papers
II�VII

11
Does the method support
measurable improvement
goals?

Yes. The action point template is
proposed to define the SPI actions and to
plan means for their validation.

Papers
IV, V, VI

Pl
an

12
Does the method support
generating an
improvement plan?

Yes. The action point template is
proposed to support the systematic and
structured generation of improvement
plan including the definition of tasks,
schedule, resources, reporting, follow-
up, and validation.

Papers
IV, V, VI

 124

CSF Framework Research Results

Main
Class CSF CSF Evaluation Definition Reference

o

Yes. From an organisational
viewpoint, the Iterative Improvement
Process is integrated into the
deployment framework which supports
piloting.

Paper VII

D
 13

Does the method support
the testing of developed
solutions in a pilot
project?

Yes. From a project level viewpoint,
process improvements are
systematically tested and validated
during iterative cycles of software
development.

Papers
II�VII

ec
k

Yes. From an organisational
viewpoint, the monitoring activities of
SEPG team are identified and defined.

Paper VI

C
h 14

Does the method support
using metrics in
monitoring improvement
actions and results?

Yes. From a project level viewpoint,
the metrics have been defined as a tool
for iteratively monitoring and
validating the improvement actions.

Paper V

ct

Yes. The storing and transferring of
project level SPI knowledge to
organisational level support the organ-
isational sustainability of improvements.

Papers
IV, VI

A
 15

Does the method support
the sustainability of an
improvement initiative? Yes. The agile specific process

deployment framework supports the
sustainability of improvement
initiatives.

Paper VII

Table 24 illustrates how the CSFs of SPI are, in various ways, embedded in the
various SPI outputs of this study.

In addition, one implication for the theory of this research can be the controlled
case study approach proposed and applied in this research (Paper I). The
approach suggests how to integrate industrial agile software development and
research in order to generate impact on both the scientific and practical software
engineering community. The controlled case study approach has been applied in
the first five case projects of this research conducted in ENERGI context.

 125

5.2.2 Implications for the Practice

As a characteristic of any AR study, this research provided results on the
practical implications during the case projects as well as more general
implications for software engineering. In the following, the two aspects of the
practical implications from this study are discussed.

During the six case projects of the study, the software development teams agreed
to perform a total of 182 actions to improve their daily work. These included:
1) actions directly related to SPI issues such as the working procedures and tools
of software developers (44%), and 2) actions related to other concerns of
developers such as acquisitions concerning the working environment (56%). The
developers spent 1.9 of the total effort in participating in the Iterative
Improvement activities, i.e. identifying, planning, agreeing and evaluating the
effects of the process improvements. On the other hand, it was also revealed that
external (i.e., organisational) support was also needed in the implementation of
33% of the improvement actions. Furthermore, it was also revealed, that without
a systematic means to define, document and follow-up the project level SPI
activities, as much as 35% of the agreed action points would have remained
incomplete.

On the one hand, the numerous improvement actions (average of 30 per case
project, approximately from seven to eight improvements per PIW) and the
reasonable amount of effort needed for SPI activities indicate that the project
teams were able to identify minor, yet effective, actions to improve their daily
work. The effectiveness of the SPI actions was detected also in the positive
attitude of software developers� participation in the SPI activities (i.e., PIW�s).
The possibility to affect the daily working practices as well as the rapid
application and visibility of the improvements were considered important factors
for the success of Iterative Improvement Process by the software developers.
This also indicates the importance of actually implementing the identified
improvements and, thus, for the need for organisational support and systematic
mechanisms of SPI. On the other hand, a considerable number of identified
improvements of the software development teams related to more daily concerns
rather than process issues. This indicates that Iterative Improvement and PIW�s
can also serve as ordinary project meetings, at which the state of the project and
the everyday needs and concerns of the project team can be addressed and acted

 126

upon. Papers II, III and V focus on project level SPI in agile software
development teams.

At the organisational level, a total of 112 improvement actions were taken by the
AR team functioning in the role of SEPG in ENERGI. These included more
longterm changes to the organisational software development-related tools and
process (i.e., Mobile-D�), as well as the activities related to support the
development teams in their SPI activities. To a large extent, the improvement
activities of the SEPG team were based on the process knowledge emerging
from the software development teams, i.e., their requests, findings and
inventions. However, during the research it became evident that the traditional
activities of the SEPG team would need to be altered to fit the context of agile
software development. While the agile software development teams were found
to need continuous and iterative support in their SPI activities the SEPG team
was found to largely benefit from the iterative SPI knowledge of the agile
software development teams. Thus, mechanisms were needed to enable the
mutually beneficial co-existence of the two SPI stakeholder groups in the
organisation. Papers IV, VI, and VII focus on the organisational aspects of SPI
in the context of agile software development.

As a result of the AR conducted iteratively during the case projects, three main
implications for the practice of software engineering can be identified:

1) an Iterative Improvement Process for agile software development teams,

2) tentative mechanisms for integrating the SPI activities of individual
agile software development teams and traditional organisational SPI
actors (Papers IV and VI), and

3) an agile specific deployment approach for organisations adopting agile
software development technologies (Paper VII).

Firstly, software development teams are provided with a practical process
adaptation and improvement mechanism called �an Iterative Improvement
Process�. It provides mechanisms consistent with the fundamentals of agile
software development, yet still embodies the vital elements identified as critical
for any SPI method. However, the Iterative Improvement Process also aims at
providing integration points to link project level SPI activities with

 127

organisational level SPI. The SPI process itself with empirical evidence is
presented in Paper V while Papers II and III focus on presenting the empirical
research data revealing, for example, the surprisingly positive attitudes of
software developers towards the opportunity of rapidly tackling the weaknesses
and problems in their working process. The proposed Iterative Improvement
Process for agile software development teams can be considered to be applicable
in such software development teams where the software process is incremental
or in whose processes clear intermediate points exist. The software development
team should also be able to regularly gather together to discuss relevant issues in
a face-to-face manner. However, even though the suggested Iterative
Improvement Process was developed among small development teams applying
agile software development methodologies, neither of these aspects is required
to conduct SPI as suggested in this study.

Secondly, the research uncovers practical implications for software development
organisations that value continuous organisational learning while also applying
agile software development technologies. Based on the research, it is proposed
that the traditional activities of organizational SPI may need to be altered to
enable the mutually beneficial and effective co-existence of agile projects and
organisational SPI. Mechanisms for constant collaboration, organisational
support, continuous feedback, knowledge transfer and facilitation are proposed
and discussed in Papers IV and VI. From the organisational viewpoint, the
suggested mechanisms enable the integration of SPI in agile software
development teams and organisational SPI stakeholders, and are especially
applicable if the organisation addresses continuous organisational SPI and plans
to conduct agile software development projects or similar iterative process
models. Another requirement is that the organisation must appreciate and highly
value knowledge and learning among its software development teams and
should be willing, to some extent, to pass the control of SPI from organisational
to project level.

Thirdly, the research results offer practical implications for software
development organisations deploying agile software technologies. From the
viewpoint of this research, the main implication for practice is how the project
level Iterative Improvement Process and its feedback mechanisms can provide
benefits to organisations deploying agile software development technologies. In
this respect, in the agile deployment framework, the iterative process adaptation

 128

and improvement of agile software development teams is integrated as part of
the organisational deployment process. An example of the agile deployment
framework is presented in Paper VII.

Finally, it should be noted that in applying the methods and suggestions made
and based on this research, the organisational context is always in a central role.
Thus, the methods and activities always need to be adapted with respect to the
existing (SPI) practices and culture of the organisation.

 129

6. Summary and Conclusions

In this section, the results of the research are summarised (6.1), and the
limitations (6.2) and further research avenues (6.3) are discussed.

6.1 Summary of the Results

In this research, two main research questions were formulated, which are set out
below with a summary of the results.

Q.1. The first research question is �how to conduct SPI in individual agile
software development teams?�

As a result of the collaboration of the researcher in the six agile case projects, an
Iterative Improvement Process (Paper V) was defined and suggested for
implementation in SPI among agile project teams in an agile specific manner. In
section 5.2, there is a discussion on how the critical success factors of SPI
(Komi-Sirviö 2004) are embedded in the proposed SPI method.

The role of commitment has been found to be significant for the success of any
SPI initiative (Abrahamsson 2002). In addition, team satisfaction has been
identified by Koch (2005) as one central aspect in evaluating the effects of an
agile method. Thus, in this thesis these aspects were examined to discover how
the software developers perceive the effects of process adaptation in their daily
work and the level of iterative participation in improvement. Papers II and III
present empirical evidence from case projects which indicate highly positive
attitudes on the part of software developers towards being able to address and
improve, rapidly, the weaknesses and problems in their daily working practices.
However, during the research (Papers V, VI, VII), it was also observed that,
without external support, a significant part of the SPI actions by the project
teams could not have been implemented.

The second research question, addresses the organisational level focus of the
research, and is:

 130

Q.2. How to integrate the agile SPI activities of individual project teams with
traditional organisational SPI activities?

In this thesis, the research included the related aspects of continuous
organisational improvement and the deployment of agile methodologies in
organisations.

Originating from the traditional SPI context, one notion behind the research was
that the process adaptation activities of agile project teams would provide
valuable knowledge also for organisational SPI purposes (Paper IV). During the
research, it was discovered that the case project teams also needed support from
other stakeholders to implement a major part of their SPI activities (Paper V, VI,
and VII).

Thus, based on the empirical results of Papers IV and VI, mechanisms were
defined as to how and what process knowledge could be transferred from project
teams to organisational SPI stakeholders (Papers IV, VI) and how the traditional
SEPG team should adapt its activities to suit the SPI mechanisms of the agile
software development teams (Paper VI). Collaboration activities between the
agile software development teams and the SEPG team were identified as
necessary to support the co-existence of traditional, yet agile, adapted SPI
mechanisms at organisational level and agile software development and SPI in
agile project teams. The resulting output is a tentative model for integrating agile
software development with organisational SPI.

The final case project focused partially on deploying agile methodologies in
industrial organisations. As a result, an agile deployment framework is proposed
(Paper VII) whereby the Iterative Improvement Process is integrated into
organisational improvement as a feedback mechanism for agile assessments
(Pikkarainen & Passoja 2005) and traditional organisational SPI models.

6.2 Limitations of the Study

In this research, several limitations can be identified. For example, the first case
projects of the research were conducted in a close-to-industrial setting, rather than
in a �pure� industrial environment. In addition, the case project teams included

 131

information processing science students as software developers. These two factors
can be considered as limitations with regard to the generalisability and validity of
the results of the research. The problem of generalisation, however, is present in
any case study where the results only present the truth in a given context and the
exact replication of the study is not possible. On the other hand, the ENERGI
research context (Paper I) provided an optimal opportunity � both for the
researchers as well as the customer organisations � to intensively examine,
empirically evaluate, learn and further develop agile methodologies at a very early
stage and prior to their deployment in an industrial environment, while
implementing real software products for customers. Moreover, the deployment of
the SPI mechanisms subsequently in a pure industrial environment (Paper VII)
corroborated, in many respects, the same empirical results as those from the case
projects within the ENERGI project (Papers II�VI).

Furthermore, the researcher�s role as a facilitator can be considered as a factor of
bias in this research. However, the adoption of AR was considered as a suitable
and a highly practical method of research in the rapidly changing environment of
agile software development. For the researcher, it provided an opportunity to
utilise her prior SPI knowledge, yet to continuously learn from the experience
and knowledge of software developers in the development of SPI mechanisms.
From the viewpoint of the software developers, the continuous SPI support and
collaboration with the researcher were of great benefit in the task of solving the
real daily problems in the development process.

The organisational SPI mechanisms (i.e., SEPG activities) of case projects III-V
were established for the purposes of the research organisation and the ENERGI
context, rather than to be applied within the customer software development
organisations themselves. Thus, the organisational SPI focus was to
systematically and continuously improve the Mobile-D� (Abrahamsson et al.
2004, Ihme & Abrahamsson 2005) agile software development methodology,
which was adopted by the case project teams. In this research, Mobile-D� was
used as an organisational software development process of ENERGI separate
from the still traditional software development processes of the customer
organisations.

The separate SEPG, which was independent from the customer organisations
and consisted of the AR team, may be considered as an artificial stakeholder

 132

group which can be used in the study of social contexts, as suggested in AR.
Thus, while the SEPG team can be claimed to only simulate the �real� industrial
environment the established SEPG team had still real focus of SPI. For one,
from the customer viewpoint, the SEPG activities aimed to increase the
effectiveness of the software development and the quality of the end product in
the case project teams and from case to case. Secondly, the SEPG activities
defined a process model (Mobile-D�) to be adopted in software development
organisations (e.g., in case VI). In addition, from the viewpoint of software
development teams, the SEPG activities provided constant support in their
software development and SPI activities. The ENERGI context also provided an
early opportunity to study the organisational SPI mechanisms in the context of
agile software development which, at the time of the study, was not possible in
industrial organisations still focusing on deploying agile methodologies in single
project teams. The resulting tentative model of SEPG activities in agile context,
however, still would need to be further evaluated in diverse industrial contexts.

In the ENERGI context, the project teams were also working in a more insular
environment, where the interaction with other projects and organisational
stakeholders or the overlapping schedules and tasks were not necessarily present
to the extent of industrial environment. In the ENERGI research context, the
possibilities for controlling or limiting the influencing factors that might affect
the results of the case studies can be regarded as positive or negative, depending
on the viewpoint.

6.3 Future Research

On the subject of SPI in the context of agile software development, there are
several avenues of investigation to be explored in future research. Firstly, the
importance of storage, retrieval, management and analysis of SPI knowledge
from previous projects has been widely discussed among traditional SPI
methods (e.g., Basili & Caldiera 1994, 1995, Fitzgerald et al. 2004). However, it
would be valuable to further study how the use of process improvement
knowledge, emerging from agile software development teams, may also benefit
organisational learning in different contexts. The future research on agile
software development and SPI should include an examination of how rapidly
accumulating process knowledge of agile software development teams could be

 133

effectively managed to facilitate cost-effective organisational learning (Garvin
1993, 2000) in a bottom-up manner. Thus, for example, tool-supported
knowledge management (KM) (Nonaka & Hirotaka 1995) mechanisms should
be studied in an agile software development context. In particular, studies should
focus on how and what kind of tools could support knowledge transfer from
individual projects to organisational level while being used by project teams as
well. In addition, the tentative model of integrating organisational learning and
process adaptation of agile software development teams resulting from this
research should be further applied, evaluated and built in different industrial
contexts of software development.

The topic of organisational SPI in the context of agile software development
teams includes many interesting issues to be further studied. For example, many
organisations still contemplate adopting agile software development
methodologies while maintaining their accomplished level of maturity. Thus, the
future research should address the relation between the dominating process
standards and agile software development. It can be expected that the ongoing
standardisation work of agile methodologies will raise unchartered perspectives
on this topic.

In addition, various different explanatory studies of testing theories � even from
an interdisciplinary point of view (e.g., pedagogical, educational or
psychological) � would be needed to provide an understanding of the learning
process that takes place within the agile software development teams conducting
iterative reflections, and within agile software development organisations
conducting bottom-up learning.

 134

References

Abrahamsson, P. 2001. Rethinking the Concept of Commitment in Software
Process Improvement. Scandinavian Journal of Information Systems, Vol. 13,
pp. 69�98.

Abrahamsson, P. 2002. The Role of Commitment in Software Process
Improvement. Doctoral Thesis, University of Oulu.

Abrahamsson, P. 2003. Extreme Programming: First Results from a Controlled
Case Study. In: The proceedings of the 29th Euromicro Conference. Belek-
Antalya, Turkey. Chroust, G., Hofer, C. & Crnkovic, I. IEEE Computer Society.
Pp. 259�266.

Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M.,
Koskela, J., Kyllönen, P. & Salo, O. 2004. Mobile-D: An Agile Approach for
Mobile Application Development. In: The proceedings of the 19th Annual ACM
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA�04). October 24�28, 2004. Vancouver, British Columbia,
Canada. Pp. 174�175.

Abrahamsson, P., Salo, O., Ronkainen, J. & Warsta, J. 2002. Agile Software
Development Methods: Review and Analysis. VTT Publications 478. VTT
Electronics. Espoo. 107 p. ISBN 951-38-6009-4; 951-38-6010-8.
http://virtual.vtt.fi/inf/pdf/publications/2002/P478.pdf.

Abrahamsson, P., Warsta, J., Siponen, M. T. & Ronkainen, J. 2003. New
Directions on Agile Methods: A Comparative Analysis. In: The proceedings of
the 25th International Conference on Software Engineering (ICSE�03). IEEE.
Pp. 244�254.

Agile Alliance Manifesto for Agile Software Development. 2001.
http://www.agilemanifesto.org/principles.html (June, 2006).

http://virtual.vtt.fi/inf/pdf/publications/2002/P478.pdf
http://www.agilemanifesto.org/principles.html

 135

Ahern, D. M., Armstrong, J., Clouse, A., Ferguson, J., Hayes, W. & Nidiffer, K.
2005. CMMI® SCAMPI Distilled: Appraisals for Process Improvement. First
Edition ed. Addison Wesley Professional. 240 p.

Anacleto, A., von Wangenheim, C. G., Salviano, C. F. & Savi, R. 2004.
A Method for Process Assessment in Small Software Companies. In: The
proceedings of the 4th International SPICE Conference on Process Assessment
and Improvement. April, 2004. Lisbon, Portugal. Pp. 69�76.

Andersen, C. V., Arent, J., Bang, S. & Iversen, J. 2002. Project Assessments. In:
Improving Software Organizations: from Principles to Practice. Addison-
Wesley, Boston. Pp. 167�184.

Arthur, L. J. 1993. Improving Software Quality: An Insider�s Guide to TQM.
John Wiley & Sons, Inc. New York, 287 p.

Avison, D., Lau, F., Myers, M. & Nielsen, P. A. 1999. Action Research.
Communications of the ACM, Vol. 42, 1 (1), pp. 94�97.

Back, R.-J., Milovanov, L. & Porres, I. 2005. Software Development and
Experimentation in an Academic Environment: The Gaudi Experience. In: The
proceedings of the Product Focused Software Process Improvement (PROFES
2005). June 2005. Oulu, Finland. Springer. Pp. 414�428.

Balzer, R., Cheatham, T. E. & Green, C. 1983. Software Technology in the
1990�s: Using a New Paradigm. Computer, Vol. 16 (11), pp. 39�45.

Basili, V. R. 1985. Quantitative Evaluation of Software Methodology. In: The
proceedings of the First Pan Pacific Computer Conference. Melbourne,
Australia. Pp. 379�398.

Basili, V. R. 1989. Software Development: A Paradigm for the Future. In: The
proceedings of the COMPSAC�89. Orlando, Florida. IEEE. Pp. 471�485.

Basili, V. R. 1994. The Goal Question Metric Approach. In: Encyclopedia of
Software Engineering. John Wiley & Sons, Inc. Pp. 528�532.

 136

Basili, V. R. & Caldiera, G. 1994. Experience Factory. In: Encyclopedia of Software
Engineering. Marciniak, J. J. (ed.). John Wiley & Sons, Inc. Pp. 469�476.

Basili, V. R. & Caldiera, G. 1995. Improve Software Quality by Reusing
Knowledge and Experience. Sloan Management Review, Vol. 37, 1 (1), pp. 55�64.

Basili, V. R. & Reiter, R. 1981. A Controlled Experiment Quantitatively
Comparing Software Development Approaches. IEEE Transactions on Software
Engineering, Vol. 7, 3 (3), pp. 299�320.

Basili, V. R. & Rombach, H. D. 1987. Tailoring the Software Process to Project
Goals and Environments. In: The proceedings of the 9th International
Conference on Software Engineering. March 1987. Monterey, CA. Pp. 345�357.

Basili, V. R. & Weiss, D. 1984. A Methodology for Collecting Valid Software
Engineering Data. IEEE Transactions on Software Engineering, Vol. SE-10, 6
(6), pp. 728�738.

Baskerville, R., Mathiassen, L., Pries-Heje, J. & DeGross, J. I. 2005. Business
Agility and Information Technology Diffusion. Springer. 380 p.

Baskerville, R. & Myers, M. D. 2004. Special Issue on Action Research in
Information Systems: Making IS Research Relevant to Practice � Foreword.
MIS Quarterly, Vol. 28, 3 (3), September 2004, pp. 329�335.

Baskerville, R. L. 1999. Investigating Information Systems with Action
Research. Communication of the Association for Information Systems, Vol. 2
(19), October 1999.

Beck, K. 1999. Embracing Change with Extreme Programming. IEEE
Computer, Vol. 32, 10 (10), pp. 70�77.

Beck, K. 2000. Extreme Programming Explained: Embrace Change. Addison
Wesley Longman, Inc. 190 p.

Beck, K. 2003. Test-Driven Development By Example. 1st ed. Addison-Wesley.
220 p.

 137

Beck, K. & Andres, C. 2004. Extreme Programming Explained: Embrace
Change. Second Edition. Addison-Wesley. Boston, 189 p.

Bell Canada Trillium: Model for Telecom Product Development & Support
Process Capability. Release 3.0. Bell Canada. December, 1994. 118 p.

Benington, H. D. 1983. Production of Large Computer Programs. Annals of the
History of Computing, Vol. 5, 4 (4), October, pp. 350�361.

Birk, A., Dingsøyr, T. & Stålhane, T. 2002. Postmortem: Never Leave a Project
without It. IEEE Software, Vol. 19, 3 (3), pp. 43�45.

Boehm, B. 1988. A Spiral Model of Software Development and Enhancement.
Computer, Vol. 21, 5 (5), May 1988, pp. 61�72.

Boehm, B. & Turner, R., 2003a. Balancing Agility and Discipline: A Guide for
the Perplexed. Addison-Wesley. 266 p.

Boehm, B. & Turner, R., 2003b. Using Risk to Balance Agile and Plan-Driven
Methods. Computer, Vol. 36, 6 (6), June, pp. 57�66.

Boehm, B. & Turner, R. 2005. Management Challenges to Implementing Agile
Processes in Traditional Development Organizations. IEEE Software, Vol.
22(5), September�October, pp. 30�39.

Briand, L., El Emam, K. & Melo, W. L. 1999. An Inductive Method for
Software Process Improvement: Concrete Steps and Guidelines. In: Elements of
Software Process Assessment & Improvement. El Emam, K. & Madhavji, N. H.
(ed.). IEEE Computer Society: Los Alamitos, California. Pp. 113�130.

Chein, I., Cook, S. W. & Harding, J. 1948. The Field of Action Research.
American Psychologist, Vol. 3, pp. 43�50.

Chua, W. F. 1986. Radical Development in Accounting Thought. The Accounting
Review, Vol. 61, pp. 601�632.

 138

Coad, P., LeFebvre, E. & De Luca, J. 1999. Java Modeling In Color With UML:
Enterprise Components and Process. Prentice Hall. 221 p.

Cockburn, A. 1998. Surviving Object-Oriented Projects. Addison-Wesley.
Reading, Mass. 250 p.

Cockburn, A. 2002. Agile Software Development. Addison-Wesley. Boston, 278 p.

Cockburn, A. 2005. Crystal Clear: a Human-Powered Methodology for Small
Teams. Addison-Wesley. 312 p.

Cohn, M. & Ford, D. 2003. Introducing an Agile Process to an Organization.
Computer, Vol. 36 (6), June, pp. 74�78.

Collier, B., DeMarco, T. & Fearey, P. 1996. A Defined Process for Project Post
Mortem Review. IEEE Software, Vol. 13, 4 (4), pp. 65�72.

Cooper, H. M. 1984. The Integrative Research Revies: A Systematic Approach.
SAGE Publications, Inc. Beverly Hills. 144 p.

Coplien, J. O. & Harrison, N. B. 2005. Organizational Patterns of Agile Software
Development. ed. Pearson Prenctice Hall. Upper Saddle River, NJ. 401 p.

Cunningham, J. B. 1997. Case Study Principles for Different Types of Cases.
Quality and Quantity, Vol. 31, pp. 401�423.

Davis, L. E. & Taylor, J. T. 1972. Design of Jobs. Penguin. Baltimore. 250 p.

Davison, R. M., Martinsons, M. G. & Kock, N. 2004. Principles of Canonical
Action Research. Information Systems Journal, Vol. 14, pp. 65�86.

Debou, C. 1999. Goal-Based Software Process Improvement Planning. In: Better
software practice for business benefit: Principles and experience. Messnarz, R. &
Tully, C. (ed.) IEEE Computer Society: Los Alamitos, CA. Pp. 107�150.

DeMarco, T. 1982. Controlling Software Projects: Management, Measurement
and Estimation. Yourdon Press. New York. 296 p.

 139

Deming, W. E. 1990. Out of the Crisis. 10 Printing ed. Massachussetts Institute
of Technology, Center for Advanced Engineering Study. Cambridge. 507 p.

Dingsøyr, T. & Hanssen, G. K. 2002. Extending Agile Methods: Postmortem
Reviews as Extended Feedback. In: The proceedings of the 4th International
Workshop on Learning Software Organizations (LSO�02)). 14. November, 2002.
Chicago, Illinois, USA. Pp. 4�12.

DSDMConsortium, 2003. DSDM: Business Focused Development. Addison-
Wesley. 239 p.

Dybå, T. 2000. An Instrument for Measuring the Key Factors of Success in
Software Process Improvement. Empirical Software Engineering, Vol. 5,
pp. 357�390.

Dybå, T., Dingsøyr, T. & Moe, N. B. 2004. Process Improvement in Practice:
a Handbook for IT Companies. Kluwer Academic Publishers. Boston. 114 p.

Eckstein, J. 2004. Agile Software Development in Large � Diving into the Deep.
Dorset House Publishing. New York, USA. 248 p.

Feigenbaum, A. V. 1991. Total Quality Control. 3rd Edition, Revised (40th
Anniversary Edition). McGraw-Hill, Inc. New York, 863 p.

Fenton, N. & Pfleeger, S. L. 1997. Software Metrics: A Rigorous & Practical
Approach. Second Edition ed. PWS Publishing Company. Boston. 638 p.

Fitzgerald, B. 1997. The Use of Systems Development Methodologies in
Practice: A Field Study. The Information Systems, Vol. 7, 3 (3), pp. 201�212.

Fitzgerald, B. 1998. An Empirical Investigation into the Adoption of Systems
Development Methodologies. Information & Management, Vol. 34, 6 (6),
pp. 317�328.

Fitzgerald, B., Russo, N. L. & O�Kane, T. 2004. Software Development Method
Tailoring at Motorola. Communications of the ACM, Vol. 46, 4 (4), April,
pp. 64�70.

 140

Florac, W. A. & Carleton, A. D. 1999. Measuring the Software Process: Statistical
Process Control for Software Process Improvement. Addison-Wesley Longman.
Massachussetts. 270 p.

Florac, W. A., Carleton, A. D. & Barnard, J. R. 2000. Statistical Process
Control: Analyzing a Space Shuttle Onboard Software Process. IEEE Software,
Vol. 17, 4 (4). July�August, pp. 97�106.

Garvin, D. A. 1993. Building a Learning Organization. Harvard Business Review,
Vol. July�August, pp. 78�89.

Garvin, D. A. 2000. Learning in Action. Harvard Business School Press. Boston,
Massachusetts. 256 p.

Gilb, T. 1981. Evolutionary Development. ACM SIGSOFT Software Engineering
Notes, Vol. 6, 2 (2). April, pp. 17.

Gilb, T. 1988. Principles of Software Engineering Management. Addison-
Wesley. Wokingham, UK, 464 p.

Gilb, T. 2005. Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage.
Butterworth-Heinemann. 480 p.

Ginsberg, M. P. & Quinn, L. H. 1995. Process Tailoring and the Software
Capability Maturity Model. CMU/SEI-94-TR-024. Software Engineering
Institute. November. 53 p.

Goldensen, D. R. & Herbsleb, J. D. 1995. After the Appraisal: A Systematic
Survey of Process Improvement, Its Benefits, and Factors that Influence Success.
CMU/SEI-95-TR-009. Software Engineering Institute. Pittsburgh. 50 p.

Gould, P. 1997. What is Agility? Manufacturing Engineer, Vol. February,
pp. 28�31.

Grady, R. B. 1992. Practical Software Metrics for Project Management and
Process Improvement. Prentice-Hall, Inc. New Jersey. 270 p.

 141

Gremba, J. & Myers, C. 1997. The IDEALSM Model: A Practical Guide for
Improvement. Bridge (SEI Publication), Vol. 3 (3).

Hanhineva, A. 2004. Test Driven Development in Mobile Java Environment.
Master�s Thesis, University of Oulu.

Highsmith, J. 2004. Agile Project Management. Addison-Wesley. 276 p.

Highsmith, J. & Cockburn, A., 2001. Agile Software Development: The
Business of Innovation. Computer, Vol. 34, 9 (9), September, pp. 120�122.

Highsmith, J. A. 2000. Adaptive Software Development: A Collaborative
Approach to Managing Complex Systems. Dorset House Publishing. New York,
NY. 358 p.

Hulkko, H. 2004. Pair Programming and its Impact on Software Quality.
Master�s Thesis, University of Oulu.

Hulkko, H. & Abrahamsson, P. 2005. A Multiple Case Study on the Impact of
Pair Programming on Product Quality. In: The proceedings of the 27th
International Conference on Software Engineering (ICSE 2005). 15�21 May,
2005. St. Louis, Missouri, USA. Pp. 495�504.

Hult, M. & Lennung, S.-Å. 1980. Towards A Definition of Action Research: A
Note and Bibliography. Journal of Management Studies, Vol. 17, pp. 241�250.

Humphrey, W. S. 1995. A Discipline for Software Engineering. Addison Wesley
Longman, Inc. 242 p.

Humphrey, W. S. 2000. Introduction to the Team Software Process. Addison
Wesley Longman, Inc. Massachussetts, USA. 463 p.

Ihme, T. & Abrahamsson, P. 2005. Agile Architecting: the Use of Architectural
Patterns in Mobile Java Applications. International Journal of Agile
Manufacturing, Vol. 8, 2 (2), pp. 97�112.

 142

Ishikawa, K. 1985. What is Total Quality Control: the Japanese Way. Prentice-
Hall, Inc. 215 p.

ISO/IEC Information Technology � Software Process Assessment � Part 7:
Guide for Use in Process Improvement. ISO/IEC JTC 1/SC 7. ISO/IEC. 1998-
01-12, 1998. 43 p.

Iversen, J., Nielsen, P. A. & Nørbjerg, J. 2002. Problem Diagnosis in SPI. In:
Improving Software Organizations: from Principles to Practice. Addison-
Wesley, Boston. Pp. 153�166.

Jalote, P. 2002. Lessons Learned in Framework-Based Software Process
Improvement. In: The proceedings of the Ninth Asia-Pacific Software
Engineering Conference (APSEC�02). December. Pp. 261�265.

James, T. 2005. Stepping Back from Lean. IEE Manufacturing Engineer, Vol.
February/March, pp. 16�21.

Jeffries, R. E. 1999. eXtreme Testing: Why Aggressive Software Development
Calls for Radical Testing Efforts. Software Testing & Quality Engineering, Vol.
March/April, pp. 23�26.

Järvinen, P. 2001. On Research Methods. Juvenes-Print. Tampere. 189 p.

KBSt � Federal Government Co-Ordination and Advisory Agency The New
V-Modell XT: Development Standard for IT Systems of the Federal Republic of
Germany. 2004.

Keenan, F. 2004. Agile Process Tailoring and probLem analYsis (APTLY). In:
The proceedings of the 26th International Conference on Software Engineering
(ICSE 2004). 23�28 May, 2004. Edinburgh, Scotland. IEEE. Pp. 45�47.

Kerth, N. L. 2001. Project Retrospectives: A Handbook for Team Reviews.
Dorset House Publishing. 268 p.

 143

Kiely, G. & Fizgerald, B. 2005. An Investigation of the Use of Methods within
Information Systems Development Projects. The Electronic Journal of
Information Systems in Developing Countries (EJISDC), Vol. 22, pp. 1�13.

Klein, H. K. & Myers, M. D. 1999. A Set of Principles for Conducting and
Evaluating Interpretive Field Studies in Information Systems. MIS Quarterly,
Vol. 23 (1), March, pp. 67�94.

Koch, A. S. 2005. Agile Software Development: Evaluating the Methods for
Your Organization. Artech House. Boston. 274 p.

Komi-Sirviö, S. 2004. Development and Evaluation of Software Process
Improvement Methods. Doctoral Thesis, University of Oulu. VTT, Espoo. VTT
Publications 535. 175 p. + app. 78 p. ISBN 951-38-6388-3; 951-38-6389-1.
http://virtual.vtt.fi/inf/pdf/publications/2004/P535.pdf.

Korkala, M. & Abrahamsson, P. 2004. Extreme Programming: Reassessing the
Requirements Management Process for an Offsite Customer. In: The proceedings
of the European Software Process Improvement Conference (EuroSPI 2004).
November, 2004. Trondheim, Norway. Springer. Pp. 12�22.

Koskela, J. & Abrahamsson, P. 2004. On-Site Customer in an XP Project:
Empirical Results from a Case Study. In: The proceedings of the European
Software Process Improvement Conference (2004). Trondheim, Norway.
Springer-Verlag. Pp. 73�82.

Krasner, H. 1999.The Payoff for Software Process Improvement: What it is and
How to Get it. In: Elements of Software Process Assessment & Improvement. El
Emam, K. & Madhavji, N. H. (ed.). IEEE Computer Society: Los Alamitos,
California. Pp. 113�130.

Kruchten, P. 1999. The Rational Unified Process. Addison-Wesley. Reading,
Massachussetts. 254 p.

Kruchten, P. 2000. The Rational Unified Process: an Introduction. Addison-
Wesley Professional. 320 p.

http://virtual.vtt.fi/inf/pdf/publications/2004/P535.pdf

 144

Kuntzmann-Combelles, A., Comer, P., Holdsworth, J. & Shirlaw, S. 1992. AMI
Handbook: a Quantitative Approach to Software Management. GEC-Marconi
Research Centre. 170 p.

Kuvaja, P. & Bicego, A. 1993. Bootstrap: Europe�s Assessment Method. IEEE
Software, Vol. 10, 3 (3), May, pp. 93�95.

Kuvaja, P., Similä, J., Kranik, L., Bicego, A., Saukkonen, S. & Koch, G. 1994.
Software Process Assessment and Improvement: The BOOTSTRAP Approach.
Blackwell Publishers. Oxford, UK. 149 p.

Kyllönen, P. 2005. A Framework for Managing Agile Projects. Master�s Thesis,
University of Oulu.

Kähkönen, T. 2005. Life Cycle Model for Software Process Improvement Project
Deploying an Agile Method. In: The proceedings of the International Conference
on Agility (ICAM 2005). July, 2005. Helsinki, Finland. Pp. 225�232.

Kähkönen, T. & Abrahamsson, P. 2004. Achieving CMMI Level 2 with Enhanced
Extreme Programming Approach. In: The proceedings of the 5th International
Conference on Product Focused Software Process Improvement (PROFES 2004).
April, 2004. Kansai Science City, Japan. Springer. Pp. 378�392.

Lappo, P. & Andrew, H. C. T. 2004. Assessing Agility. In: The proceedings of
the Extreme Programming and Agile Processes in Software Engineering. June,
2004. Garmisch-Partenkirchen, Germany. Eckstein, J. & Baumeister, H. (ed.).
Springer. Pp. 331�338.

Larman, C. 2004. Agile and Iterative Development: A Manager�s Guide.
Pearson Education, Inc. Boston. 342 p.

Larman, C. & Basili, V. R. 2003. Iterative and Incremental Development: A
Brief History. IEEE Software, Vol. 20, pp. 47�56.

Lau, F. 1999. Toward a Framework for Action Research in Information Systems
Studies. Information, Technology & People, Vol. 12, 2 (2), pp. 148�175.

 145

Lewin, K. 1946. Action Research and Minority Problems. Journal of Social
Issues, Vol. 2 (2), pp. 34�46.

Lindvall, M., Basili, V. R., Boehm, B., Costa, P., Dangle, K., Shull, F.,
Tesoriero, R., Williams, L. & Zelkowitz, M. V. 2002. Empirical Findings in
Agile Methods. In: The proceedings of the XP/Agile Universe 2002. August 4�7.
Chicago, IL, USA. Williams, D. W. (ed.). L. A. Springer. Pp. 197�207.

Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D.,
May, J. & Kähkönen, T. 2004. Agile Software Development in Large
Organizations. Computer, Vol. 37, 12 (12), December, pp. 26�34.

Lycett, M., Macredie, R. D., Patel, C. & Paul, R. J. 2003. Migrating Agile
Methods to Standardized Development Practice. Computer, Vol. 36, 6 (6), June,
pp. 79�85.

Malouin, J. L. & Landry, M. 1983. The Miracle of Universal Methods in Systems
Design. Journal of Applied Systems Analysis, Vol. 10, pp. 47�62.

March, S. T. & Smith, G. F. 1995. Design and Natural Science Research on
Information Technology. Decision Support Systems, Vol. 15, pp. 251�266.

Mathiassen, L., Pries-Heje, J. & Nqwenyama, O. 2002. Improving Software
Organizations: from Principles to Practice. Addison-Wesley. Boston. 336 p.

McCracken, D. D. & Jackson, M. A. 1982. Life Cycle Concept Considered
Harmful. Software Engineering Notes, Vol. 7, 2 (2), April, pp. 29�32.

McFeeley, B. IDEAL(SM): A Users Guide for Software Process Improvement.
CMU/SEI-96-HB-001. Software Engineering Institute (SEI). February 1996. 222 p.

Merriam-Webster Online Dictionary. http://www.m-w.com/ (June 2006).

Miles, M. B. & Huberman, A. M. 1994. Qualitative Data Analysis: An Expanded
Sourcebook. Second Edition. SAGE Publications, Inc. Thousand Oaks. 338 p.

http://www.m-w.com/

 146

Morgan, D. L. 1984. Focus Groups: A New Tool for Qualitative Research.
Qualitative Sociology, Vol. 7(3), Fall 1984, pp. 253�270.

Morgan, D. L. 1988. Focus Groups as Qualitative Research. SAGE Publications.
Newbury Park. 85 p.

Morien, R. 2005. Agile Management and the Toyota Way for Software Project
Management. In: The proceedings of the 3rd International Conference on
Industrial Informatics (INDIN). August 10, 2005. Perth, WA, Australia. IEEE.
Pp. 516�522.

NATO Science Committee. 1969. Software Engineering: Report of a Conference
Sponsored by the NATO Science Committee. Naur, P. & Randell, B. (eds.).
Scientific Affairs Division, NATO. Garmisch, 7�11 Oct., 1968. 231 p.

Nawrocki, J., Walter, B. & Wojciechowski, A. 2001. Toward Maturity Model
For Extreme Programming. In: The proceedings of the 27th Euromicro
Conference 2001. 4�6 September 2001. Warsaw, Poland. Pp. 233�239.

Niazi, M., Wilson, D. & Zowghi, D. 2003. A Model for the Implementation of
Software Process Improvement: A Pilot Study. In: The proceedings of the Third
International Conference on Quality Software (QSIC�03). November 2003.
Pp. 196�203.

Nielsen, P. A. & Pries-Heje, J. 2002. A Framework for Selecting an Assessment
Strategy. In: Improving Software Organizations: from Principles to Practice.
Addison-Wesley, Boston. Pp. 185�197.

Nonaka, I. & Hirotaka, T. 1995. The Knowledge-Creating Company. Oxford
University Press, Inc. 284 p.

Oivo, M. & Basili, V. R. 1992. Representing Software Engineering Models: The
TAME Goal Oriented Approach. IEEE Transactions on Software Engineering,
Vol. 18 (10), October, pp. 886�898.

Oleson, J. D. 1998. Pathways to Agility: Mass Customization in Action. John
Wiley & Sons, Inc. New York, USA. 262 p.

 147

Patton, M. Q. 2002. Quatlitative Research & Evaluation Methods. Sage
Publications, Inc. Thousand Oaks, California. 598 p.

Paulk, M., Curtis, B., Chrissis, M. & Weber, C. 1993. Capability Maturity
Model for Software (Version 1.1). CMU/SEI-93-TR-024. Software Engineering
Institute (SEI). February. 65 p.

Paulk, M. C. 2001. Extreme Programming from a CMM Perspective. Software,
Vol. 18, 6 (6), Nov.�Dec, pp. 19�26.

Pfleeger, S. L. & Rombach, H. D. 1994. Measurement Based Process
Improvement. IEEE Software, Vol. 11, 4 (4), July, pp. 8�11.

Pikkarainen, M. & Passoja, U. 2005. An Approach for Assessing Suitability of
Agile Solutions: A Case Study. In: The proceedings of the Sixth International
Conference on Extreme Programming and Agile Processes in Software Engineering.
Sheffield University, UK. Pp. 171�179.

Poppendieck, M. & Poppendieck, T. 2003. Lean Software Development:
An Agile Toolkit. Addison-Wesley. Boston. 203 p.

Rapoport, R. N. 1970. Three dilemmas of action research. Human Relations,
Vol. 23, pp. 499�513.

Rawlinson, J. G. 1981. Creative Thinking and Brainstorming. Gower Publishing
Company Limited. Westmead. 128 p.

Reifer, D. J. 2003. XP and the CMM. IEEE Software, Vol. 20, 3 (3), May/June,
pp. 14�15.

Rico, D. F. 2004. ROI of Software Process Improvement: Metrics for Project
Managers and Software Engineers. J. Ross Publishing. Florida, U.S.A. 218 p.

Ross, A. & Francis, D. 2003. Lean is Not Enough. IEE Manufacturing Engineer,
Vol. August/September, pp. 14�17.

 148

Rout, T. P., Tuffley, A., Cahill, B. & Hodgen, B. 2000. The Rapid Assessment
of Software Process Capability. In: The proceedings of the First International
Conference on Software Process Improvement and Capability dEtermination
(SPICE 2000). 10th�11th June, 2000. Limerick, Ireland. Pp. 47�55.

Royce, W. W. 1970. Managing the Development of Large Software Systems. In:
The proceedings of the WESCON. San Francisco. IEEE CS. Pp. 328�339.

Schwaber, C. & Fichera, R. 2005. Corporate IT Leads The Second Wave of
Agile Adoption. Forrester Research, Inc. November 30, 2005. 6 p.

Schwaber, K. 1995. Scrum Development Process. In: The proceedings of the
OOPSLA�95 Workshop on Business Object Design and Implementation.
Springer-Verlag. Pp. 117�134.

Schwaber, K. 2004. Agile Project Management with Scrum. Microsoft Press.
Washington. 163 p.

Schwaber, K. & Beedle, M. 2002. Agile Software Development with Scrum.
Prentice-Hall. Upper Saddle River, NJ. 158 p.

Scupin, R. 1997. The KJ Method: A Technique for Analyzing Data Derived
from Japanese Ethnology. Human Organization, Vol. 56, 2 (2), pp. 233�237.

SEI, C. M. S. E. I. Capability Maturity Model® Integration (CMMISM), Version
1.1. Carnegie Mellon Software Engineering Institute. 2001.

Sillitti, A., Janes, A., Succi, G. & Vernazza, T. 2003. Collecting, Integrating and
Analyzing Software Metrics and Personal Software Process Data. In: The
proceedings of the 29th EUROMICRO Conference. Pp. 336�342.

Stapleton, J. 2003. DSDM: Business Focused Development. Second Edition.
Addison Wesley. London. 239 p.

Stålhane, T., Dingsøyr, T., Hanssen, G. K. & Moe, N. B. 2001. Post Mortem � An
Assessment of Two Approaches. In: The proceedings of the European Software
Process Improvement. Limerick, Ireland. Pp. 129�141.

 149

Susman, G. I. & Evered, R. D. 1978. An Assessment of the Scientific Merits of
Action Research. Administrative Science Quarterly, Vol. 23, pp. 582�603.

Sweeney, A. & Bustard, D. W. 1997. Software Process Improvement: Making it
Happen in Practice. Software Quality Journal, Vol. 6 (4), pp. 265�274.

van Solingen, R. & Berghout, E. 1999. The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development. The
McGraw-Hill Companies. 199 p.

Wilkie, F. G., McFall, D. & McCaffery, F. 2005. An Evaluation of CMMI
Process Areas for Small- to Medium-sized Software Development Organizations.
Software Process Improvement and Practice, Vol. 10, 2 (2), pp. 189�201.

Williams, L. & Cockburn, A. 2003. Agile Software Development: It�s about
Feedback and Change. IEEE Computer Society, Vol. 36, 6 (6), June, pp. 39�43.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. & Wesslén, A.
2000. Experimentation in Software Engineering. Kluwer Academic Publishers.
Boston. 204 p.

Vriens, C. 2003. Certifying for CMM Level 2 and ISO9001 with XP@Scrum.
In: The proceedings of the Agile Development Conference (ADC�03). September,
2003. IEEE Computer Society. Pp. 120�124.

Yin, R. K. 2003. Case Study Research: Design and Methods. Third Edition.
SAGE Publications. Thousand Oaks, 5. 181 p.

Zahran, S. 1998. Software Process Improvement: Practical Guidelines for
Business Success. Addison-Wesley. 447 p.

Published by

 Series title, number and
report code of publication

VTT Publications 618
VTT�PUBS�618

Author(s)
Salo, Outi
Title

Enabling Software Process Improvement in Agile
Software Development Teams and Organisations

Abstract
Agile software development has challenged the traditional ways of delivering software as it
provides a very different approach to software development. In recent decades, software process
improvement (SPI) has been widely studied in the context of traditional software development, and
its strengths and weaknesses have been recognised. As organisations increasingly adopt agile
software development methodologies to be used alongside traditional methodologies, new
challenges and opportunities for SPI are also emerging. One challenge is that traditional SPI
methods often emphasise the continuous improvement of organisational software development
processes, whereas the principles of agile software development focus on iterative adaptation and
improvement of the activities of individual software development teams to increase effectiveness.

The focus of this thesis is twofold. The first goal is to study how agile software development teams
can conduct SPI, according to the values, principles and practices of agile software development,
in tandem with the success factors of traditional SPI. The second goal is to study how the team-
centred SPI of agile software development and the traditional view of organisational improvement
can be integrated to co-exist in a mutually-beneficial manner in software development
organisations. The main research methodology in this thesis is action research (AR). The empirical
data is taken from six agile software development case projects. The results of this research have
been published in a total of seven conference, and journal, papers.

Keywords
software process improvement, SPI, agile software development, iterative improvement process

ISBN
951�38�6869�9 (soft back ed.)
951�38�6870�2 (URL: http://www.vtt.fi/publications/index.jsp)

Series title and ISSN Project number

VTT Publications
1235�0621 (soft back ed.)
1455�0849 (URL: http://www.vtt.fi/publications/index.jsp)

Date Language Pages Price
November 2006 English 149 p. + app. 96 p. F

Name of project Commissioned by

Contact Sold by
VTT Technical Research Centre of Finland
P.O. Box 1100, FI-90571 OULU, Finland
Phone internat. +358 20 722 111
Fax +358 20 722 2320

VTT Technical Research Centre of Finland
P.O.Box 1000, FI-02044 VTT, Finland
Phone internat. +358 20 722 4404
Fax +358 20 722 4374

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

V
TT PU

BLICA
TIO

N
S 618

Enabling Softw
are Process Im

provem
ent in A

gile Softw
are D

evelopm
ent Team

s and...
O

uti Salo

Tätä julkaisua myy Denna publikation säljs av This publication is available from

VTT VTT VTT
PL 1000 PB 1000 P.O. Box 1000

02044 VTT 02044 VTT FI-02044 VTT, Finland
Puh. 020 722 4404 Tel. 020 722 4404 Phone internat. +358 20 722 4404
Faksi 020 722 4374 Fax 020 722 4374 Fax +358 20 722 4374

ISBN 951–38–6869–9 (soft back ed.) ISBN 951–38–6870–2 (URL: http://www.vtt.fi/inf/pdf/)
ISSN 1235–0621 (soft back ed.) ISSN 1455–0849 (URL: http://www.vtt.fi/inf/pdf/)

ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006ESPOO 2006 VTT PUBLICATIONS 618

Outi Salo

Enabling Software Process
Improvement in Agile Software
Development Teams and
Organisations

Agile software development has challenged the traditional ways of
delivering software as it provides a very different approach to software
development. In recent decades, software process improvement (SPI) has
been widely studied in the context of traditional software development, and
its strengths and weaknesses have been recognised. As organisations
increasingly adopt agile software development methodologies to be used
alongside traditional methodologies, new challenges and opportunities for
SPI are also emerging. One challenge is that traditional SPI methods often
emphasise the continuous improvement of organisational software
development processes, whereas the principles of agile software
development focus on iterative adaptation and improvement of the
activities of individual software development teams to increase
effectiveness.

The focus of this thesis is twofold. The first goal is to study how agile
software development teams can conduct SPI, according to the values,
principles and practices of agile software development, in tandem with the
successful factors of traditional SPI. The second goal is to study how the
team-centred SPI of agile software development and the traditional view of
organisational improvement can be integrated to co-exist in a mutually-
beneficial manner in software development organisations. The main
research methodology in this thesis is action research (AR). The empirical
data is taken from six agile software development case projects. The results
of this research have been published in a total of seven conference, and
journal, papers.

http://www.vtt.fi/inf/pdf/
http://www.vtt.fi/inf/pdf/

	Abstract
	Preface
	List of Original Publications
	List of Names and Acronyms
	Contents
	1. Introduction
	1.1 Background
	1.2 Focus of Research
	1.3 Research Problem
	1.4 Outline of the Thesis

	2. Related Work
	2.1 Process Models of Software Development
	2.1.1 Plan-Driven Models for Software Development
	2.1.2 Iterative Change-Driven Models for Software Development

	2.2 Agile Software Development
	2.2.1 History and Fundamentals of Agile Software Development
	2.2.2 Current Status of Agile Software Development

	2.3 Software Process Improvement
	2.3.1 Traditional Elements of SPI
	2.3.1.1 Organisational SPI Models
	2.3.1.2 Standard Processes and Assessments
	2.3.1.3 Process Tailoring
	2.3.1.4 Process Deployment
	2.3.1.5 Measurement
	2.3.1.6 Experience, Knowledge and Learning

	3. SPI in Agile Software Development
	3.1 The Elements of SPI in Agile Software Development
	3.1.1.1 Organisational Models
	3.1.1.2 Standard Processes and Assessments
	3.1.1.3 Process Tailoring
	3.1.1.4 Process Deployment
	3.1.1.5 Measurement
	3.1.1.6 Experience, Knowledge and Learning

	3.2 Comparison of SPI Elements in Plan-Driven and Agile

	4. Research Design
	4.1 Research Methods and Evolution
	4.1.1 Literature Review
	4.1.2 Case Study
	4.1.3 Action Research
	4.1.3.1 Conceptual Foundation of AR
	4.1.3.2 Study Design of AR
	4.1.3.3 Research process of AR
	4.1.3.4 Role Expectations of AR

	4.1.4 Five Cycles of Action Research
	4.1.4.1 Diagnosing
	4.1.4.2 Action Planning
	4.1.4.3 Action Taking
	4.1.4.4 Evaluating
	4.1.4.5 Specifying Learning

	4.2 Research Setting
	4.2.1 Context of Research
	4.2.1.1 Laboratory Research Setting
	4.2.1.2 Semi-Industrial Research Setting
	4.2.1.3 Industrial Context

	4.2.2 Case Projects and Organisation
	4.2.2.1 Case Project I: eXpert
	4.2.2.2 Case Project II: zOmbie
	4.2.2.3 Case Project III: bAmbie
	4.2.2.4 Case Project IV: uniCorn
	4.2.2.5 Case Project V: Bubble
	4.2.2.6 Case Project VI: Phantom

	4.3 Collection of the Empirical Evidence
	4.4 Storing and Analysing the Empirical Evidence
	4.5 Reporting the Results of Research
	4.5.1 Paper I
	4.5.2 Paper II
	4.5.3 Paper III
	4.5.4 Paper IV
	4.5.5 Paper V
	4.5.6 Paper VI
	4.5.7 Paper VII

	4.6 Summary

	5. Evaluation of the Research
	5.1 Validity of Research
	5.2 Evaluation of the Results
	5.2.1 Implications for the Theory
	5.2.2 Implications for the Practice

	6. Summary and Conclusions
	6.1 Summary of the Results
	6.2 Limitations of the Study
	6.3 Future Research

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

