
CS2303 - Winter 2005

Notes on Finite State Machines

Although finite state machines are covered in the course textbook, the way we
define them in this course will be slightly different, so the presentation in these
notes should be followed instead of the text.

Motivation: Suppose we want to solve a problem like the following:

Given a string of zeroes and ones, we want to recognize when the input con-
tains the substring 001 but does not start with 11.

We’re going to design a simple, theoretical “machine” that will be able to
solve pattern recognition problems like this one.

A finite state machine (or finite automaton) M is an abstract model of a very
simple computer (with limited memory). It has the following components:

• a finite set Q of states

• a finite set Σ of input symbols

• an initial state q0 ∈ Q

• a transition function δ : Q × Σ → Q

• a set A ⊆ Q of accepting states

The machine starts in the initial state. It then receives input, one symbol at a
time. Upon receiving each input symbol, the transition function determines the
next state of the machine. If it was in state q and it receives input symbol a,
then δ(q, a) tells us the next state of the machine. When the end of an input
string is reached, the machine will be in some state; let’s call it qf . If qf is a
member of the set A of accepting states, then we say that the input string is
accepted by the machine. Otherwise, the input string is not accepted.

1



Example 1:

The finite state machine described below will accept all strings of zeroes and
ones that contain at least two ones. Instead of describing Q, Σ, q0, δ and A, we
almost always represent a finite state machine with a diagram like the following:

A B C
1 1

0, 1
0 0

The diagram above is a nice, graphical way of representing all the information
that would be in the official, formal description of a finite state machine. The
components of the finite state machine above are the following:

• The set of states is {A, B, C}.

• The set of input symbols is {0, 1}.

• The initial state is A. (This is indicated by the unlabelled arrow going
into A.)

• The transition function δ can be described by the following transition
table:

0 1
A A B
B B C
C C C

The top row tells us that, if we’re in state A, an input of 0 causes us to
stay in state A, while an input of 1 causes us to move to state B.

• The set of accepting states (indicated by a double circle) is {C}.

If the sequence of symbols in an input string will take us to state C, then that
string is accepted by the machine; otherwise, it is not accepted.

2



Let’s consider the example input string 1011000 and trace how the finite
state machine would process it.

• The machine starts in state A.

• The first input symbol is 1. When we’re in state A and we see an input
of 1, the diagram (or the transition table) tells us to move to state B.

• The second input symbol is 0. When we’re in state B and we see an input
of 0, we stay in state B.

• The third input symbol is 1. This causes us to move to state C. Note
that, in this example, once we’re in state C, there is no way to leave. We
will always stay in state C, no matter how much additional input we see.
Therefore, in this case, the rest of the input (1000) doesn’t really matter.
We know that we will end up staying in state C and that the string will
be accepted.

• This is the right decision. The string does contain two or more ones, and
so we should accept it.

Let’s trace a second example through our machine: 0010.

• The machine starts in state A.

• The first input symbol is 0. When we’re in state A and we see an input
of 0, the diagram (or the transition table) tells us to stay in state A.

• This happens again upon seeing the second 0 in the input.

• The third input symbol is 1. This causes us to move to state B.

• Finally, the fourth input symbol is 0 and we stay in state B. Because
the input is now finished, and because we did not end up in an accepting
state, this string is not accepted.

• Again, this is the right decision. The string does not have two or more
ones, and so it should not be accepted.

It is worthwhile at this point to think about why our machine had three states.
How would we have designed the machine from scratch, given the problem we
were trying to solve? Given the description of the problem, we know that the
only thing we need to remember about a string is the number of ones we have
seen so far. This is what the three different states represent. Any time we’re in
state A, it means that we have not seen any ones yet. In state B, we have seen
1 one so far. In state C, we have seen 2 or more ones.

3



As we look at more complicated problems, the role of the states will always
be the same. As we process an input string, we will want to remember one or
more pieces of information about the part of the string we’ve seen so far. Each
state will represent a different possible case that could arise.

For example, if we wanted to recognize strings of letters a-z that contained
at least two e’s, at least three s’s, and no n’s, we would need to read input
symbols from the string and keep track of:

1) How many e’s have we seen so far (0, 1, at least 2)?
2) How many s’s have we seen so far (0, 1, 2, at least 3)?
3) How many n’s have we seen so far (0, at least 1)?

We would need 24 different states to keep track of all possible combinations
of answers to questions 1, 2, 3:

State e’s seen s’s seen n’s seen
name so far so far so far
S0 0 0 0
S1 0 0 ≥ 1
S2 0 1 0
S3 0 1 ≥ 1
S4 0 2 0
S5 0 2 ≥ 1
S6 0 ≥ 3 0
S7 0 ≥ 3 ≥ 1
S8 1 0 0
S9 1 0 ≥ 1
S10 1 1 0
S11 1 1 ≥ 1
S12 1 2 0
S13 1 2 ≥ 1
S14 1 ≥ 3 0
S15 1 ≥ 3 ≥ 1
S16 ≥ 2 0 0
S17 ≥ 2 0 ≥ 1
S18 ≥ 2 1 0
S19 ≥ 2 1 ≥ 1
S20 ≥ 2 2 0
S21 ≥ 2 2 ≥ 1
S22 ≥ 2 ≥ 3 0
S23 ≥ 2 ≥ 3 ≥ 1

4



So, when asked to design a finite state machine to accept a particular class of
strings, ask yourself the questions: What information do we have to keep track
of? What possible cases could arise? This will tell you what states you must
have in your machine.

Example 2:

Design a finite state machine that will accept all strings of zeroes and ones
that contain the substring 101.

In this case, what do we want to remember? If we have already seen the
substring 101, then we should be in an accepting state that we will never leave.
In particular, if we see 101 at the very beginning of a string, we should move
from the initial state (A) to an accepting state (D) by following three transitions:
A to B when we see the first one, B to C when we see the 0, and then C to D
when we see the second one.

A B C D
1 0 1

0, 1

However, this is not a complete finite state machine. For a finite state ma-
chine to be complete (and for it to work correctly on all possible inputs), we
must define a transition from every state on every possible input symbol.

In our example, what should happen in state C if we see a zero? What
should happen in state B if we see a one? What should happen in state A if we
see a zero?

Basically, if we’re in state C, we are remembering that we have just seen
the sequence 10. In case we happen to see a 1 as the next input symbol, we
want to be in a position where we can move directly to our accepting state
upon seeing a 1. However, if we see a zero instead, what should we do? By
reading a zero as the next input symbol, we are undoing all the “good” that
the substring of 10 did in moving us towards the accepting state. We must go
all the way back to the beginning and, in order to make any progress towards
the accepting state, we must start over with a new instance of the substring 101.

[This example will be completed in class.]

5



Example 3:

Design a finite state machine that will accept all strings of zeroes and ones
that contain exactly two ones.

In this case, our machine should be exactly the same as Example 1 (at least
two ones), with one exception. In Example 1, as soon as we saw a second one,
we knew that we would want to accept the string. Therefore, it was OK to
move to state C as soon as we saw a second one and then stay there, regardless
of any additional input symbols. In this example, we want to accept a string if
it has exactly two ones, but not if it has three or more ones, so we should enter
state C when we see a second one, but then leave state C (and make sure we
never return) as soon as we see a third one.

A B C D
1 1 1

0, 1
00 0

A state such as D in the example above is often referred to as a dead state.
As soon as we enter a dead state, there is no way to exit it, and we are guaran-
teed that we will not accept the string, regardless of any additional input.

In addition to examples like the one above, dead states are appropriate
states to add to finite state machines in examples like Design a finite state

machine that will accept all strings of zeroes and ones that do not

contain the substring 101. You can set up a machine to do this by ensur-
ing that, as soon as you see the substring 101, you enter into a dead state and
are unable to leave.

Exercise: Design a finite state machine that will accept all strings of zeroes
and ones that do not contain the substring 101.

6



Example 4: Draw a finite state machine that will accept all strings of zeroes
and ones that end in 111.

In this case, we want to make sure that we enter an accepting state whenever
we have just seen the substring 111. In case that happens to be the end of the
string, we want to make sure that we are in a position to accept it. However,
while we’re in the accepting state, if we see an input symbol of zero, we should
leave the accepting state and go back to the very beginning. In order to get back
to the accepting state, we would have to see another instance of the substring
111.

A B C D

0

1 1 1
10

0

0
On the other hand, seeing another one while we’re in state D is perfectly

fine. We now know that the string ends in 1111, but this is fine; it still ends in
111.

Exercise: Draw a finite state machine that will accept all strings of zeroes and
ones that start with 111.

7



Example 5: Draw a finite state machine that will accept all strings of zeroes
and ones that contain the substring 00 and contain at least two ones.

In this case, we have to remember two different facts about the string we’ve
seen so far. Have we seen the substring 00 yet (or have we just seen the first 0 in
what might end up being a substring of 00)? How many ones have we seen so far?

The states in our finite state machine must capture all the possible combi-
nations of answers to those questions.

State Have we seen Number of ones
name 00 yet? seen so far
S0 No 0
S1 No 1
S2 No ≥ 2
S3 No, but one zero was just seen 0
S4 No, but one zero was just seen 1
S5 No, but one zero was just seen ≥ 2
S6 Yes 0
S7 Yes 1
S8 Yes ≥ 2

Of these states, only S8 should be an accepting state. What should the
entire FSM look like?

[This will be completed in class.]

8



Example 6: This example is provided just to show that we can construct finite
state machines when we have more than two possible input symbols.

Draw a finite state machine that accepts strings of a’s, b’s and c’s that
contain the substring abc.

A B C Da b c

b, c a a, b, c

c a

b

Example 7: Something we haven’t seen yet is an example of a finite state
machine that contains more than one accepting state. There is nothing in the
definition of a finite state machine that says that we can’t have several accepting
states.

Draw a finite state machine that will accept strings of zeroes and ones that
contain exactly two ones or exactly one zero.

Again, we can create states that capture all the possible cases that might
arise, if we were to count the number of ones and the number of zeroes seen so
far.

State Number of Number of
name zeroes seen ones seen

A 0 0
B 0 1
C 0 2
D 0 ≥ 3
E 1 0
F 1 1
G 1 2
H 1 ≥ 3
I ≥ 2 0
J ≥ 2 1
K ≥ 2 2
L ≥ 2 ≥ 3

9



One of the big differences between this example and ones we’ve seen before
is that the description in this case contains the word or. As long as we have
either exactly two ones or exactly one zero, we want to accept the string. So,
in our list of states above, we should accept a string if we are in states E, F, G

or H (because those states represent situations in which the number of zeroes
is exactly one) or if we are in states C, G or K (because those states represent
situations in which the number of ones is exactly two). Our accepting states
should be C, E, F, G, H and K.

The finite state machine would look like this:

A B C D

E F G H

I J K L

1 1 1

1 1 1

1 1 1

0

0

0

0

0

0

0

0

0 0 0

1

1

0, 1

Describing finite state machines

In these notes, we have looked only at the idea of designing finite state
machines given a description of the strings that we want to accept. We will also
talk in class about looking at a finite state machine and describing the strings
that are accepted by the given machine.

10


