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Abstract 

 
Graph theory is becoming increasingly significant as it is applied to other areas of mathematics, 

science and technology. It is being actively used in fields as varied as biochemistry (genomics), 

electrical engineering (communication networks and coding theory), computer science (algorithms 

and computation) and operations research (scheduling). The powerful combinatorial methods 

found in graph theory have also been used to prove fundamental results in other areas of pure 

mathematics. This paper, besides giving a general outlook of these facts, includes new graph 

theoretical proofs of Fermat’s Little Theorem and the Nielson-Schreier Theorem. New 

applications to DNA sequencing (the SNP assembly problem) and computer network security 

(worm propagation) using minimum vertex covers in graphs are discussed. We also show how to 

apply edge coloring and matching in graphs for scheduling (the timetabling problem) and vertex 

coloring in graphs for map coloring and the assignment of frequencies in GSM mobile phone 

networks. Finally, we revisit the classical problem of finding re-entrant knight’s tours on a 

chessboard using Hamiltonian circuits in graphs.   

 

Introduction 

 

Graph theory is rapidly moving into the mainstream of mathematics mainly 

because of its applications in diverse fields which include biochemistry, electrical 

engineering (communications networks and coding theory), computer science 

(algorithms and computations) and operations research (scheduling). The wide 

scope of these and other applications has been well-documented cf. [5] [19]. The 

powerful combinatorial methods found in graph theory have also been used to 

prove significant and well-known results in a variety of areas in mathematics 

itself. The best known of these methods are related to a part of graph theory called 
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matchings, and the results from this area are used to prove Dilworth’s chain 

decomposition theorem for finite partially ordered sets. An application of 

matching in graph theory shows that there is a common set of left and right coset 

representatives of a subgroup in a finite group. This result played an important 

role in Dharwadker’s 2000 proof of the four-color theorem [8] [18]. The existence 

of matchings in certain infinite bipartite graphs played an important role in 

Laczkovich’s affirmative answer to Tarski’s 1925 problem of whether a circle is 

piecewise congruent to a square. The proof of the existence of a subset of the real 

numbers R that is non-measurable in the Lebesgue sense is due to Thomas [21]. 

Surprisingly, this theorem can be proved using only discrete mathematics 

(bipartite graphs). There are many such examples of applications of graph theory 

to other parts of mathematics, but they remain scattered in the literature [3] [16]. 

In this paper, we present a few selected applications of graph theory to other parts 

of mathematics and to various other fields in general. 

 

1. The Cantor-Schröder-Bernstein Theorem    

 

Here we discuss the graph theoretical proof of the classical result of Schröder and 

Bernstein. This theorem was presumed to be an obvious fact by Cantor  

(cf. remark 1.2) and later proved independently by Schröder (1896) and Bernstein 

(1905). The proof given here can be found in [14] and is attributed to König. 

 

1.1. Theorem (Cantor-Schroder-Bernstein). For the sets A and B, if there is an 

injective mapping f: AB and an injective mapping g: BA, then there is a 

bijection from A onto B, that is, A and B have the same cardinality. 

 

Proof. Without loss of generality, assume A and B to be disjoint. Define a bipartite 

graph G = (A, B, E), where xy  E if and only if either f(x) = y or g(y) = x,  x  A, 

y  B. By the hypothesis, 1  d(v)  2 for each v of G. Therefore, each component 
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of G is either a one-way infinite path (that is, a path of the form x0, x1,…, xn,…), 

or a two-way infinite path (of the form …, x–n ,  x–n+1,…, x–1 , x0, x1,…, xn,…), or a 

cycle of even length with more than two vertices, or an edge. Note that a finite 

path of length greater or equal to two cannot be a component of G. Thus, in each 

component there is a set of edges such that each vertex in the component is 

incident with precisely one of these edges. Hence, in each component, the subset 

of vertices from A is of the same cardinality as the subset of vertices from B.     ■ 

 

1.2. Remark. Cantor inferred the result as a corollary of the well-ordering 

principle. The above argument shows that the result can be proved without using 

the axiom of choice. 

 

2. Fermat’s (Little) Theorem 

 

There are many proofs of Fermat’s Little Theorem. The first known proof was 

communicated by Euler in his letter of March 6, 1742 to Goldbach. The idea of 

the graph theoretic proof given below can be found in [12] where this method, 

together with some number theoretic results, was used to prove Euler’s 

generalization to non-prime modulus. 

 

2.1. Theorem (Fermat). Let a be a natural number and let p be a prime such that 

a is not divisible by p. Then, a
p
 – a is divisible by p.   

 

Proof. Consider the graph G = (V, E), where the vertex set V is the set of all 

sequences (a1, a2,…, ap) of natural numbers between 1 and a (inclusive), with  

ai ≠ aj for some  i ≠ j. Clearly, V has   a
p
 – a elements. Let u = (u1, u2, …, up),  

v = (up, u1,…, up–1)  V. Then, we say uv  E. With this assumption, each vertex 
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of G is of degree 2. So, each component of G is a cycle of length p. Therefore, the 

number of components is .
p

aa p 
 That is, .aap p       ■ 

 

3. The Nielson-Schreier Theorem  

 

Let H be a group and S be a set of generators of H. The product of generators and 

their inverses which equals identity (1) is called a trivial relation among the 

generators in S if 1 can be obtained from that product by repeatedly replacing xx
–1

 

or x
–1

x  by 1. Otherwise such a product is called a non-trivial relation. A group H 

is free if H has a set of generators such that all relations among the generators are 

trivial.   

Babai [2] proved the Nielson-Schreier Theorem for subgroups of free 

groups, as well as other results in diverse areas, from his Contraction Lemma. The 

particular case of this lemma when G is a tree, and its use in proving the Nielson-

Schreier Theorem, was also observed by Serre [20].  

 

3.1. Contraction Lemma. Let H be a semi-regular subgroup of the automorphism 

group of a connected graph G. Then, G is contractible onto some Cayley graph of 

H. The proof of this lemma is technical, although it only uses ideas from group 

theory and graph theory.  

Let H be a group and h  H. Let hR be a permutation of H obtained by 

multiplying all the elements of H on the right by h. The collection  

HR = {hR: h  H} is a regular group of permutations (under composition) and is 

called the (right) regular permutation representation of H. 

It can be seen [2] that G is a Cayley graph of the group H if and only if G 

is connected and HR is a subgroup of the automorphism group of G. 
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The automorphism group of a graph G is the group of all permutations p of the 

vertices of G with the property that p(x)p(y) is an edge of G if and only if xy is an 

edge of G. 

A group H of permutations acting on a set V is called semi-regular if for 

each x  V, the stabilizer Hx = {h  H: x
h
 = x} consists of the identity only, where 

x
h
 denotes the image of x under h. If H is transitive and semi-regular, then it is 

regular. 

Let (H, o) be a group and S be a set of generators of H, not necessarily 

minimal. 

The Cayley graph G(H, S) of (H, o) with respect to S, has vertices  

x, y,… H, and xy is an edge if and only if either x = yoa or y = xoa, for some  

a  S. 

If G is any graph and e = xy an edge of G, then by contraction along e, we 

mean the graph /G  obtained by identifying the vertices x and y. 

We say that a graph G1 is contractible onto a graph G2 if there is a 

sequence of contractions along edges which transforms G1 to G2. 

 

3.2. Corollary. If J is a subgroup of a group H, then any G(H, S) is contractible 

onto G(J, T) for some set T of generators of J. 

 

3.3. Theorem (Nielson-Schreier). Any subgroup of a free group is free. 

 

Proof. We first show that in any group H and for any set S of generators of H, the 

Cayley graph G(H, S) contains a cycle of length > 2 if and only if there is a 

nontrivial relation among the generators in S. To show this, suppose  

x0, x1,…, xn = x0 is a cycle of  G(H, S). Then, there are       

ai  S, 1  i  n, such that ,1 iii xax i 

  where }.1,1{ i  Hence, 

,...... 211

210121
nnnn

nnnnnnn aaaxaaxaxx


 

  that is, the identity 

....1 21

21
n

naaa


  If this were a trivial relation, then there would exist an integer i,  
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1  i  n, such that ai = ai+1 and .1 ii   However, this implies that xi–1 = xi+1, a 

contradiction. Similarly, if 1...21

21 n

naaa
  is a nontrivial relation, then  

x0, x1,…, xn–1, xn, where ,1,1 niaxx i

iii  

  and x0 = xn, is a closed trial in  

G(H, S), which must contain a cycle. 

Suppose now that H is a free group, S a minimal set of generators of H, 

and J a subgroup of H. Since there is no nontrivial relation on the elements of S, 

G(H, S) does not contain a cycle. Also, from the Corollary above, G(H, S) is 

contractible onto G(J, T) for some set T of generators of J. Because any 

contraction of a cycle-free graph is again cycle free, G(J, T) must be cycle free, 

and, thus, there is no nontrivial relation on the elements of T. Hence, J must be a 

free group, freely generated by T.     ■   

 

4. The SNP Assembly Problem 

 

In computational biochemistry there are many situations where we wish to resolve 

conflicts between sequences in a sample by excluding some of the sequences. Of 

course, exactly what constitutes a conflict must be precisely defined in the 

biochemical context. We define a conflict graph where the vertices represent the 

sequences in the sample and there is an edge between two vertices if and only if 

there is a conflict between the corresponding sequences. The aim is to remove the 

fewest possible sequences that will eliminate all conflicts. Recall that given a 

simple graph G, a vertex cover C is a subset of the vertices such that every edge 

has at least one end in C. Thus, the aim is to find a minimum vertex cover in the 

conflict graph G. (in general, this is known to be a NP-complete problem [13]). 

We look at a specific example of the SNP assembly problem given in [15] and 

show how to solve this problem using the vertex cover algorithm [6]. 

A Single Nucleotide Polymorphism (SNP, pronounced “snip”) [15] is a single base 

mutation in DNA. It is known that SNPs are the most common source of genetic  
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Figure 4.1. The DNA double helix and SNP assembly problem 

 

polymorphism in the human genome (about 90% of all human DNA 

polymorphisms). The SNP Assembly Problem [15] is defined as follows. A SNP 

assembly is a triple (S, F, R) where S = {s1, …, sn} is a set of n SNPs,  

F = {f1, …, fm} is a set of m fragments and R is a relation R: S  F  {0, A, B} 

indicating whether a SNP si  S does not occur on a fragment fj  F (marked by 0) 

or if occurring, the non-zero value of si (A or B). Two SNPs si and sj are defined to 

be in conflict when there exist two fragments fk and fl such that exactly three of 

R(si, fk), R(si, fl), R(sj, fk), R(sj, fl) have the same non-zero value and exactly one 

has the opposing non-zero value. The problem is to remove the fewest possible 

SNPs that will eliminate all conflicts. The following example from [15] is shown 

in the table below. Note that the relation R is only defined for a subset of S  F 

obtained from experimental values. 
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R f1 f2 f3 f4 f5 

s1 A B   B 

s2 B A A A 0 

s3 0 0 B B A 

s4 A 0 A 0 B 

s5 A B B B A 

s6 B  A A 0 

 

Note, for instance, that s1 and s5 are in conflict because R(s1, f2) = B, R(s1, f5) = B, 

R(s5, f2) = B, R(s5, f5) = A. Again, s4 and s6 are in conflict because R(s4, f1) = A, 

R(s4, f3) = A, R(s6, f1) = B, R(s6, f3) = A. Similarly, all pairs of conflicting SNPs are 

easily determined from the table. The conflict graph G corresponding to this SNP 

assembly problem is shown below in figure 4.2. 

 

 

 

Figure 4.2. The conflict graph G 

 

We now use the vertex cover algorithm [6] to find minimal vertex covers in the 

conflict graph G. The input is the number of vertices 6, followed by the adjacency 

matrix of G shown below in figure 4.3. The entry in row i and column j of the 

adjacency matrix is 1 if the vertices si and sj have an edge in the conflict graph and 

0 otherwise. 
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0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 0 1 0 0 

0 0 0 1 0 0 

 

Figure 4.3. The input for the vertex cover algorithm 

 

The vertex cover program [6] finds two distinct minimum vertex covers, shown in 

figure 4.4. 

 

Minimum Vertex Cover: s1, s4 

 

Minimum Vertex Cover: s4, s5 

 

Figure 4.4. The output of the vertex cover algorithm 

 

Thus, either removing s1, s4 or removing s4, s5 solves the given SNP assembly 

problem.     ■ 
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5. Computer Network Security 

 

A team of computer scientists led by Eric Filiol [11] at the Virology and 

Cryptology Lab, ESAT, and the French Navy, ESCANSIC, have recently used the 

vertex cover algorithm [6] to simulate the propagation of stealth worms on large 

computer networks and design optimal strategies for protecting the network 

against such virus attacks in real-time.  

 

 

Figure 5.1. The set {2, 4, 5} is a minimum vertex cover in this computer network 

 

The simulation was carried out on a large internet-like virtual network and 

showed that that the combinatorial topology of routing may have a huge impact 

on the worm propagation and thus some servers play a more essential and 
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significant role than others. The real-time capability to identify them is essential 

to greatly hinder worm propagation. The idea is to find a minimum vertex cover 

in the graph whose vertices are the routing servers and whose edges are the 

(possibly dynamic) connections between routing servers. This is an optimal 

solution for worm propagation and an optimal solution for designing the network 

defense strategy. Figure 5.1 above shows a simple computer network and a 

corresponding minimum vertex cover {2, 4, 5}. 

 

6. The Timetabling Problem 

 

In a college there are m professors x1, x2, …, xm and n subjects y1, y2, …, yn to be 

taught. Given that professor xi is required (and able) to teach subject yj for pij 

periods (p = [pij]  is called the teaching requirement matrix), the college 

administration wishes to make a timetable using the minimum possible number of 

periods. This is known as the timetabling problem [4] and can be solved using the 

following strategy. Construct a bipartite multigraph G with vertices  

x1, x2, …, xm, y1, y2, …, yn such that vertices xi and yj are connected by pij edges. 

We presume that in any one period each professor can teach at most one subject 

and that each subject can be taught by at most one professor. Consider, first, a 

single period. The timetable for this single period corresponds to a matching in the 

graph and, conversely, each matching corresponds to a possible assignment of 

professors to subjects taught during this period. Thus, the solution to the 

timetabling problem consists of partitioning the edges of G into the minimum 

number of matchings. Equivalently, we must properly color the edges of G with 

the minimum number of colors. We shall show yet another way of solving the 

problem using the vertex coloring algorithm [7]. Recall that the line graph L(G) of 

G has as vertices the edges of G and two vertices in L(G) are connected by an 

edge if and only if the corresponding edges in G have a vertex in common. The 

line graph L(G) is a simple graph and a proper vertex coloring of L(G) yields a 

proper edge coloring of G using the same number of colors. Thus, to solve the 
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timetabling problem, it suffices to find a minimum proper vertex coloring of L(G) 

using [7]. We demonstrate the solution with a small example. 

Suppose there are four professors x1, x2, x3, x4 and five subjects y1, y2, y3, 

y4, y5 to be taught [4]. The teaching requirement matrix p = [pij] is given below in 

figure 6.1. 

p y1 y2 y3 y4 y5 

x1 2 0 1 1 0 

x2 0 1 0 1 0 

x3 0 1 1 1 0 

x4 0 0 0 1 1 

 

Figure 6.1. The teaching requirement matrix 

 

 

 

Figure 6.2. The bipartite multigraph G 
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We first construct the bipartite multigraph G shown above  in figure 6.2.  Next, 

we construct the line graph L(G). The adjacency matrix of L(G) is given below. 

 

0 1 1 1 0 0 0 0 0 0 0  

1 0 1 1 0 0 0 0 0 0 0  

1 1 0 1 0 0 0 1 0 0 0  

1 1 1 0 0 1 0 0 1 1 0  

0 0 0 0 0 1 1 0 0 0 0  

0 0 0 1 1 0 0 0 1 1 0  

0 0 0 0 1 0 0 1 1 0 0  

0 0 1 0 0 0 1 0 1 0 0  

0 0 0 1 0 1 1 1 0 1 0  

0 0 0 1 0 1 0 0 1 0 1  

0 0 0 0 0 0 0 0 0 1 0 

 

Now, we use the vertex coloring algorithm [7] to find a minimum proper  

4-coloring of the vertices of L(G). 

 

 

 

Figure 6.3. A minimum proper 4-coloring of the vertices of L(G) 
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Vertex Coloring: ( 1 , green ) ( 2 , red ) ( 3 , blue ) ( 4 , yellow ) ( 5 , yellow )  

( 6 , green ) ( 7 , green ) ( 8 , yellow ) ( 9 , red ) ( 10 , blue ) ( 11 , yellow ). This, 

in turn, yields a minimum proper edge 4-coloring of the bipartite multigraph G: 

 

 

 

Figure 6.4. A minimum proper 4-coloring of the edges of G 

 

Edge Coloring: ( {x1,y1} , green ) ( {x1,y1} , red ) ( {x1,y3} , blue )  

( {x1,y4} , yellow ) ( {x2,y2} , yellow ) ( {x2,y4} , green ) ( {x3,y2} , green )  

( {x3,y3} , yellow ) ( {x3,y4} , red ) ( {x4,y4} , blue ) ( {x4,y5} , yellow ). Interpret 

the colors green, red, blue, yellow as periods 1, 2, 3, 4 respectively. Then, from 

the edge coloring of G, we obtain a solution of the given timetabling problem as 

shown below in figure 6.5. 
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 1 2 3 4 

x1 y1 y1 y3 y4 

x2 y4   y2 

x3 y2 y4  y3 

x4   y4 y5 

  

Figure 6.5. The timetable 

 

7.  Map Coloring and GSM Mobile Phone Networks 

 

Given a map drawn on the plane or the surface of a sphere, the famous four color 

theorem asserts that it is always possible to properly color the regions of the map 

such that no two adjacent regions are assigned the same color, using at most four 

distinct colors [8] [18] [1]. For any given map, we can construct its dual graph as 

follows. Put a vertex inside each region of the map and connect two distinct 

vertices by an edge if and only if their respective regions share a whole segment 

of their boundaries in common. Then, a proper vertex coloring of the dual graph 

yields a proper coloring of the regions of the original map.  

 

 

 

Figure 7.1. The map of India 
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Figure 7.2. The dual graph of the map of India 
 

 

We use the vertex coloring algorithm [7] to find a proper coloring of the map of 

India with four colors, see figures 7.1 and 7.2 above. 

The Groupe Spécial Mobile (GSM) was created in 1982 to provide a 

standard for a mobile telephone system. The first GSM network was launched in 

1991 by Radiolinja in Finland with joint technical infrastructure maintenance 

from Ericsson. Today, GSM is the most popular standard for mobile phones in the 

world, used by over 2 billion people across more than 212 countries. GSM is a 

cellular network with its entire geographical range divided into hexagonal cells. 

Each cell has a communication tower which connects with mobile phones within 

the cell. All mobile phones connect to the GSM network by searching for cells in 

the immediate vicinity. GSM networks operate in only four different frequency 

ranges. The reason why only four different frequencies suffice is clear: the map of 

the cellular regions can be properly colored by using only four different colors! 

So, the vertex coloring algorithm may be used for assigning at most four different 

frequencies for any GSM mobile phone network, see figure 7.2 below. 
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Figure  7.3. The cells of a GSM mobile phone network 

 

8.  Knight’s Tours 

 

In 840 A.D., al-Adli [17], a renowned shatranj (chess) player of Baghdad is said 

to have discovered the first re-entrant knight's tour, a sequence of moves that 

takes the knight to each square on an 8×8 chessboard exactly once, returning to 

the original square. Many other re-entrant knight's tours were subsequently 

discovered but Euler [10] was the first mathematician to do a systematic analysis 

in 1766, not only for the 8×8 chessboard, but for re-entrant knight's tours on the 

general n×n chessboard. Given an n×n chessboard, define a knight's graph with a 

vertex corresponding to each square of the chessboard and an edge connecting 

vertex i with vertex j if and only if there is a legal knight's move from the square 

corresponding to vertex i to the square corresponding to vertex j. Thus, a re-

entrant knight's tour on the chessboard corresponds to a Hamiltonian circuit in the 

knight's graph. The Hamiltonian circuit algorithm [9] [13] has been used to find 

re-entrant knights tours on chessboards of various dimensions. 
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Figure 8.1. A re-entrant knight’s tour on the 8×8 chessboard 

 

References 

 

[1] K. Appel and W. Haken, Every Planar Map is Four Colorable, Bull. 

Amer. Math. Soc. 82 (1976) 711-712. 

[2]  L. Babai, Some applications of graph contractions, J. Graph Theory, Vol. 

1 (1977) 125-130. 

[3]       E. Bertram and P. Horak, Some applications of graph theory to other  

Parts of mathematics, The Mathematical Intelligencer (Springer-Verlag, 

New York) (1999) 6-11. 

[4]  J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 1976,  



APPLICATIONS OF GRAPH THEORY – PIRZADA AND DHARWADKER 

37 

Elsevier Science Publishing Company Inc. 

[5] L. Caccetta and K. Vijayan, Applications of graph theory, Fourteenth 

Australasian Conference on Combinatorial Mathematics and Computing 

(Dunedin, 1986), Ars. Combin., Vol. 23 (1987)  21-77. 

[6]  Ashay Dharwadker, The Vertex Cover Algorithm, 2006,   

       http://www.geocities.com/dharwadker/vertex_cover 

[7] Ashay Dharwadker, The Vertex Coloring Algorithm, 2006, 

http://www.geocities.com/dharwadker/vertex_coloring 

[8] Ashay Dharwadker, A New Proof of The Four Colour Theorem, 2000, 

http://www.geocities.com/dharwadker 

[9] Ashay Dharwadker, A New Algorithm for finding Hamiltonian Circuits, 

2004, http://www.geocities.com/dharwadker/hamilton 

[10]  L. Euler, Solution d'une question curieuse qui ne paroit soumise a aucune  

analyse, Mémoires de l'Académie Royale des Sciences et Belles Lettres de 

Berlin, Année 1759 15, 310-337, 1766.  

[11]  Eric Filiol, Edouard Franc, Alessandro Gubbioli, Benoit Moquet and 

Guillaume Roblot, Combinatorial Optimisation of Worm Propagation on 

an Unknown Network, Proc. World Acad. Science, Engineering and 

Technology, Vol 23, August 2007.  

http://www.waset.org/pwaset/v23/v23-68.pdf 

[12] K. Heinrich and P. Horak, Euler’s theorem, Am. Math. Monthly, Vol. 101 

(1994) 260. 

[13] R.M. Karp, Reducibility among combinatorial problems, Complexity of 

Computer Computations, Plenum Press, 1972. 

[14] D. König, Theorie der endlichen und unendlichen graphen, Akademische 

Verlagsgesllschaft, Leipzing (1936), reprinted by Chelsea, New York  

(1950). 

[15]  G. Lancia, V. Afna, S. Istrail, L. Lippert,  and R. Schwartz,  SNPs  

Problems, Complexity and Algorithms, ESA 2002, LNCS 2161, pp. 182- 

193, 2001. Springer-Verlag 2001. 

http://www.geocities.com/dharwadker/vertex_cover
http://www.geocities.com/dharwadker/vertex_coloring
http://www.geocities.com/dharwadker
http://www.geocities.com/dharwadker/hamilton
http://www.waset.org/pwaset/v23/v23-68.pdf


APPLICATIONS OF GRAPH THEORY – PIRZADA AND DHARWADKER 

38 

[16] L. Lovasz, L. Pyber, D. J. A. Welsh and G. M. Ziegler, Combinatorics in  

pure mathematics, in Handbook of Combinatorics, Elsevier Sciences 

B. V., Amsterdam (1996). 

[17]  H. J. R. Murray, A History of Chess, Oxford University Press, 1913.  

[18]  Shariefuddin Pirzada and Ashay Dharwadker, Graph Theory, Orient  

Longman and Universities Press of India, 2007. 

[19]  F. S. Roberts, Graph theory and its applications to the problems of society,  

CBMS-NSF Monograph 29, SIAM Publications, Philadelphia (1978). 

[20]  J. P. Serre, Groupes Discretes, Extrait de I’Annuaire du College de  

France, Paris (1970). 

[21]  R. Thomas, A combinatorial construction of a non-measurable set, Am.  

Math. Monthly 92 (1985) 421-422. 

 

 

Shariefuddin Pirzada  

Department of Mathematics 

University of Kashmir 

Srinagar 190006  

India 

sdpirzada@yahoo.co.in 

http://www.geocities.com/dharwadker/pirzada 

 

 

Ashay Dharwadker 

H-501 Palam Vihar 

District Gurgaon 

Haryana 122017 

India 

dharwadker@yahoo.com 

http://www.geocities.com/dharwadker 

 

mailto:sdpirzada@yahoo.co.in
http://www.geocities.com/dharwadker/pirzada
mailto:dharwadker@yahoo.com
http://www.geocities.com/dharwadker

