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ABSTRACT
Event-based network data consists of sets of events over
time, each of which may involve multiple entities. Exam-
ples include email traffic, telephone calls, and research pub-
lications (interpreted as co-authorship events). Traditional
network analysis techniques, such as social network models,
often aggregate the relational information from each event
into a single static network. In contrast, in this paper we
focus on the temporal nature of such data. In particular, we
look at the problems of temporal link prediction and node
ranking, and describe new methods that illustrate opportu-
nities for data mining and machine learning techniques in
this context. Experimental results are discussed for a large
set of co-authorship events measured over multiple years,
and a large corporate email data set spanning 21 months.

1. INTRODUCTION
Large data sets describing events over time and involving
multiple participants are increasingly of interest from a data
analysis perspective. Examples include:

• Email [6] (Enron: 250,000 emails, 28,000 people)

• Telephone calls [7] (AT&T: 275 million calls each day
among 350 million individuals)

• Research publications interpreted as co-authorship events
[13] (CiteSeer: 730,000 papers, 770,000 authors)

Social network analysis has, generally speaking, been ap-
plied to two types of data: persistent relationships (friend-
ships, affiliations, web links, etc.) and discrete events (meet-
ings, publications, communications, transactions, etc.). How-
ever, prior research on quantitative analysis methods for
data of either type has largely focused on a static view of the
data in which all links are considered simultaneously, even
if the underlying data is known to change over time.

Event data is inherently temporal, with a time-stamp or
fixed time interval associated with each event. As an exam-
ple, consider Figures 1 and 2; each of these shows a method
of visualizing the connections created between individuals
by participating in events. Figure 1 shows a sequence of
email messages between individuals A, B, C, D, and E; each
vertical “timeslice” represents emails that were sent at the
same time. Figure 2 shows a sequence of events (papers) and
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Figure 1: A sequence of events (emails).

their participants (authors) as a hypergraph, where hyper-
edges represent papers (tagged by year) and vertices repre-
sent authors. These visualizations illustrate that there can
be multiple different representations for event data: as a
single aggregate network, a series of networks, and so on.

From a data analysis and data mining perspective there are
a number of different questions that can be asked in this
context, including questions about how the networks evolve
over time, emergence of communities, and so forth. In this
paper we review our recent work on two specific problems
related to event network data:

• predicting future event co-participation of enti-
ties: how likely is it that a given pair of individuals will
co-participate in at least one event over some specific
future time period? Specific examples of this question
include “how likely is it that A will send an email to B
in the next week?” and “How likely is it that author
X will coauthor a paper with author Y next year?”

• rank evolution: how does the rank (prestige, influ-
ence, level of involvement, etc.) of each individual
change over time in response to participation in a se-
ries of events? Answers to this question may be used
to inform redistribution of resources (as certain indi-
viduals become more or less important/involved) or,
more generally, to understand the evolution of the dis-
tribution of influence in any organization.

In Section 2 we describe some general notation for event
networks and participants. In Section 3 we provide a brief
review of relevant prior work in areas such as social network
analysis, statistical network models, and machine learning.
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Figure 2: A co-authorship hypergraph tagged by year.

We then illustrate how machine learning techniques can be
applied to the prediction problem described above and de-
scribe results from a set of experiments with a multi-year
co-author data set consisting of 150,000 authors and 300,000
papers. In Section 4 we describe our work on algorithms for
time-dependent ranking based on event data, and its appli-
cation to a large corporate email data set. Section 5 provides
concluding comments.

2. NOTATION
We define an event-based data set as consisting of a set of
events E = {e1, . . . , em} and a set of participating entities
V = {v1, . . . , vn}. The set of entities that participate in
event ei are denoted Pi, e.g., P1 = {v1, v4, v10}. Each event
and each entity can have a set of attributes or covariates.
We denote covariates for ei as yi and covariates for vj as xj ,
and the sets of all event and entity covariates as Y and X
respectively. For convenience, we denote the event covari-
ate representing the time at which an event ei occurred as
ti, where i indicates that it is the ith event in order of oc-
currence. Note that some events (such as emails) may have
an “instantaneous” time-stamp ti, while other events such
as co-authorship events for technical papers would have a
coarser time-stamp, e.g., at the level of year of publication,
ti ∈ {1985, 1986, . . . , 2005}. Extensions of this representa-
tion could allow events to have a duration with a start and
end time (such as meeting durations or tenure on a com-
mittee); however, we do not investigate the notion of events
with duration in this paper.

Extending the notation above, we can express the proposi-
tion “vj and vk are co-participants in event ei” by vj , vk ∈
Pi, and the proposition “vj and vk are co-participants in one
or more events in the interval [t, t+∆t]” as vj , vk ∈ Pt,t+∆t.
We denote the subset of events taking place in this interval
as Et,t+∆t.

We denote the rank of vj as R(vj), and (where appropriate)
the rank of vj at time ti as Ri(vj). The notion of rank as
an indicator of the significance of an entity is a key concept
in algorithms such as PageRank, which we discuss further
in Section 4.

Given this representation of the data, we can represent some
of its structural properties as a network in various ways,

depending on the precise nature of the events and of the
desired analysis. Generally speaking, a network extracted
from such a data set usually contains a vertex corresponding
to each entity vj , and edges link vertices that participate in
the same events. However, as we will see, it is not always
appropriate to aggregate all events together into a single
graph for analysis.

3. MODELING AND PREDICTING LINK
STRUCTURE

3.1 Statistical Models of Network Structure
Within the field of social networks there is a rich tradition of
defining statistical models for network data. Various forms
of Markov random fields (MRFs) [8] and exponential ran-
dom graph models (sometimes referred to as p∗ models in
the social networks literature [27]) have been used to con-
struct distributions P (E) over the edge set E of a graph, or
conditional distributions P (E|X) given node covariates X.
Much of this work builds on the earlier classic work of Besag
in spatial statistics [2].

The general goal is to infer a parsimonious model for P (E)
or P (E|X) that requires a relatively small number of pa-
rameters to explain the pattern of observed relations (and
non-relations), as a function of both local network properties
(such as the indegree and outdegree of individual nodes) as
well as the covariates X. These generative modeling frame-
works inherit the usual advantages of statistical modeling,
including the ability to fit such models to data using statisti-
cal inference techniques, modeling techniques for incorporat-
ing covariates X (e.g., via suitably-defined logistic regression
models [10]), inference methods for handling systematic er-
rors in the measurements of links [5], hierarchical Bayes and
random effect frameworks that allow individual-level varia-
tion to be modeled [9], and methodologies for incorporating
specific prior information such as desired functional forms
on degree distributions [23].

A major limitation of many of these models is lack of scala-
bility as a function of the number of vertices. For example,
in the latent variable model of Hoff, Raftery, and Handcock
[10] the likelihood is by definition a product over all pairs
of nodes, whether an edge was observed or not, leading to
an inherently O(n2) algorithm. While this may be practical
for relatively small social networks, such algorithms are not
directly scalable to many of the large networks (in which
n ≥ 105) that are often of interest in data mining.

Work in statistical relational learning has also addressed the
problem of building general-purpose statistical models of re-
lational information. For example, Taskar et al. [26] use a
relational Markov network (RMN) to define a probabilistic
model over the entire network, including entity attributes
and links. The primary goal of this work is to classify links
by type, but the approach can also be applied to predicting
link presence. Scalability to large networks is again an issue
with such approaches.

In contrast to the approaches above, in Section 3.3 we de-
scribe how we construct local conditional probability mod-
els for link prediction in a manner that does not require
the construction of a full joint distribution P (E) over all
edges. We do this by embedding the local graph structure
and covariates in a fixed-dimensional feature space, allowing
us to use standard predictive modeling techniques for learn-
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ing conditional distributions, and to avoid the complexity of
specifying joint distributions over sets of edges. While this
loses some of the power of the full joint modeling approach,
we will nonetheless argue that this can be an effective (and
scalable) approach when prediction (in the form of queries
regarding specified entity pairs) is the primary goal.

3.2 Modeling Networks over Time and Link
Prediction

The work described in the previous subsection describes tra-
ditional modeling efforts that are largely focused on static
networks. As we stated in the introduction, for event-based
networks it is of interest to directly take the temporal and
sequential aspect of the data into account. Below we sum-
marize some recent work along these lines.

Perhaps the most widely-publicized work on modeling of
temporal aspects of network data focuses on finding general-
purpose stochastic laws or rules for link generation over
time. Typically these laws or rules are governed by a small
number of free parameters that control (for example) the
probability of new link generation when a new node is in-
troduced to the network. Examples of this approach include
the preferential attachment model [16] and the “forest fire”
model [14]. When used to simulate network data, these
models yield networks with aggregate properties that are
often quite similar to those seen in real-world network data,
such as degree distributions, community characteristics, and
network diameters. While these models have had consider-
able success in reflecting global aggregate network proper-
ties, they do not explicitly allow one to make predictions at
the individual node or link level. For example, these models
do not allow one to predict whether a new event will occur
(over some future time span) involving two specific entities
vj and vk, as a function of existing graph and covariate data
pertaining to vj and vk.

Snijders [24] describes several interesting statistical mod-
els for understanding the dynamics of evolving networks of
persistent relationships. These take as input sequential in-
stantaneous observations of a network, and attempt to fit
a specific parametric model for continuous evolution of the
network such that its outputs (in the form of network ”snap-
shots”) accurately predict the observations. These meth-
ods are not directly applicable to event data, and as with
the static modeling counterparts discussed earlier, parame-
ter estimation for these models typically does not scale well
to large networks.

Popescul and Ungar [19] present a method which involves
performing a constrained search, in the space of database
queries, to generate candidate features which are then used
in a logistic regression to predict the presence or absence
of a link between a specified pair of entities. Features are
included or not based on a Bayes Information Criterion [21]
evaluation. While this method was applied only to static
graphs, it could in theory be extended to predict links in
future time periods. However, the representation of the fea-
tures as SQL database queries limits their expressiveness,
and thus this method of feature generation cannot discover
features which have been demonstrated to be highly infor-
mative. For example, SQL cannot readily represent features
that relate to complex properties of the network topology,
such as shortest-path distance in a network, or properties
of an entity’s neighborhood whose components are weighted
according to their own topological properties ([1], [18], etc.).

Likewise, features such as similarity metrics of entity or
event attributes cannot be expressed in SQL.

Liben-Nowell and Kleinberg [15] rank all pairs of entities
according to their value for a specified single network-based
feature based on known event data, and declare that the k
pairs with the highest feature value are those that will par-
ticipate in an event in the following time period (where k is
the number of pairs which are assumed to co-participate).
This method does not scale well to large networks, involves
some potentially problematic assumptions (such as prior
knowledge of k), and may have low predictive accuracy since
only a single feature is being used for event prediction.

3.3 Learning to Predict Co-Participation Over
Time

We consider below the specific problem of answering the
question “given the existing event data, will entities vj and
vk co-participate in at least one event in a future specified
interval?”. Our approach is to treat it as a data-driven clas-
sification problem (in which “co-participating” is one class,
and “not co-participating” is the other). The methods used
are primarily probabilistic classifiers, which assign a prob-
ability to each class conditioned on the values of a set of
specified features, whose nature may vary depending on the
data set. We formally define this conditional probability as
follows:

p(vj , vk ∈ Pt,t+∆t|f(E1,t,V,X,Y) = w) (1)

where vj , vk ∈ Pt,t+∆t is a binary proposition defining whether
entities vj and vk co-participate in any event in the time
period [t, t + ∆t], f is a function returning a vector w of
feature values, E1,t is the historical event data up to time t,
and X,Y are the relevant entity and event covariate data.

This formulation frames the problem as one of learning a
mapping from feature vectors to class probabilities; this
problem is well understood by the machine learning com-
munity, and can be solved using standard “off-the-shelf”
prediction algorithms.

There exist two variants of this problem: one in which vj

and vk may or may not have co-participated in any previous
interval, and one in which it is guaranteed that they have
never previously co-participated (i.e., predicting new collab-
orations). The latter problem is generally considered more
difficult, and is the one which we discuss below.

The primary components of a classification model are the
choices of features, training and test sets, classification method,
and evaluation metric; we will briefly discuss each of these
below.

• training and test sets: we define the training period
as the interval on which the training features are mea-
sured (e.g., years 1980 to 2003); the training “targets”
(class labels) are defined on the time period following
the training features (e.g., year 2004). Thus, the train-
ing data is constructed such that the model learns to
map feature values from a time-interval to class labels
in a future time-period; this is a standard approach in
time-series modeling. The test data is constructed in
a similar manner, but shifted in time, e.g., test fea-
tures would be defined on years 1981 to 2004, and the
class labels for the test data set would be defined on
year 2005. (See Figure 3 for an illustration of the re-
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Figure 3: The intervals used for defining the training and
test data

lationships.) Although there is overlap in the training
and test feature sets, this setup matches exactly how
training and prediction would be done in a real-world
situation. For example, given event data through 2004,
one could learn the relation between events in 2004 and
features measured on events prior to 2004; this model
could then be shifted in time to predict events in 2005.

• features: as already noted, the choice of features
will depend on the data being analyzed, but in gen-
eral, the features will be defined with respect to pairs
of entities in the network. The features may be di-
vided into two categories: network-based and entity-
based. Network-based features include neighborhood-
based features (such as Jaccard coefficient [20], Ad-
amic/Adar coefficient [1], and weighted neighborhood
cosine [18]) and the length of the shortest weighted
path in the network. Entity-based features include
such things as various entity attribute similarity mea-
sures, (for example, the KL-divergence of two entities’
topic distributions [25] for data sets that include text),
geographic proximity, and similarity of journal publi-
cation patterns.

• classifier: in general any classification method can be
used for this problem. In practice we have found that
the relatively simple approach of logistic regression
seems to work well in that it is stable, interpretable,
computationally efficient, and produces well-calibrated
probabilities that are useful for ranking.

• evaluation: many event-based networks of interest
are very large, and generally very sparse, i.e., the vast
majority of entity pairs never co-participate. Thus, it
is difficult to improve on always predicting the major-
ity class (that none of the entities will co-participate in
events in the future time period). Measuring the qual-
ity of a ranking produced by a classifier (e.g., receiver-
operating characteristics, also known as ROC curves)
produces more sensitive measures of classifier perfor-
mance for this problem, such as the fraction of the
k top-ranked future co-participations (as predicted by
the classifier) that actually occur.

In large-scale network analysis, it is also important to con-
sider the ramifications of different representations of the un-
derlying data. In particular, while graphs are by far the most
common representations of this type of data, they are not
always the most appropriate. For example, if events involve
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Figure 4: Precision of the top k instances, for three ranking
methods

multiple entities (such as coauthorship of a paper, or at-
tendance at a meeting), then a graph-based representation
will represent each entity as a vertex, and each event with
k participants as a set of O(k2) edges (specifically, a clique
of size k on the participants’ vertices). This representation
may require a great deal of space (for one data set, 150,000
events were represented by 2.2 million edges), tends to blur
or erase the correspondence between the original data and
the network topology (since each event in the folded graph
is represented by a set of edges, each of which may be as-
sociated with > 1 event), and generally makes dealing with
event metadata more difficult.

A more natural representation of such data is a hypergraph
in which each entity is represented by a vertex, and each
event is represented by a single hyperedge which connects
the k entities that participated in the event (in contrast with
the O(k2) edges required by the graph representation). This
representation is much more efficient and accurate than the
graph representation, but due to a lack of available pro-
gramming tools that can directly manipulate hypergraphs,
researchers in network analysis have generally chosen to ac-
cept the limitations of the graph representation. In the
experiments described below we used the JUNG network
software library [11], which can represent and manipulate
hypergraphs as well as graphs; this allowed us to use the
generally more advantageous hypergraph representation.

We have experimented with the approach of using classifi-
cation methods to perform link (i.e., event co-participation)
prediction over time on a data set that consists of 128,000
scientific abstracts and the 310,000 authors of these publica-
tions, which spans the 6-year time period 1998-2003. Each
paper constitutes an event, and all of the authors of the
paper are co-participants in this event.

An example of a prediction problem for this type of data is to
select the 1% most prolific authors (3100 of them) and try to
predict new collaborations among these authors in the final
year of the data. In the test set of 50,000 pairs of authors,
approximately 6% of these pairs had new collaborations in
the final year.

Figure 4 shows the precision for various values of k, defined
as the fraction of the top-ranked k instances (from differ-
ent models) that represent (true) positive instances (that
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is, pairs of individuals that were correctly predicted to co-
participate in the specified time period). This fraction is
an indicator of the utility of the probability returned by the
classifiers in terms of ranking positive instances high and
negative instances low; for example, we can see that of the
50 highest-ranked pairs according to the logistic regression
method, 42 were positive instances. These results suggest
that relatively standard machine learning methods can ex-
tract predictive power from this type of event data; in par-
ticular, this approach appears to be particularly useful as
a ranking mechanism for detecting candidate pairs that are
highly likely to co-participate in future events.

4. EVENT-BASED RANKING
We now switch attention to the second problem mentioned
in the introduction, namely entity ranking from event-based
data. There exist a variety of algorithms that rank enti-
ties in a network according to criteria that reflect struc-
tural properties of the network (such as the extent to which
paths in the network pass through each individual); these
rankings are interpreted as such qualities as “centrality”,
“authority”, “influence”, and so forth. Examples of these
algorithms include betweenness centrality [3], eigenvector
centrality [22], PageRank [4], and HITS [12]. Each of these
algorithms makes the implicit assumption that the network
data is static, and generates a single rank value for the
data set; their underlying models do not incorporate any
notion of sequence or timing, and all data are incorporated
into a single picture of the network. While this assumption
may be reasonable for networks based on persistent relation-
ships (such as web page hyperlinks), it is less appropriate for
event-based networks. For example, researchers gain pres-
tige as their papers are cited, and lose it if they are no longer
actively cited.

One can use such algorithms to generate ranks that change
over time by applying them to subsets of the data restricted
to successive intervals. However, this presents a few difficul-
ties: even the subsets will be static pictures, and any infor-
mation about the sequence of events during each interval is
lost. More fundamentally, these algorithms necessarily op-
erate on networks which represent aggregations of past and
current events; it is neither useful nor especially meaningful
for PageRank to operate on a network which contains many
vertices but only a few edges corresponding to the current
event(s). As such, the presence of links representing past
events can cause the ranks to evolve in nonintuitive ways
when small perturbations, corresponding to new events, oc-
cur. Furthermore, it is not clear what the semantics of the
links induced by events should be for purposes of calculating
an evolving ranking. For example, how should email events
be represented by edges? Options include edges directed to-
wards the sender, edges directed towards the receiver, and
hyperedges connecting all participants. However, it is not
clear how each of these choices would affect the ranks which
emerge from PageRank and other algorithms which operate
on this sort of data.

We illustrate one of these problems with the following exam-
ple. Figure 5 is a network representation of email traffic,
in which < X, Y > exists if X has emailed Y , and has
weight equal to the number of such emails. Any ranking al-
gorithm which operates on static networks would assign the
same rank to A and C. However, if we consider individual
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Figure 6: A message sequence that could have resulted in
the network in Figure 5

emails in sequence, we observe that patterns of communica-
tion may change over time, and thus the ranks may change
as well: Figure 6 represents a possible sequence of messages
that correspond to the static network in Figure 5. In this
representation C at first is more important than A, and later
this reverses. Furthermore, participation in an event at time
ti can affect one’s participation in events at time tj(j > i)
(for example, based on Figure 6 we can guess that D’s email
to B at time t4 may have resulted in B’s email to A at time
t5, but the reverse is clearly impossible). These observations
underline the desirability for an event-based ranking algo-
rithm to be able to generate ranks which evolve over time,
and whose ranks respect the events’ temporal sequence.

We have identified several properties which we believe ought
to be satisfied by algorithms which generate a sequence of
values which model the evolution of ranks over time based
on event participation:

1. comparability across time: rank values should be nor-
malized so that the ranks at time ti and tj may be
directly compared

2. participation increases rank in proportion to other par-
ticipants’ rank

3. participating can always increase rank (even if partic-
ipants’ ranks are all 0)

4. participants’ ranks don’t decrease

5. non-participants’ ranks don’t increase

6. rank value evolution reflects event sequence

As already noted above, PageRank and similar algorithms
do not satisfy (4), (5), and (6) in general, and may not
satisfy (3) in some cases.

The functioning of PageRank and related algorithms can be
modeled in terms of iterated “potential” flow, according to
the following specifications:
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• initialization: each individual starts out with an equal
amount of potential

• iteration: the algorithm iterates until all individuals’
net change in potential is zero; the number of iterations
will depend on the initial distribution of potential and
the topology of the network

• flow paths: potential flows from each individual to
its neighbors in the network (in the case of PageRank,
a constant fraction of the total potential is “held out”
and distributed equally among all individuals)

EventRank [17] is a framework for ranking algorithms which
operate on event data and incorporate temporal informa-
tion. Algorithms from this framework can also be concep-
tualized in terms of iterated potential flow. However, while
the initialization is identical to that of PageRank, the others
differ as follows:

• iteration: each event causes exactly one iteration to
occur

• flow paths: potential flows from non-participants (in
the current event) to participants; past events are not
considered except insofar as they are manifested in the
previous rank values

We define the basic model as follows: we denote the poten-
tial of participant v ∈ V at time ti by Ri(v), which takes
on values in the interval (0, 1). R0(v) ≡ 1

n
(uniform initial

distribution), and in general Ri(v) is recursively defined as

v ∈ Pi : Ri−1(v) + αi ·
R̄i−1(v)P

d∈Pi

R̄i−1(d)
(2)

v 6∈ Pi : Ri−1(v) ·
„

1− αi

TNi−1

«
(3)

where αi is the total amount of potential that the event ei

contributes to the participant set, R̄(d, ti) is the additive
inverse of d’s potential, i.e., 1 − Ri(d), and TNi−1 denotes
the total amount of potential held by the non-participants
of mi, that is,

P
d 6∈Pi

Ri−1(d).

Further details of the model may be found in [17], in which
we argue that this model satisfies all of the requirements
stated above.

As a test of this framework, we performed experiments on
approximately 1 million emails spanning 21 months of an
organization’s email server log, for 628 individuals (Figure
7). The data for each message included the identities of
the sender and recipients, and the time at which it was sent,
but not the content of the message itself. We also had access
to a single snapshot of the organizational hierarchy for 378
members of the organization.

The definition of rank in a social network is generally some-
what subjective; ranking algorithms generally do not have
a “ground truth” to which their output can be compared
to determine accuracy of the ranking model, although for
smaller social networks one can measure the consistency of
algorithmically determined ranks with those derived from in-
dividual surveys. While we have observed that EventRank
satisfies the properties listed above, a more objective mea-
sure of relevance is desirable.

Figure 7: A static view of an organization’s email network
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Figure 8: An example of an organizational hierarchy

We hypothesized that, in general, the rank of an individual
is related to her position in the organizational hierarchy (see
Figure 8 for an illustration), in the following senses: first,
that an individual A’s rank is correlated with the number
of her subordinates, and second, that A’s rank should be
greater than that of those below her in the hierarchy (sub-
ordinates: B, C), and less than that of those above her in
the hierarchy (superordinates: J, H).

Since the organizational hierarchy is itself a static network,
for purposes of these comparisons we needed to define a sin-
gle “cumulative” rank value for each individual. One of the
measures that we chose was the sum of “incoming” poten-
tial (that is, changes to c’s potential caused by c receiving a
message), which we denoted as Si; this is analogous to the
HITS “authority” score, and to network indegree.

Generally, we observed that Si had a weak linear correlation
(0.47) with log(number of subordinates). We also measured
the extent to which the rank ordering derived from Si agreed
with the hierarchy (in the sense defined above), and found
that this ordering was highly consistent: the average num-
ber of inversions (situations in which a subordinate’s rank
was higher than that of a superordinate) was lower, and the
overall accuracy higher, than that for any other rank order-
ing we tested. Additional details on these results may be
found in [17].

While we did not have a direct way of validating Event-
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Rank’s time-varying ranks for each individual, we did ex-
amine the data for that of a few individuals about which
some additional information was known. Figure 9 shows a
plot of rank vs. time for five individuals. Individual A was
working on projects of increasing visibility during this time
period; B went on leave around week 60 or so; C worked
primarily on their own rather than with other members of
their group; E did not start working in this organization
until approximately week 30; and D was the leader of the
group which included the other four individuals. Intuitively,
this time series seems to agree with this limited information.

5. CONCLUSION
We have presented methods for network analysis that explic-
itly incorporate time and sequence, and are thus well-suited
to addressing event data sets. We argued that an emphasis
on predictive modeling, using techniques from data mining
and machine learning, can yield scalable and robust algo-
rithms in this context. Experimental results demonstrated
that these approaches can be used to accurately predict or-
ganizational structure from event data and to rank likely
future co-participations between entities.

There are many other open research problems relating to
event-based data sets and the evolution of their associated
networks; we believe that such problems present opportuni-
ties for new practical applications and for a better under-
standing of the dynamics of the underlying phenomena.
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