
Programmer’s Guide

VERSION 4 .5

Inprise Corporation, 100 Enterprise Way
Scotts Valley, CA 95066-3249

VisiBroker® for Java™

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1996, 2000 Inprise Corporation. All rights reserved. All Inprise and Borland brands and product names
are trademarks or registered trademarks of Inprise Corporation. Java and all Javabased marks are trademarks or
registered trademarks in the United States and other countries. Other brands and product names are trademarks or
registered trademarks of their respective owners.

Printed in the U.S.A. P D F V J D 0 0 4 5 W W 2 1 0 0 2

i

Chapter 1
Introduction 1-1
What’s new in this manual 1-1
What’s new in Visibroker 4.1 1-2
What’s new in Visibroker 4.5 1-3
What’s in this guide? 1-4
Manual conventions 1-5

Typographic conventions 1-5
Platform conventions 1-5

Where to find additional information 1-6
Contacting Inprise developer support. 1-6

Part I
Basic Concepts

Chapter 2
Understanding the CORBA model 2-1
What is CORBA?. 2-1
What is VisiBroker? 2-2
VisiBroker for Java features 2-3

VisiBroker Smart Agent architecture 2-3
Enhanced object discovery with the Location

Service . 2-3
Implementation and object activation support .

2-3
Robust thread and connection management 2-3
IDL compilers. 2-4
Dynamic invocation with DII and DSI 2-4
Interface and implementation repositories . 2-4
Server-side portability 2-5
Customizing the ORB with interceptors and

object wrappers 2-5
Backing stores in the Naming Service 2-5
Web naming. 2-5
Defining interfaces without IDL 2-6
Gatekeeper (optional feature) 2-6

VisiBroker CORBA compliance. 2-6
VisiBroker development environment. 2-6

Programmer’s tools 2-6
CORBA services tools 2-7
Administration tools 2-7

Java Development Environment 2-7
Java Runtime Environment 2-7
What’s Required for VisiBroker? 2-8
Java-enabled Web Browser 2-8

Interoperability with VisiBroker for C++ 2-8
Interoperability with other ORB products . . . 2-9

IDL to Java mapping 2-9

Chapter 3
Setting up your environment 3-1
Setting the Path environment variable 3-1

Updating the PATH on a Windows platform. 3-1
Updating the PATH on a Windows NT platform

3-1
Setting the Path on a UNIX platform 3-2

CLASSPATH. 3-2
Setting the VBROKER_ADM environment variable

3-2
Setting VBROKER_ADM on a Windows

platform . 3-2
Setting VBROKER_ADM on a UNIX platform. .

3-2
Setting the OSAGENT_PORT environment variable

3-3
Logging output 3-3

Chapter 4
Developing an example application with
VisiBroker 4-1

Development process. 4-1
Step 1: Defining object interfaces 4-3

Writing the account interface in IDL 4-3
Step 2: Generating client stubs and server servants .

4-3
Files produced by the idl compiler 4-4

Step 3: Implementing the client 4-5
Client.java . 4-5

Binding to the AccountManager object . . 4-5
Obtaining an Account object 4-6
Obtaining the balance 4-6

AccountManagerHelper.java. 4-6
Other methods 4-6

Step 4: Implementing the server. 4-6
Server.java . 4-7

Step 5: Building the example 4-8
Compiling the example 4-8

Step 6: Starting the server and running the example
4-8

Starting the Smart Agent 4-8
Starting the server 4-9
Running the client 4-9

Deploying applications with VisiBroker 4-9
VisiBroker for Java applications 4-10

Contents

ii

Deploying applications.4-10
Using vbj. 4-11
Executing client applications 4-11
Executing server applications4-12

Chapter 5
Handling exceptions 5-1
Exceptions in the CORBA model. 5-1
System exceptions 5-1

Obtaining completion status 5-2
Catching system exceptions 5-3
Downcasting exceptions to a system exception .

5-3
Catching specific types of system exceptions

5-4
User exceptions 5-5

Defining user exceptions 5-5
Modifying the object to raise the exception .

5-6
Catching user exceptions 5-6
Adding fields to user exceptions 5-7

Part II
Server concepts

Chapter 6
Server basics 6-1
Overview . 6-1
Initializing the ORB 6-1
Creating the POA 6-2

Obtaining a reference to the root POA 6-2
Creating the child POA 6-3
Implementing servant methods 6-3
Activating the POA 6-5

Activating objects 6-5
Waiting for client requests 6-5
Complete example 6-6

Chapter 7
Using POAs 7-1
What is a Portable Object Adapter? 7-1

POA terminology. 7-2
Steps for creating and using POAs 7-3

POA policies . 7-3
Thread policy 7-3
Lifespan policy 7-4
Object ID Uniqueness policy 7-4
ID Assignment policy 7-4
Servant Retention policy 7-4

Request Processing policy 7-5
Implicit Activation policy 7-5
Bind Support policy 7-5

Creating POAs 7-6
POA naming convention 7-6
Obtaining the rootPOA 7-6
Setting the POA properties 7-7
Creating and activating the POA 7-7

Activating objects 7-8
Activating objects explicitly 7-8
Activating objects on demand 7-9
Activating objects implicitly 7-9
Activating with the default servant 7-9
Deactivating objects 7-11

Using servants and servant managers 7-12
ServantActivators 7-13
ServantLocators 7-15

Managing POAs with the POA manager. . . . 7-17
Getting the current state 7-18
Holding state. 7-18
Active state. 7-19
Discarding state 7-19
Inactive state 7-19

Setting the listening and dispatching properties . .
7-20

Setting the server engine properties. 7-21
Setting the server connection manager

properties. 7-21
Manager properties 7-21
Listener properties. 7-22
Dispatcher properties 7-22

When to use these properties 7-22
Adapter activators 7-24
Processing requests 7-25

Chapter 8
Managing threads and connections 8-1
Using threads with VisiBroker. 8-1
What thread policies does VisiBroker provide? . 8-2
Thread pooling policy 8-2
Thread-per-session policy 8-7
What connection management does VisiBroker

provide? . 8-8
Setting dispatch policies and properties 8-9

Thread pooling 8-10
Threads-per-session 8-10
Coding considerations 8-10

iii

Chapter 9
Using the tie mechanism 9-1
How does the tie mechanism work? 9-1
Example program 9-2

Location of an example program using the tie
mechanism 9-2

Changes to the server class 9-2
Changes to the AccountManager 9-3
Changes to the Account class 9-4
Building the tie example. 9-4

Part III
Client concepts

Chapter 10
Client basics 10-1
Initializing the ORB 10-1
Binding to objects 10-1

Action performed during the bind process .10-2
Invoking operations on an object 10-3
Manipulating object references 10-3

Converting a reference to a string 10-3
Obtaining object and interface names 10-4
Determining the type of an object reference.10-4
Determining the location and state of bound

objects . 10-4
Narrowing object references10-5
Widening object references 10-5

Using quality of service 10-6
Understanding Quality of Service 10-6

Policy overrides and effective policies . . 10-6
QoS interfaces. 10-6

org.omg.CORBA.Object 10-6
com.inprise.vbroker.CORBA.Object . . .10-6
org.omg.CORBA.PolicyManager 10-7
org.omg.CORBA.PolicyCurrent10-7
org.omg.Messaging.RebindPolicy 10-8
com.inprise.vbroker.QoSExt.RelativeConnect

ionTimeoutPolicy10-8
com.inprise.vbroker.QoSExt.DeferBindPolicy

10-8
com.inprise.vbroker.QoSExt.ExclusiveConne

ctionPolicy10-9
com.inprise.vbroker.QoSExt.SyncScopePolic

y .10-9
QoS exceptions 10-9

QoS example 10-10

Part IV
Configuration and management

Chapter 11
Using the VisiBroker Console 11-1
What is the VisiBroker Console? 11-1
Starting the VisiBroker Console 11-2
Configuring the Console 11-2

Setting preferences 11-3
Viewing system information 11-4

Navigating the VisiBroker Console 11-5
Menu bar . 11-5
Toolbar . 11-5
Status bar . 11-5
Pull down or context menus 11-5
Navigation pane 11-6
Content pane. 11-6

Supported ORB Services 11-6
Location Service 11-6
Naming Services. 11-6
Interface Repositories 11-7
Implementation Repositories 11-7
Server Manager 11-7
Gatekeeper 11-7

Chapter 12
Using the ORB Services browsers 12-1
Introduction . 12-1
Location Service. 12-1

Accessing the Location Service browser . . 12-2
Refreshing the active object list 12-3

Naming Services 12-3
Accessing the Naming Services 12-4
Browsing the Naming Service 12-5
Browsing the VisiBroker Naming Service

clusters . 12-5
Browsing the VisiBroker Naming Service

federations 12-6
Implementation Repositories 12-7

Accessing the Implementation Repositories 12-7
Interface Repositories. 12-8

Viewing an Interface Repository. 12-9
Accessing the Interface Repositories . . . 12-10
Browsing the Interface Repositories.12-11

Chapter 13
Using the Server Manager 13-1
What is the Server Manager 13-1

Viewing the top-level container 13-2

iv

Server Manager browser. 13-2
Using the VisiBroker 4.x example server. . . 13-2
Setting security for the Server Manager . . . 13-4

Using the Server Manager browser 13-4
Viewing the contents of a server 13-4

Enabling the server. 13-5
Invoking methods 13-6
Setting properties. 13-7

Property types. 13-7
Specifying the property storage file. . . . 13-8
Changing property settings 13-8

Chapter 14
Setting properties 14-1
Overview . 14-1
Setting Visibroker properties 14-2

Shell/console environment variables 14-2
Windows registry. 14-2
Command line arguments.14-3
Applet parameters 14-3
System properties 14-4
Programmatically via ORB.init 14-4
Property file via ORBpropStorage option . . 14-4

Properties file 14-4
Default properties file14-5

Property precedence under NT and Unix 14-5
Property precedence for applets 14-5
VisiBroker for Java properties 14-6

Part V
Tools and services

Chapter 15
Using IDL 15-1
Introduction to IDL 15-1
How the IDL compiler generates code 15-2

Example IDL specification.15-2
Looking at the generated code 15-2

_<interface name>Stub.java 15-3
<interface name>.java15-3
<interface name>Helper.java 15-3
<interface name>Holder.java 15-5
<interface name>Operations.java 15-5
<interface name>POA.java 15-5
<interface name>POATie.java 15-6

Defining interface attributes in the IDL 15-7
Specifying oneway methods with no return value .

15-7

Specifying an interface in IDL that inherits from
another interface 15-8

Chapter 16
Using the Smart Agent 16-1
What is the Smart Agent? 16-1

Locating Smart Agents 16-1
Locating objects through Agent cooperation16-2
Cooperating with the OAD to connect with

objects. 16-2
Starting a Smart Agent (osagent) 16-2

Verbose output 16-3
Disabling the agent 16-3

Ensuring Agent availability 16-3
Checking client existence 16-3

Working within ORB domains. 16-4
Connecting Smart Agents on different local

networks . 16-5
How Smart Agents detect each other 16-6

Working with multihomed hosts 16-6
Specifying interface usage for Smart Agents 16-7

Using point-to-point communications 16-8
Specifying a host as a runtime parameter . 16-8
Specifying an IP address with an environment

variable . 16-9
Specifying hosts with the agentaddr file . . 16-9

Ensuring object availability 16-10
Invoking methods on stateless objects . . 16-10
Achieving fault-tolerance for objects that

maintain state 16-10
Replicating objects registered with the OAD. . .

16-10
Migrating objects between hosts16-11

Migrating objects that maintain state16-11
Migrating instantiated objects16-11
Migrating objects registered with the OAD 16-11

Reporting all objects and services 16-12
Binding to Objects 16-12

Chapter 17
Using the Location Service 17-1
What is the Location Service? 17-1
Location Service components 17-3

What is the Location Service agent?. 17-3
Obtaining names of all hosts running Smart

Agents 17-4
Finding all accessible interfaces 17-4

v

Obtaining references to instances of an
interface 17-4

Obtaining references to like-named instances
of an interface 17-5

What is a trigger?. 17-5
Looking at trigger methods 17-5
Creating triggers17-6
Looking at only the first instance found by a

trigger 17-6
Querying an agent17-7

Finding all instances of an interface 17-7
Finding everything known to Smart Agents 17-8

Writing and registering a trigger handler . . . 17-10
Implementing and registering a trigger handler

17-10

Chapter 18
Using the Naming Service 18-1
Overview . 18-1
Understanding the namespace 18-2

Naming contexts 18-3
Naming context factories 18-4
Names and NameComponent 18-4
Name resolution 18-5

Stringified names 18-5
Simple and complex names 18-5

Running the Naming Service18-6
Installing the Naming Service. 18-6
Configuring the Naming Service18-6
Starting the Naming Service18-6

Starting the Naming Service with vbj . . 18-7
Invoking the Naming Service from the Command

Line . 18-7
Configuring nsutil 18-7
Running nsutil 18-8
Closing nsutil 18-8

Bootstrapping a Naming Service 18-9
Calling resolve_initial_references. 18-9
Using -DSVCnameroot 18-9
Using -DORBInitRef 18-9

Using a corbaloc URL 18-10
Using a corbaname URL 18-10

-DORBDefaultInitRef 18-10
Using -DORBDefaultInitRef with a corbaloc

URL. 18-10
Using -DORBDefaultInitRef with corbaname

18-10
NamingContext 18-11
NamingContextExt 18-12

Default naming contexts 18-12
Obtaining the default naming context . . 18-12

Naming Service Properties. 18-13
Pluggable backing store 18-14

Types of backing stores 18-14
In-memory adaptor 18-14
JDBC adaptor. 18-14
DataExpress adaptor 18-14
JNDI adaptor 18-15

Configuration and use 18-15
Properties file. 18-15
JDBC Adaptor properties 18-16
DataExpress Adaptor properties 18-18
JNDI adaptor properties 18-18
Caching facility. 18-18

Clusters . 18-20
Clustering criteria 18-20
Cluster and ClusterManager interfaces . . 18-20
Creating a cluster 18-22

Explicit and implicit clusters 18-22
Load balancing 18-23

Failover. 18-23
Configuring the Naming Service for fault

tolerance 18-24
Import statements for Java. 18-24
Sample programs 18-25

Binding a name in Java 18-25

Chapter 19
Using the Event Service 19-1
Overview . 19-1

Proxy consumers and suppliers 19-2
OMG common object services specification 19-3

Communication models 19-4
Push model 19-5
Pull model 19-5

Using event channels 19-6
Example push supplier and consumer 19-8

Running the Push model example. 19-8
Running the Pull model example 19-8
PullSupply 19-9
Executing PullSupply 19-10
PullConsume. 19-12
Executing PullConsume 19-12

Starting the Event Service 19-14
Setting the queue length 19-14

In-process event channel 19-15
Java usage 19-16

Java EventLibrary class 19-16

vi

Java example 19-16
Import statements for Java 19-16
Interface reference 19-17

EventChannel 19-17
EventLibrary (Java) 19-17

EventLibrary methods 19-17
ConsumerAdmin 19-18
SupplierAdmin 19-19
ProxyPullConsumer 19-19
ProxyPushConsumer 19-20
ProxyPullSupplier 19-20
ProxyPushSupplier. 19-20
PullConsumer 19-21
PushConsumer 19-21
PullSupplier. 19-22

PullSupplier methods 19-22
PushSupplier 19-23

Chapter 20
Using the Object Activation Daemon 20-1
Automatic activation of objects and servers . . 20-1

Locating the implementation repository data . .
20-2

Activating servers 20-2
Starting the Object Activation Daemon 20-2

Starting the Object Activation Daemon on a
Windows platform 20-2

Starting the Object Activation Daemon on a
UNIX platform 20-3

Using the Object Activation Daemon utilities .20-4
Converting interface names to repository IDs

20-4
Listing objects with oadutil list 20-5

Description 20-6
Registering objects with oadutil 20-6

Example 1: Specifying repository ID . . . 20-8
Example 2: Specifying IDL interface name. .

20-8
Remote registration to an OAD 20-8
Accessing a server without using the Smart

Agent . 20-8
Distinguishing between multiple instances of an

object . 20-9
Setting activation properties using the

CreationImplDef class 20-9
Dynamically changing an ORB implementation

20-10
OAD Registration using

OAD::reg_implementation 20-10
Example of object creation and registration 20-11

Arguments passed by the OAD 20-12
Un-registering objects 20-12

Un-registering objects using the oadutil tool . . .
20-12

Unregistration example 20-13
Un-registering with the OAD operations . 20-13
Displaying the contents of the implementation

repository. 20-14
IDL interface to the OAD 20-14

Chapter 21
Using interface repositories 21-1
What is an interface repository?. 21-1

What does an interface repository contain? 21-2
How many interface repositories can you have?.

21-2
Creating and viewing an interface repository with

irep . 21-3
Creating an interface repository with irep . 21-3
Viewing the contents of the interface repository.

21-4
Updating an interface repository with idl2ir. . 21-5
Understanding the structure of the interface

repository . 21-5
Identifying objects in the interface repository . .

21-6
Types of objects that can be stored in the

interface repository 21-7
Inherited interfaces 21-8

Accessing an interface repository 21-8
Example programs 21-9

Part VI
Advanced concepts

Chapter 22
Using the Dynamic Invocation Interface
22-1

What is the Dynamic Invocation Interface? . . 22-1
Introducing the main DII concepts 22-2

Using request objects 22-2
Encapsulating arguments with the Any type.

22-3
Options for sending requests 22-4
Options for receiving replies 22-4

Steps for invoking object operations
dynamically 22-4

Location of example programs for using the DII
22-5

vii

Using the idl2java compiler 22-5
Obtaining a generic object reference 22-5
Creating and initializing a request 22-6

Request interface 22-6
Ways to create and initialize a DII request. . 22-6
Using the create_request method. 22-7
Using the _request method 22-7
Example of creating a Request object 22-8
Setting arguments for the request 22-8

Implementing a list of arguments with the
NVList22-8

Setting input and output arguments with the
NamedValue Class 22-9

Passing type safely with the Any class. . . 22-10
Representing argument or attribute types with

the TypeCode class 22-10
Sending DII requests and receiving results . . 22-13

Invoking a request 22-13
Sending a deferred DII request with the

send_deferred method 22-14
Sending an asynchronous DII request with the

send_oneway method 22-14
Sending multiple requests 22-15
Receiving multiple requests 22-15

Using the interface repository with the DII . . 22-16

Chapter 23
Using the Dynamic Skeleton Interface
23-1

What is the Dynamic Skeleton Interface? 23-1
Using the idl2java compiler 23-2

Steps for creating object implementations
dynamically. 23-2

Location of an example program for using the
DSI . 23-2

Extending the DynamicImplementation class .23-3
Example of designing objects for dynamic

requests .23-3
Specifying repository ids 23-5

Looking at the ServerRequest class 23-6
Implementing the Account object 23-6
Implementing the AccountManager object . . . 23-7

Processing input parameters 23-7
Setting the return value 23-7

Server implementation23-8

Chapter 24
Using interceptors 24-1

Overview . 24-1
Interceptor interfaces and managers 24-2

Client interceptors. 24-2
BindInterceptor 24-2
ClientRequestInterceptor 24-3

Server interceptors 24-4
POALifeCycleInterceptor 24-4
ActiveObjectLifeCycleInterceptor 24-4
ServerRequestInterceptor 24-4
IORCreationInterceptor 24-5

Service Resolver interceptor 24-5
Default interceptor classes 24-6
Registering interceptors with the VisiBroker

ORB . 24-6
Creating interceptor objects 24-7
Loading interceptors 24-7

Example interceptors 24-7
Example code 24-8

Client-server interceptors example . . . 24-8
ServiceResolverInterceptor example. . . 24-9

Code listings 24-10
Passing information between your interceptors . . .

24-16

Chapter 25
Using object wrappers 25-1
Overview . 25-1

Typed and un-typed object wrappers 25-2
Special idl2java requirements 25-2
Example applications 25-2

Un-typed object wrappers 25-2
Using multiple, un-typed object wrappers . 25-3
Order of pre_method invocation 25-4
Order of post_method invocation 25-4

Using un-typed object wrappers 25-4
Implementing an un-typed object wrapper

factory. 25-4
Implementing an un-typed object wrapper 25-5

pre_method and post_method parameters . .
25-6

Creating and registering un-typed object
wrapper factories 25-6

Removing un-typed object wrappers 25-8
Typed object wrappers 25-8

Using multiple, typed object wrappers . . . 25-9
Order of invocation 25-10
Typed object wrappers with co-located client

and servers25-11

viii

Using typed object wrappers 25-11
Implementing typed object wrappers . . . 25-11
Registering typed object wrappers for a client .

25-12
Registering typed object wrappers for a server .

25-13
Removing typed object wrappers 25-14

Combined use of un-typed and typed object
wrappers . 25-14

Command-line arguments for typed wrappers .
25-15

Initializer for typed wrappers. 25-15
Command-line arguments for un-typed

wrappers. 25-16
Initializers for un-typed wrappers 25-17
Executing the sample applications 25-18

Turning on timing and tracing object
wrappers 25-18

Turning on caching and security object
wrappers 25-19

Turning on typed and un-typed wrappers . .
25-19

Executing a co-located client and server 25-19

Chapter 26
Using RMI over IIOP 26-1
Overview . 26-1

java2iiop and java2idl tools 26-1
Using java2iiop. 26-1

Supported interfaces 26-2
Running java2iiop 26-2

Reverse mapping of Java classes to IDL .26-2
Completing the development process 26-3

RMI-IIOP Bank example 26-3
Supported data types 26-5

Mapping primitive data types 26-5
Mapping complex data types 26-6
Interfaces .26-6
Arrays . 26-6

Chapter 27
Using the dynamically managed types
27-1

Overview . 27-1
DynAny types 27-1

Usage restrictions. 27-2

Creating a DynAny 27-2
Initializing and accessing the value in a DynAny

27-3
Constructed data types 27-3

Traversing the components in a constructed
data type 27-3

DynEnum 27-3
DynStruct. 27-4
DynUnion 27-4
DynSequence and DynArray 27-4

Example IDL. 27-4
Example client application. 27-5
Example server application 27-6

Chapter 28
Using valuetypes 28-1
Understanding valuetypes. 28-1

Concrete valuetypes. 28-2
Valuetype derivation 28-2
Sharing semantics 28-2
Factories 28-2

Abstract valuetypes 28-2
Implementing valuetypes 28-3

Defining your valuetypes 28-3
Compiling your IDL file 28-3
Inheriting the valuetype base class 28-4
Implementing the Factory class 28-4
Registering your Factory with the ORB. . . 28-5

Implementing factories. 28-5
Factories and valuetypes 28-6
Registering valuetypes 28-6

Boxed valuetypes 28-7
Abstract interfaces 28-7
Custom valuetypes 28-8
Truncatable valuetypes 28-9

Chapter 29
Using URL naming 29-1
URL Naming Service 29-1
Registering objects 29-2
Locating an object by URL 29-4

Chapter 30
Bidirectional Communication 7
Using bidirectional IIOP 7
Bidirectional ORB properties 8
About the examples. 9

ix

Enabling bidirectional IIOP for existing
applications . 9

Explicitly enabling bidirectional IIOP 9
Security considerations 11

Part VII
Backward compatibility

Chapter 31
Using the BOA with VisiBroker 4.x 30-1
Compiling your BOA code with VisiBroker 4.x 30-1
Supporting BOA options30-1
Limitations in using the BOA.30-2
Using object activators30-2
Naming objects under the BOA30-2

Object names 30-2

Chapter 32
Migrating VisiBroker code 31-1
Migrator. .31-1

Changes to package name prefixes31-2
Changes to class names 31-2
Changes to API calls 31-3
Changes from BOA to POA 31-3
Changes in use of interceptors 31-3

Invoking the migrator 31-4
Using migrated code 31-4
Manually Migrating BOA to POA 31-5

Looking at an example 31-5
Obtaining a reference to the root POA . 31-5
Setting the POA policies 31-5
Defining the servant 31-6
Activating the POA manager. 31-6
Waiting for incoming requests 31-7
Looking at the other files 31-7

Mapping BOA types to POA policies 31-7
Migrating to new package names 31-7
Migrating to new class names 31-8
Migrating to new API calls 31-8
Migrating interceptors 31-9

Using VisiBroker 3.x interceptors 31-9

Chapter 33
Using object activators 32-1
Deferring object activation 32-1
Activator interface 32-1
Using the service activation approach 32-2

Deferring object activation using service
activators 32-3

Example of deferred object activation for a
service. 32-3

x

odb.idl interface. 32-4
Implementing a service activator 32-5
Instantiating the service activator. 32-6
Using a service activator to activate an object

32-6

Appendix A
CORBA exceptions A-1

Glossary G-1

Index I-1

xi

3.1 Summary of log files produced on Windows
platforms 3-3

4.1 Command-line arguments for client
applications. 4-12

5.1 CORBA-defined system exceptions 5-1
7.1 Portable Object Adapter terminology . . . 7-2
10.1 Methods stringification and de-stringification

10-3
10.2 Methods obtaining interface and object names

10-4
10.3 Methods determining the type of an object

reference 10-4
10.4 Methods for determining location and state of

object reference. 10-5
17.1 Obtaining references to objects that

implement a given interface 17-4
17.2 References to like-named instances of an

interface. 17-5
17.3 Trigger methods 17-5
17.4 TriggerHandler interface method 17-6
18.1 Naming service properties 18-13
18.2 Default properties common to all adaptors. .

18-15
18.3 Example of a JNDI adaptor configuration file

18-18
19.1 Connecting Suppliers to an EventChannel . .

19-7
19.2 Connecting Consumers to an EventChannel .

19-8
19.3 PullConsume commands 19-12

21.1 Objects used to identify and classify interface
repository objects 21-6

21.2 Objects that can be stored in the interface
repository 21-7

21.3 Interfaces inherited by many IR objects . 21-8
22.1 NamedValue methods 22-9
22.2 TypeCode kinds and parameters 22-10
24.2 Results of executing the example interceptor .

24-8
25.1 Comparison of features for typed and un-

typed object wrappers 25-2
25.2 Common arguments for the pre_method and

post_method methods 25-6
25.3 Command-line properties for enabling or

disabling BankWrappers 25-15
25.4 Command-line properties for enabling or

disabling UtilityObjectWrappers 25-17
26.1 Mapping Java types to IDL/IIOP 26-5
27.1 Interfaces derived from DynAny that

represent constructed data types 27-2
32.1 Changes to package name prefixes 31-2
32.2 Changes to class names 31-2
32.3 Changes to API calls 31-3
32.4 Migrator options 31-4
32.5 Driver options. 31-4
32.6 Class name changes 31-5
32.7 Mapping BOA types to POA policies . . 31-7
33.1 Files in the odb example for service activation

32-3
A.1 CORBA exceptions and possible causes . A-1

Tables

xii

A.2 CORBA exception minor codes A-5

xiii

2.1 Client program acting on an object 2-2
2.2 VisiBroker architecture 2-2
4.1 Developing the sample bank application . 4-2
4.2 Client and server programs deployed with

VisiBroker ORBs 4-10
7.1 Overview of the POA 7-2
7.2 Example servant manager function 7-12
7.3 Server engine overview 7-20
8.1 Pool of threads is available 8-3
8.2 Client application #1 sends a request . . . 8-4
8.3 Client application #2 sends a request . . . 8-5
8.4 Client application #1 sends a second request

8-6
8.5 Object implementation using the thread-per-

session policy 8-7
8.6 Second request comes in from the same client

8-8
8.7 Binding to two objects in the same server

process . 8-9
8.8 Binding to an object in a server process . 8-9
10.1 Client interaction with the Smart Agent .10-2
11.1 VisiBroker Console 11-2
12.8 Console’s Interface Repositories browser with

the repository expanded 12-11
13.3 Server Manager browser with selected server

object . 13-5
16.1 Running separate ORB domains

simultaneously 16-4
16.2 Two Smart Agents on separate local networks

16-5
16.3 Smart Agent on a multihomed host 16-6
16.4 Setting the OSAGENT_ADDR environment

variable using the C shell 16-9
17.1 Using the Smart Agent to find instances of

objects .17-2
17.2 Use of interface repository IDs and instance

names . 17-3

17.3 Smart Agents on a network with instances of
an interface 17-4

18.1 Binding, resolving, and using an object name
from a naming context within a namespace .
18-2

18.2 Naming scheme for an order entry system . .
18-3

19.1 Supplier-Consumer communication model . .
19-2

19.2 Consumer and supplier proxy objects . . 19-3
19.3 Push model 19-4
19.4 Pull model 19-6
21.1 Interface repository object hierarchy for

Bank.idl 21-6
24.1 How interceptors work 24-1
25.1 Single un-typed object wrapper 25-3
25.2 Multiple un-typed object wrappers . . . 25-3
25.3 Single typed object wrapper registered . 25-9
25.4 Multiple, typed object wrappers registered . .

25-10
25.5 Typed object wrapper invocation order .25-11
33.1 Diagram showing the process of deferring

activation for a service 32-3

Figures

xiv

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

VisiBroker allows you to develop and deploy distributed object-based applications,
as defined in the Common Object Request Broker (CORBA) specification.

The VisiBroker for Java Programmer’s Guide provides you information on how to get
started with the VisiBroker fundamentals, use the VisiBroker Console to simplify
certain functions, and work with the more advanced features. It is written for Java
programmers who are familiar with object-oriented development.

This chapter highlights the latest features, and identifies typographical and platform
conventions used throughout the manual. It also tells you where to find additional
information about Common Object Request Broker Architecture (CORBA) and the
remaining VisiBroker for Java documentation set, and how to contact Inprise
developer support.

What’s new in this manual
This manual has been updated to reflect the latest VisiBroker release. The new
features and enhancements include:

• CORBA 2.3 compliance: VisiBroker for Java is fully compliant with the CORBA
specification (version 2.3) from the Object Management Group (OMG). For more
details, refer to the CORBA specification located at http://www.omg.org/. qqq--
is this still true, or should it be 2.4?

• Ability to establish exclusive connections: Information about the
ExclusiveConnectionPolicy and about an example is provided in
“com.inprise.vbroker.QoSExt.ExclusiveConnectionPolicy” on page 10-9.

• Ability to define the level of synchronization of a request with its target:
Information about the SyncScopePolicy is provided in
“com.inprise.vbroker.QoSExt.SyncScopePolicy” on page 10-9.

1-2 P r o g r a m m e r ’ s G u i d e

• Chapter 14, “Setting properties” has been expanded to include additional
information about precedence of properties.

Other updates include new sample code sniplets to reflect the new VisiBroker
features. New interfaces and methods are covered in the VisiBroker for Java
Reference.

What’s new in Visibroker 4.1
The VisiBroker 4.1 features and enhancements include:

• Abstract base support: This feature provides CORBA 2.3.1 compliant support for
VisiBroker 4.x and ensures that its CORBA 2.3.1 compliant Interface Repository is
compatible with VisiBroker 3.x clients.

• Class downloading: This feature allows the client to receive or find
implementations of some classes that are not stored locally on the system.
Depending on the security policy configured for your server, clients will be able to
download classes from one source but will be denied the ability to download them
from another source.

• Redesigned Interface Repository: This feature has been enhanced to make sure
that it is compatible with the VisiBroker for Java 3.4 Interface Repository.

• Connection timeout: This feature allows you to indicate a timeout after which
attempts to connect to an object using one of the available endpoints will be
aborted.

• Naming Service: The new VisiBroker Naming Service provides clustering and
fault tolerance features, and persistence is handled differently. Clustering allows
you to associate a number of bindings with a single name. Fault tolerance features
include failover and load balancing. To maintain persistence, you can now store
the namespace in a relational database. Previous versions stored the namespace in
a flat logging file. The corbaloc and corbaname provide stringfied object references
which can be used in an Internet environment. This allows you to refer to objects
by a URL. See Chapter 18, “Using the Naming Service,” for a description of how to
use the Naming Service.

• Portable Object Adaptor (POA): The POA offers portability on the server side.
This feature replaces the Basic Object Adapter (BOA). Although BOA is being
deprecated, VisiBroker 4.0 will still support BOA functionality. See Chapter 7,
“Using POAs,” for an explanation of how to use the POA.

• Objects by value (OBV) or Value types: Previous versions of CORBA allowed
you to pass objects between clients and servers by reference. However, CORBA 2.3
allows you to pass objects by value between clients and servers using VisiBroker.
OBV is interoperable with other 2.3-compliant ORBs. See Chapter 28, “Using
valuetypes,” for more information on this feature.

• Property Management: This feature provides you with a way to centralized
management of properties. Using the Property Management, you can get/set
property values, and register yourself as an observer so that the Property Manager

I n t r o d u c t i o n 1-3

W h a t ’ s n e w i n V i s i b r o k e r 4 . 5

can update and query the observer. See Chapter 14, “Setting properties,” for more
information on the Property Management.

• Interceptors and object wrappers: This feature has been upgraded to CORBA 2.3
specifications. The ORB provides a set of APIs known as interceptors which
provide a way to plug in additional ORB behavior such as support for transactions
and security, which may be defined on either the client or server side. One of the
main difference in this release is that now the interceptors have scope. See
Chapter 24, “Using interceptors,” for more information on how to use the
VisiBroker interceptor.

• Quality of Service (QoS): This feature, which implements the CORBA 2.3
Messaging Specification, allows you to define properties that influence how
connections are made. You perform client-side policy management by setting
properties that are associated with connections or client/server pairs. See “Using
quality of service” on page 10-6 for a description of the VisiBroker QoS features.

• Naming Service: VisiBroker 4.1 has a combined JDBC adaptor. The JDBC adaptor
and the OptJDBC adaptor have been combined to create a new optimized adaptor.
If you set the vbroker.naming.backingStoreType property to either JDBC or OptJDBC,
VisiBroker will use the combined adaptor, which is backwards compatible with
both the VisiBroker 4.0 JDBC and OptJDBC adaptors. There are no backward
compatibility issues with the InMemory adaptor. The 4.5 DataExpress (DX)
adaptor is backward compatible with the 4.0 DataExpress. If the same
backingstore is used with the VisiBroker 4.5 name server, the 4.0 datastore schema
will automatically be converted into the 4.5 name server schema when you start
the VisiBroker 4.5 name server for the first time. If the DataExpress adaptor is
used, you will also need to have the JDataStore JDBC driver installed and set in
your classpath before you start the 4.5 name server in order to convert from 4.0 to
4.5 schema.

What’s new in Visibroker 4.5
New features and enhancements in Visibroker 4.5 include:

• Bidirectional support: This feature makes it possible for a server to
asynchronously connect with a client. For more information about this feature, see
the VisiBroker for Java Programmer’s Guide. A number of policies have been
added to support this feature.

• SyncScope support: Support for CORBA 4.5-compliant SyncScope capabilities
is now provided (see “com.inprise.vbroker.QoSExt.SyncScopePolicy” on
page 10-9).

• Ability to create exclusive connections. For more information
see“com.inprise.vbroker.QoSExt.ExclusiveConnectionPolicy” on page 10-9.

• Windows registry entries and environment variables VBROKER_JAVAVM and
VBROKER_TAG are no longer used.

1-4 P r o g r a m m e r ’ s G u i d e

What’s in this guide?
This VisiBroker for Java Programmer’s Guide provides detailed information on
developing distributed object-based applications using VisiBroker for Java. It
contains the following sections:

• Part I, “Basic Concepts.” This part presents an introduction to VisiBroker for Java.
It also includes an overview of the CORBA model and a quick start example
designed to introduce you to the VisiBroker development principles and the
handling of exceptions.

• Part II, “Server concepts.” This part describes how to develop a VisiBroker server,
use the Portable Object Adapter (POA), thread management, and the tie
mechanism.

• Part III, “Client concepts.” This part describes how to develop a VisiBroker client.

• Part IV, “Configuration and management.” This part is designed to familiarize
you with the configuration and management of VisiBroker ORB and its CORBA
services, using the Console and its associated browsers. This allows you to
perform many of your configuration tasks in one location that previously were
performed on the command line. From the Console, you can access browsers for
the ORB services and repositories, the Server Manager, and the Gatekeeper. From
this central location, you can easily view, monitor, and manage VisiBroker
Services, servers and objects. The configuration of VisiBroker using properties files
is also described.

• Part V, “Tools and services.” This part describes the IDL compiler, the Smart
Agent, the Location, Event, and Naming services, the Object Activation Daemon,
and the Interface Repository.

• Part VI, “Advanced concepts.” This part describes advanced concepts such as the
Dynamic Invocation Interface, the Dynamic Skeleton Interface, Interceptors,
Object Wrappers, the DynAny class, and ValueTypes.

• Part VII, “Backward compatibility.” This part describes compatibility issues
between previous releases of VisiBroker and the current one.

• Appendix A, “CORBA exceptions.” Contains additional information about
CORBA exceptions that can be thrown by the VisiBroker ORB, and explains
possible causes for VisiBroker to throw them.

• “Glossary.” Provides a glossary of commonly used terms.

I n t r o d u c t i o n 1-5

M a n u a l c o n v e n t i o n s

Manual conventions
This section identifies this manual’s typographical and platform conventions.

Typographic conventions

This manual uses the following conventions:

Platform conventions

This manual uses the following conventions—where necessary—to indicate that
information is platform-specific:

Windows All Windows platforms including Windows 3.1, Windows NT, Windows 95, and
Windows 98

WinNT Windows NT only

Win95 Windows 95 only

Win98 Windows 98 only

Win2000 Windows 2000 only

UNIX All UNIX platforms

Solaris Solaris only

Linux Linux only

IBM-AIX IBM-AIX only

HP-UX HP-UX only

Convention Used for

boldface Bold type indicates that syntax should be typed exactly as shown. For UNIX,
used to indicate database names, filenames, and similar terms.

italics Italics indicates information that the user or application provides, such as
variables in syntax diagrams. Also used to introduce new terms.

computer Computer typeface is used for sample command lines and code.

UPPERCASE Uppercase letters indicate SQL statements and terms. For Windows, used to
indicate database names, filenames, and similar terms.

[] Brackets indicate optional items.

{} Curly brackets are used in the more complex syntax statements to show a
required item.

. . . An ellipsis indicates the continuation of previous lines of code or that the
previous argument can be repeated.

| A vertical bar separates two mutually exclusive choices.

1-6 P r o g r a m m e r ’ s G u i d e

W h e r e t o f i n d a d d i t i o n a l i n f o r m a t i o n

Where to find additional information
For more information about VisiBroker for Java, refer to these information sources:

• VisiBroker for Java Release Notes contain late-breaking information about the
current release of VisiBroker for Java.

• VisiBroker for Java Installation Guide. This guide contains the instructions for
installing VisiBroker for Java on Windows and UNIX, and information for system
administrators who are deploying distributed applications built using VisiBroker.

• VisiBroker for Java Reference. This manual contains information on VisiBroker
commands and Java interfaces.

• VisiBroker for Java VisiBroker Gatekeeper Guide. This guide provides information
about how to configure and use the Gatekeeper.

• The Inprise web site also provides a variety of useful information for developers
and others who are interested in evaluating our products and ORB technology.
From the web site you can view information specific to developers using
VisiBroker ORBs. This includes a section listing Frequently Asked Questions
(FAQ) and their answers. Visit the Inprise web site at
http://www.borland.com/visibroker/.

For more information about the CORBA specification, refer to The Common Object
Request Broker: Architecture and Specification. This document is available from the
Object Management Group and describes the architectural details of CORBA. You
can access the CORBA specification at the OMG web site: http://www.omg.org/.

Contacting Inprise developer support
Inprise offers a variety of support options. These include free services on the Internet,
where you can search our extensive information base and connect with other users of
Inprise products. In addition, you can choose from several categories of telephone
support, ranging from support on installation of the Inprise product to fee-based
consultant-level support and detailed assistance.

For more information about Inprise developer support services, please see our web
site at http://www.borland.com/devsupport/, call Inprise Assist at 800-523-7070, or
contact our Sales Department at 800-632-2864. For customers outside of the
United States of America, please see our web site at
http://www.borland.com/bww/intlcust.html.

When you contact developer support, you will be asked to provide the following
information:

• Your Access ID number

• Product name and version (for example, VisiBroker for C++, version 4.0)

• Operating system and version (for example, Windows NT Server 4.0 with
Service Pack 5)

I n t r o d u c t i o n 1-7

C o n t a c t i n g I n p r i s e d e v e l o p e r s u p p o r t

• Your desired priority (low, medium, high)

• Brief description of the problem

• Details of any error messages or exceptions raised

1-8 P r o g r a m m e r ’ s G u i d e

B a s i c C o n c e p t s

P a r t

I
PartIBasic Concepts

This part of the VisiBroker for Java Programmer’s Guide includes these chapters.

Chapter 2 “Understanding the CORBA model”

Chapter 3 “Setting up your environment”

Chapter 4 “Developing an example application with VisiBroker”

Chapter 5 “Handling exceptions”

U n d e r s t a n d i n g t h e C O R B A m o d e l 2-1

C h a p t e r

2
Chapter2Understanding the CORBA model

This chapter introduces VisiBroker for Java, a complete implementation of the
CORBA 2.3 specification. This chapter describes VisiBroker features and
components.

What is CORBA?
The Common Object Request Broker Architecture (CORBA) allows distributed
applications to interoperate (application to application communication), regardless
of what language they are written in or where these applications reside.

The CORBA specification was adopted by the Object Management Group to address
the complexity and high cost of developing distributed object applications. CORBA
uses an object-oriented approach for creating software components that can be
reused and shared between applications. Each object encapsulates the details of its
inner workings and presents a well defined interface, which reduces application
complexity. The cost of developing applications is reduced, because once an object is
implemented and tested, it can be used over and over again.

The Object Request Broker (ORB) in Figure 2.1 connects a client application with the
objects it wants to use. The client program does not need to know whether the object
implementation it is in communication with resides on the same computer or is
located on a remote computer somewhere on the network. The client program only
needs to know the object’s name and understand how to use the object’s interface.
The ORB takes care of the details of locating the object, routing the request, and
returning the result.

2-2 P r o g r a m m e r ’ s G u i d e

W h a t i s V i s i B r o k e r ?

Figure 2.1 Client program acting on an object

Note The ORB itself is not a separate process. It is a collection of libraries and network
resources that integrates within end-user applications, and allows your client
applications to locate and use objects.

What is VisiBroker?
VisiBroker for Java provides a complete CORBA 2.3 ORB runtime and supporting
development environment for building, deploying, and managing distributed Java
applications that are open, flexible, and inter-operable. Objects built with VisiBroker
for Java are easily accessed by Web-based applications that communicate using
OMG’s Internet Inter-ORB Protocol (IIOP) standard for communication between
distributed objects through the Internet or through local intranets. VisiBroker has a
built-in implementation of IIOP that ensures high-performance and inter-operability.

Figure 2.2 VisiBroker architecture

Object Request Broker

Object A

Client Program requests a
reference to Object A

ORB locates Object A
and binds client to it

Client

U n d e r s t a n d i n g t h e C O R B A m o d e l 2-3

V i s i B r o k e r f o r J a v a f e a t u r e s

VisiBroker for Java features
VisiBroker for Java has several key features as described in the following sections.

VisiBroker Smart Agent architecture

VisiBroker’s Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities for both client applications and object implementations. Multiple
Smart Agents on a network cooperate to provide load balancing and high availability
for client access to server objects. The Smart Agent keeps track of objects that are
available on a network, and locates objects for client applications at invocation time.
VisiBroker can determine if the connection between your client application and a
server object has been lost, due to an error such as a server crash or a network failure.
When a failure is detected, an attempt is automatically made to connect your client to
another server on a different host, if it is so configured. For details on the Smart
Agent, see Chapter 16, “Using the Smart Agent,” and in Chapter 10, “Using quality
of service.”

Enhanced object discovery with the Location Service

VisiBroker provides a powerful Location Service—an extension to the CORBA
specification—that enables you to access the information from multiple Smart
Agents. Working with the Smart Agents on a network, the Location Service can see
all the available instances of an object to which a client can bind. Using triggers, a
callback mechanism, client applications can be instantly notified of changes to an
object’s availability. Used in combination with interceptors, the Location Service is
useful for developing enhanced load balancing of client requests to server objects.
See Chapter 17, “Using the Location Service,” for more information.

Implementation and object activation support

VisiBroker’s Object Activation Daemon (OAD) can be used to automatically start
object implementations when clients need to use them. Additionally, VisiBroker
provides functionality that enables you to defer object activation until a client request
is received. You can defer activation for a particular object or an entire class of objects
on a server. See Chapter 7, “Using POAs,” for more information on servant
managers.

Robust thread and connection management

VisiBroker provides native support for single and multithreading thread
management. With VisiBroker’s thread-per-session model, threads are automatically
allocated on the server-per-client connection to service multiple requests, and then
are terminated when the connection ends. With the thread pooling model, threads
are allocated based on the amount of request traffic to the server object. This means

2-4 P r o g r a m m e r ’ s G u i d e

V i s i B r o k e r f o r J a v a f e a t u r e s

that a highly active client will be serviced by multiple threads—ensuring that the
requests are quickly executed—while less active clients can share a single thread, and
still have their requests immediately serviced.

VisiBroker’s connection management minimizes the number of client connections to
the server. All client requests for objects residing on the same server are multiplexed
over the same connection, even if they originate from different threads. Additionally,
released client connections are recycled for subsequent reconnects to the same server,
eliminating the need for clients to incur the overhead of new connections to the same
server.

All thread and connection behavior is fully configurable. See Chapter 8, “Managing
threads and connections,” for details on how VisiBroker manages threads and
connections.

IDL compilers

VisiBroker for Java comes with two IDL compilers that make object development
easier,

• idl2java: The idl2java compiler takes IDL files as input and produces the necessary
client stubs and server skeletons (in Java).

• idl2ir: The idl2ir compiler takes an IDL file and populates an interface repository
with its contents.

See Chapter 15, “Using IDL,” and Chapter 21, “Using interface repositories,” for
details on these compilers.

Dynamic invocation with DII and DSI

For dynamic invocation, VisiBroker provides implementations of both the Dynamic
Invocation Interface (DII) and the Dynamic Skeleton Interface (DSI). The DII allows
client applications to dynamically create requests for objects that were not defined at
compile time. The DII is covered in Chapter 22, “Using the Dynamic Invocation
Interface.” The DSI allows servers to dispatch client operation requests to objects that
were not defined at compile time. See Chapter 23, “Using the Dynamic Skeleton
Interface,” for complete details.

Interface and implementation repositories

The Interface Repository (IR) is an online database of meta information about ORB
objects. Meta information stored for objects includes information about modules,
interfaces, operations, attributes, and exceptions. Chapter 21, “Using interface
repositories,” covers how to start an instance of the Interface Repository, add
information to an interface repository from an IDL file, and extract information from
an interface repository.

U n d e r s t a n d i n g t h e C O R B A m o d e l 2-5

V i s i B r o k e r f o r J a v a f e a t u r e s

The Implementation Repository is an online database of meta information about
implementations of ORB objects. The Object Activation Daemon is VisiBroker’s
interface to the Implementation Repository that is used to automatically activate the
implementation when a client references the object. See Chapter 20, “Using the
Object Activation Daemon.”

Server-side portability

VisiBroker supports the CORBA Portable Object Adapter (POA), which is a
replacement to the Basic Object Adapter (BOA). The POA shares some of the same
functionality as the BOA, such as activating objects, support for transient or
persistent objects, and so forth. The POA also has new features, such as the POA
Manager and Servant Manager which creates and manages instances of your objects.
See Chapter 7, “Using POAs,” for more information.

Customizing the ORB with interceptors and object wrappers

VisiBroker’s interceptors enable developers to view under-the-cover
communications between clients and servers. Interceptors can be used to extend the
ORB with customized client and server code that enables load balancing, monitoring,
or security to meet specialized needs of distributed applications. See Chapter 24,
“Using interceptors,” for information.

VisiBroker’s object wrappers allow you to define methods that are called when a
client application invokes a method on a bound object or when a server application
receives an operation request. See Chapter 25, “Using object wrappers,” for
information.

Backing stores in the Naming Service

The new interoperable Naming Service integrates with pluggable backing stores to
make its state persistent. This ensures easy fault tolerance and failover functionality
in the Naming Service. See “Pluggable backing store” on page 18-14 for more
information.

Web naming

The web naming feature allows you to associate a Uniform Resource Locator (URL)
with an object, allowing references to that object to be obtained by specifying a URL.
See Chapter 29, “Using URL naming,” for more information.

2-6 P r o g r a m m e r ’ s G u i d e

V i s i B r o k e r C O R B A c o m p l i a n c e

Defining interfaces without IDL

VisiBroker’s java2iiop compiler lets you use the Java language to define interfaces
instead of using the Interface Definition Language (IDL). You can use the java2iiop
compiler if you have existing Java code that you wish to adapt to interoperate with
CORBA distributed objects or if you do not wish to learn IDL. See Chapter 26, “Using
RMI over IIOP,” for more details.

Gatekeeper (optional feature)

The VisiBroker Gatekeeper allows client programs to issue operation requests to
objects that reside on a web server and to receive callbacks from those objects, all the
while conforming to the security restrictions imposed by web browsers. The
Gatekeeper also handles communication through firewalls and can be used as an
HTTP daemon.

VisiBroker CORBA compliance
VisiBroker for Java is fully compliant with the CORBA specification (version 2.3)
from the Object Management Group (OMG). For more details, refer to the CORBA
specification located at http://www.omg.org/.

VisiBroker development environment
VisiBroker for Java is used in both the development and deployment phases. The
VisiBroker development environment includes the following components:

• Administration and programming tools
• VisiBroker ORB

Programmer’s tools

The following tools are used during the development phase:

Tool Purpose

idl2ir This tool allows you to populate an interface repository with interfaces defined in
an IDL file.

idl2java This tool generates Java stubs and skeletons from an IDL file.

java2iiop Generates Java stubs and skeletons from a Java file. This tool allows you to define
your interfaces in Java, rather than in IDL.

java2idl Generates an IDL file from a file containing Java bytecode.

U n d e r s t a n d i n g t h e C O R B A m o d e l 2-7

J a v a D e v e l o p m e n t E n v i r o n m e n t

CORBA services tools

The following tools are used to administer the VisiBroker ORB during development:

Administration tools

The following tools are used to administer the VisiBroker ORB during development:

Java Development Environment
A Java development environment, such as Inprise JBuilder, is required for
developing applets or applications that use the VisiBroker ORB. JavaSoft’s Java
Developer’s Kit (JDK) also includes a Java runtime environment.

Sun Microsystems has made JavaSoft’s JDK—including its Java runtime
environment—available for Solaris, Windows NT, and Windows 95 platforms. You
can download the JDK from Sun Microsystems’ web site: http://java.sun.com/.

The JDK has also been ported to IBM AIX, OS/2, SGI IRIX, and HP-UX. These other
versions can be downloaded from the respective hardware vendor’s web site. To see
what is available for various platforms, visit Sun Microsystems’ JavaSoft web site:
http://java.sun.com/products/jdk/jdk-ports.html.

Java Runtime Environment

A Java runtime environment is required for any end user who wishes to execute a
Java application. A Java runtime environment is an engine that interprets and
executes a Java application. Typically, Java runtime environments are bundled with
Java development environments. See “Java Runtime Environment” on page 2-7 for
details.

Tool Purpose

irep Used to manage the Interface Repository. See Chapter 21, “Using interface
repositories.”

oad Used to manage the Object Activation Daemon (OAD). See Chapter 20, “Using
the Object Activation Daemon.”

nameserv Used to start an instance of the Naming Service. See Chapter 18, “Using the
Naming Service.”

Tool Purpose

oadutil list Lists ORB object implementations registered with the OAD.

oadutil reg Registers an ORB object implementation with the OAD.

oadutil unreg Unregisters an ORB object implementation with the OAD.

osagent Used to manage the Smart Agent. See Chapter 16, “Using the Smart Agent.”

osfind Reports on objects running on a given network.

2-8 P r o g r a m m e r ’ s G u i d e

I n t e r o p e r a b i l i t y w i t h V i s i B r o k e r f o r C + +

What’s Required for VisiBroker?

In order to use certain tools and functionality in VisiBroker, specific versions of
the JDK are required. The following section explains what is needed.

JDK 1.1 or later is required for the following functionality:

• Runtime use of UDP broadcasting to locate a Smart Agent. UDP broadcasting
enables you to locate a Smart Agent anywhere on the LAN. Otherwise, you must
set the vbroker.agent.addrFile property to locate the Smart Agent.

• Gatekeeper.

• Ability to tune some parameters of the TCP sockets.

• Compilers (java2iiop and java2idl).

• Runtime support for pass-by-value.

• OAD.

JDK 1.1.8 or later is required for the following functionality:

• To use Object by Value and RMI/IIOP.

Java-enabled Web Browser

Applets can be run in any Java-enabled web browser—such as Netscape
Communicator, Netscape Navigator, or Microsoft’s Internet Explorer. You can obtain
these Java-enabled web browsers by navigating to one of the following URLs:

• http://www.netscape.com/
• http://microsoft.com/ie/

Interoperability with VisiBroker for C++
Applications created with VisiBroker for Java can communicate with object
implementations developed with VisiBroker for C++, which is sold separately.
Simply use the same IDL you used to develop your Java application as input to the
VisiBroker IDL compiler, supplied with VisiBroker for C++. You may then use the
resulting C++ skeletons to develop the object implementation.

Also, object implementations written with VisiBroker for Java will work with clients
written in VisiBroker for C++. In fact, a server written with VisiBroker for Java will
work with any CORBA-compliant client; a client written with VisiBroker for Java will
work with any CORBA-compliant server.

U n d e r s t a n d i n g t h e C O R B A m o d e l 2-9

I n t e r o p e r a b i l i t y w i t h o t h e r O R B p r o d u c t s

Interoperability with other ORB products
CORBA-compliant software objects communicate using the Internet Inter-ORB
Protocol (IIOP) and are fully interoperable, even when they are developed by
different vendors who have no knowledge of each other’s implementations.
VisiBroker’s use of IIOP allows client and server applications you develop with
VisiBroker to interoperate with a variety of ORB products from other vendors.

IDL to Java mapping
VisiBroker for Java conforms with the OMG IDL/Java Language Mapping Specification.
See the VisiBroker for Java Reference for a summary of VisiBroker’s current IDL to
Java language mapping, as implemented by the idl2java compiler. For each IDL
construct there is a section that describes the corresponding Java construct, along
with code samples.

For more information about the mapping specification, refer to the OMG IDL/Java
Language Mapping Specification.

2-10 P r o g r a m m e r ’ s G u i d e

S e t t i n g u p y o u r e n v i r o n m e n t 3-1

C h a p t e r

3
Chapter3Setting up your environment

Before using VisiBroker, you must set several environment variables.

Setting the Path environment variable
Note The PATH environment variable is set automatically during installation to include the

bin directory of the VisiBroker distribution. Installation instructions are provided in
the VisiBroker Installation Guide.

If you choose to explicitly set the PATH environment variable, the following sections
explain how to do so.

Updating the PATH on a Windows platform

Assuming that the VisiBroker distribution was installed in c:\, you can set your PATH
with the following DOS command. Alternatively, you may want to set the PATH in
your autoexec.bat file.

prompt> set PATH=c:\inprise\vbroker\bin;%PATH%

Updating the PATH on a Windows NT platform

Although the DOS set command can be used to set environment variables in
Windows NT, you may find it easier to use the System control panel to automatically
set the PATH. Assuming that the VisiBroker distribution is installed in
c:\inprise\vbroker, open the System control panel, choose “PATH” as the variable to
edit, and add the following to the PATH:

c:\inprise\vbroker\bin;

3-2 P r o g r a m m e r ’ s G u i d e

C L A S S P A T H

Changes made to environment variables with the System control panel will not be
reflected in currently running applications, but all subsequently launched
applications and DOS prompts will use the new settings.

Setting the Path on a UNIX platform

If you are using csh and you installed VisiBroker in /usr/local/vbroker, you can
update the PATH environment using the following command:

prompt> setenv PATH /usr/local/vbroker/bin:$PATH

If you are using the Bourne shell and you have installed VisiBroker in
/usr/local/vbroker you can update the PATH environment variable using the following
commands:

prompt> PATH=$PATH:/usr/local/vbroker/bin
prompt> export PATH

CLASSPATH
This environment variable defines the location of the various Java packages used on
your system. The CLASSPATH variable does not need to be set when installing or
configuring VisiBroker.

Setting the VBROKER_ADM environment variable
The VBROKER_ADM environment variable defines the administration directory where
important configuration information for VisiBroker’s interface repository,
Object Activation Daemon, and Smart Agent are stored.

Setting VBROKER_ADM on a Windows platform

The VBROKER_ADM environment variable is set in the Windows registry when you install
VisiBroker. You can change the registry setting by using the vregedit tool.

You can override the registry by setting the VBROKER_ADM environment variable.
Assuming you want your own directory c:\my\adm to be used, you could set the
VBROKER_ADM environment variable as follows:

prompt> set VBROKER_ADM=c:\my\adm

Setting VBROKER_ADM on a UNIX platform

If you are using csh and you installed VisiBroker in /usr/local, set the VBROKER_ADM
environment variable as follows:

prompt> setenv VBROKER_ADM /usr/local/vbroker/adm

S e t t i n g u p y o u r e n v i r o n m e n t 3-3

S e t t i n g t h e O S A G E N T _ P O R T e n v i r o n m e n t v a r i a b l e

If you are using the Bourne shell and you installed VisiBroker in /usr/local, set the
VBROKER_ADM environment variable as follows:

prompt> VBROKER_ADM=/usr/local/vbroker/adm
prompt> export VBROKER_ADM

Setting the OSAGENT_PORT environment variable
The OSAGENT_PORT environment variable defines the port number under which the
Smart Agent will listen. Although you can set the port number to any value from
5000 to 65355, by default, the Smart Agent listens on port number 14000.

The OSAGENT_PORT variable is automatically set in the Windows registry when you
install VisiBroker. You can change the registry setting by using the vregedit tool.

You can override the registry by setting the OSAGENT_PORT environment variable.
Assuming you want the Smart Agent to listen on port number 10000, you could set
the OSAGENT_PORT environment variable as follows:

prompt> set OSAGENT_PORT=10000

If you are using csh and you want the Smart Agent to listen on port number 10000, set
the OSAGENT_PORT environment variable as follows:

prompt> setenv OSAGENT_PORT 10000

If you are using the Bourne shell and you want the Smart Agent to listen on port
number 10000, set the OSAGENT_PORT environment variable as follows:

prompt> OSAGENT_PORT=10000
prompt> export OSAGENT_PORT

Logging output
Many VisiBroker tools offer a verbose mode that displays information about the tool
as it executes. In addition, any application that is linked with the VisiBroker library
may also produce output. On UNIX systems, this output is written to the console. On
Windows systems, this output is written to one of several log files.

Table 3.1 summarizes the names of the various log files that may be produced on
Windows.

Table 3.1 Summary of log files produced on Windows platforms

File Name Description

oad.log Produced by Object Activation Daemon when started with the -v flag.

osagent.log Produced by the Smart Agent when started with the -v flag.

3-4 P r o g r a m m e r ’ s G u i d e

L o g g i n g o u t p u t

The location of these log files is determined by the following rules:

1 An attempt will be made to write the file to the log directory within the directory
pointed to by the VBROKER_ADM variable. The following example shows how to set
the VBROKER_ADM variable on Windows to a specific directory:

SET VBROKER_ADM=c:\my\adm\log

2 If the application or tool does not have write permission for this directory, an
attempt will then be made to write the file to the directory \inprise\vbroker\log on
the drive from which the application or tool was started.

If step 2 fails, an attempt is made to write the file to the current directory.

D e v e l o p i n g a n e x a m p l e a p p l i c a t i o n w i t h V i s i B r o k e r 4-1

C h a p t e r

4
Chapter4Developing an example application

with VisiBroker
This chapter uses an example application to describe the development process for
creating distributed, object-based applications.

The code for the example application is provided in the bank_agent.html file under the
examples/basic/bank_agent directory where the VisiBroker for Java package was
installed. If you do not know the location of the VisiBroker for Java package, see your
system administrator.

Development process
When you develop distributed applications with VisiBroker, you must first identify
the objects required by the application. You will then usually follow these steps:

1 Write a specification for each object using the Interface Definition Language (IDL).

IDL is the language that an implementer uses to specify the operations that an
object will provide and how they should be invoked. In this example, we define, in
IDL, the Account interface with a balance() method and the AccountManager interface
with an open() method.

2 Use the IDL compiler to generate the client stub code and server POA servant
code.

Using the idl2java compiler, we’ll produce client-side stubs (which provide the
interface to the Account and the AccountManager objects’ methods) and server-side
classes (which provides classes for the implementation of the remote objects).

3 Write the client program code.

To complete the implementation of the client program, initialize the ORB, bind to
the Account and the AccountManager objects, invoke the methods on these object, and
print out the balance.

4-2 P r o g r a m m e r ’ s G u i d e

D e v e l o p m e n t p r o c e s s

4 Write the server object code.

To complete the implementation of the server object code, we must derive from
the AccountPOA and AccountManagerPOA classes, provide implementations of the
interface’s methods, and implement the server’s main routine.

5 Compile the client and server code.

To create the client program, compile the client program code with the client stub.
To create the Account server, compile the server object code with the server
skeleton.

6 Start the server.

7 Run the client program.

Figure 4.1 Developing the sample bank application

1 Object specifications in IDL

idl2java

Add client
program Code

Add object
implementation

Java
compiler/linker

Client Server

Client
classes

Server
classes

VisiBroker Object Request Broker

Client program
running

Server object
running

2

Java
compiler

3 4

5 5

67

D e v e l o p i n g a n e x a m p l e a p p l i c a t i o n w i t h V i s i B r o k e r 4-3

S t e p 1 : D e f i n i n g o b j e c t i n t e r f a c e s

Step 1: Defining object interfaces
The first step to creating an application with VisiBroker is to specify all of your
objects and their interfaces using the OMG’s Interface Definition Language (IDL).
The IDL can be mapped to a variety of programming languages. The IDL mapping
for Java is summarized in the VisiBroker for Java Reference.

You then use the idl2java compiler to generate stub routines and servant code from
the IDL specification. The stub routines are used by your client program to invoke
operations on an object. You use the servant code, along with code you write, to
create a server that implements the object. The code for the client and object, once
completed, is used as input to your Java compiler to produce a client Java applet or
application and an object server.

Writing the account interface in IDL

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more.

IDL sample 4.1 shows the contents of the Bank.idl file for the bank_agent example. The
Account interface provides a single method for obtaining the current balance. The
AccountManager interface creates an account for the user if one does not already exist.

IDL sample 4.1 Bank.idl file provides the Account interface definition

module Bank{
interface Account {

float balance();
};
interface AccountManager {

Account open(in string name);
};

};

Step 2: Generating client stubs and server servants
The interface specification you create in IDL is used by VisiBroker’s idl2java compiler
to generate Java classes for the client program, and skeleton code for the object
implementation. The Java classes are used by the client program for all method
invocations. You use the skeleton code, along with code you write, to create the
server that implements the objects.

The code for the client program and server object, once completed, is used as input to
your Java compiler to produce the client and server executables classes. These steps
are shown in Figure 4.1 on page 4-2.

Because the Bank.idl file requires no special handling, it can be compiled with the
following command.

prompt> idl2java Bank.idl

4-4 P r o g r a m m e r ’ s G u i d e

S t e p 2 : G e n e r a t i n g c l i e n t s t u b s a n d s e r v e r s e r v a n t s

For more information on the command-line options for the idl2java compiler, see
“Using IDL” on page 15-1.

Files produced by the idl compiler

Because Java allows only one public interface or class per file, compiling the IDL file
will generate several .java files. These files are stored in a generated sub-directory
called Bank which is the module name specified in the IDL and is the package to
which the generated files belong. The following files are generated:

• _AccountManagerStub.java: Stub code for the AccountManager object on the client side.

• _AccountStub.java: Stub code for the Account object on the client side.

• Account.java: The Account interface declaration.

• AccountHelper.java: Declares the AccountHelper class, which defines helpful utility
methods.

• AccountHolder.java: Declares the AccountHolder class, which provides a holder for
passing Account objects.

• AccountManager.java: The AccountManager interface declaration.

• AccountManagerHelper.java: Declares the AccountManagerHelper class, which defines
helpful utility methods.

• AccountManagerHolder.java: Declares the AccountManagerHolder class, which provides a
holder for passing AccountManager objects.

• AccountManagerOperation.java: This interface provides declares the method
signatures defined in the AccountManager interface in the Bank.idl file.

• AccountManagerPOA.java: POA servant code (implementation base code) for the
AccountManager object implementation on the server side.

• AccountManagerPOATie.java: Class used to implement the AccountManager object on the
server side using the tie mechanism, described in Chapter 9, “Using the tie
mechanism.”

• AccountOperations.java: This interface provides declares the method signatures
defined in the Account interface in the Bank.idl file

• AccountPOA.java: POA servant code (implementation base code) for the Account
object implementation on the server side.

• AccountPOATie.java: Class used to implement the Account object on the server side
using the tie mechanism, described in Chapter 9, “Using the tie mechanism.”

For more information about the Helper, Holder, and Operations classes, see the
VisiBroker for Java Reference.

D e v e l o p i n g a n e x a m p l e a p p l i c a t i o n w i t h V i s i B r o k e r 4-5

S t e p 3 : I m p l e m e n t i n g t h e c l i e n t

Step 3: Implementing the client
Many of the classes used in implementing the bank client are contained in the Bank
package generated by the idl2java compiler as shown in the previous example. The
Client.java file illustrates this example and is included in the bank_agent directory.
Normally you would create this file.

Client.java

The Client class implements the client application which obtains the current balance
of a bank account. The bank client program performs these steps:

1 Initializes the ORB.
2 Binds to an AccountManager object.
3 Obtains an Account object by invoking open on the AccountManager object.
4 Obtains the balance by invoking balance on the Account object.

Code sample 4.1 Client side program

public class Client {
public static void main(String[] args) {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Get the manager Id
byte[] managerId = "BankManager".getBytes();
// Locate an account manager. Give the full POA name and the servant ID.
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa", managerId);
// use args[0] as the account name, or a default.
String name = args.length > 0 ? args[0] : "Jack B. Quick";
// Request the account manager to open a named account.
Bank.Account account = manager.open(name);
// Get the balance of the account.
float balance = account.balance();
// Print out the balance.
System.out.println("The balance in " + name + "'s account is $" + balance);

}
}

Binding to the AccountManager object
Before your client program can invoke the open(String name) method, it must first use
the bind() method to establish a connection to the server that implements the
AccountManager object. The implementation of the bind() method is generated
automatically by the idl2java compiler. The bind() method requests the ORB to locate
and establish a connection to the server. If the server is successfully located and a
connection is established, a proxy object is created to represent the server’s
AccountManagerPOA object. An object reference to the AccountManager object is returned to
your client program.

4-6 P r o g r a m m e r ’ s G u i d e

S t e p 4 : I m p l e m e n t i n g t h e s e r v e r

Obtaining an Account object
Next your client class needs to call the open() method on the AccountManager object to
get an object reference to the Account object for the specified customer name.

Obtaining the balance
Once your client program has established a connection with an Account object, the
balance() method can be used to obtain the balance. The balance() method on the
client side is actually a stub generated by the idl2java compiler that gathers all the
data required for the request and sends it to the server object.

AccountManagerHelper.java

This file is located in the Bank package. It contains an AccountManagerHelper object and
defines several methods for binding to the server that implements this object. The
bind() class method contacts the specified POA manager to resolve the object. Our
example application uses the version of the bind method that accepts an object name,
but the client may optionally specify a particular host and special bind options. For
more information about Helper classes, see the VisiBroker for Java Reference.

Code sample 4.2 Portion of the AccountManagerHelper.java file

package Bank;
public final class AccountManagerHelper {

. . .
public static Bank.AccountManager bind(org.omg.CORBA.ORB orb) {

return bind(orb, null, null, null);
. . .

}
}

Other methods
Several other methods are provided that allow your client program to manipulate an
AccountManager object reference. Many of these are not used in the example client
application, but they are described in detail in the VisiBroker for Java Reference.

Step 4: Implementing the server
Just as with the client, many of the classes used in implementing the bank server are
contained in the Bank package generated by the idl2java compiler. The Server.java file
is a server implementation included for the purposes of illustrating this example.
Normally you, the programmer, would create this file.

D e v e l o p i n g a n e x a m p l e a p p l i c a t i o n w i t h V i s i B r o k e r 4-7

S t e p 4 : I m p l e m e n t i n g t h e s e r v e r

Server.java

This file implements the Server class for the server side of our banking example. The
server program does the following:

• Initializes the Object Request Broker.
• Creates a Portable Object Adapter with the required policies.
• Creates the account manager servant object.
• Activates the servant object.
• Activates the POA manager (and the POA).
• Waits for incoming requests.

Code sample 4.3 Server side program

public class Server {
public static void main(String[] args) {

try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA

org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)

};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(),

policies);
// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);
// Activate the POA manager
rootPOA.the_POAManager().activate();
System.out.println(myPOA.servant_to_reference(managerServant) + " is ready.");
// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

4-8 P r o g r a m m e r ’ s G u i d e

S t e p 5 : B u i l d i n g t h e e x a m p l e

Step 5: Building the example
The examples directory of your VisiBroker release contains a vbmake.bat for this
example and other VisiBroker examples.

Compiling the example

Windows Assuming the VisiBroker distribution was installed in C:\vbroker, type the following
to compile the example:

prompt> C:
prompt> cd vbroker\examples\basic\bank_agent
prompt> vbmake

The command vbmake is a batch file which runs the idl2java compiler and then
compiles each file.

If you encounter some problems while running vbmake, check that your path
environment variable points to the bin directory where you installed the VisiBroker
software.

UNIX Assuming the VisiBroker distribution was installed in /usr/local, type the following
to compile the example:

prompt> cd /usr/local/vbroker/examples/basic/bank_agent
prompt> make java

In this example, make is the standard UNIX facility. If you do not have it in your PATH,
see your system administrator.

Step 6: Starting the server and running the example
Now that you have compiled your client program and server implementation, you
are ready to run your first VisiBroker application.

Starting the Smart Agent

Before you attempt to run VisiBroker client programs or server implementations, you
must first start the Smart Agent on at least one host in your local network.

The basic command for starting the Smart Agent is as follows:

prompt> osagent

If you’re running Windows NT and you want to start the Smart Agent as an
NT Service, you need to register the ORB Services as NT Services during installation.
See the VisiBroker Installation Guide for instructions on installing this product. If the
Services were registered, you then are able to start the Smart Agent as an NT Service
through the Services Control Panel.

The Smart Agent is described in detail in Chapter 16, “Using the Smart Agent.”

D e v e l o p i n g a n e x a m p l e a p p l i c a t i o n w i t h V i s i B r o k e r 4-9

D e p l o y i n g a p p l i c a t i o n s w i t h V i s i B r o k e r

Starting the server

Open a DOS prompt window and start your server by using the following DOS
command:

prompt> start vbj Server

UNIX Start your Account server by typing

prompt> vbj Server&

Running the client

Windows Open a separate DOS prompt window and start your client by using the following
DOS command:

prompt> vbj Client

UNIX To start your client program, type

prompt> vbj Client

You should see output similar to that shown below (the account balance is computed
randomly).

The balance in the account in $168.38.

Deploying applications with VisiBroker
VisiBroker is also used in the deployment phase. This phase occurs when a developer
has created client programs or server applications that have been tested and are
ready for production. At this point a system administrator is ready to deploy the
client programs on end-users’ desktops or server applications on server-class
machines.

For deployment, the VisiBroker ORB supports client programs on the front end. You
must install the ORB on each machine that runs the client program. Clients (that
make use of the ORB) on the same host share the ORB. The VisiBroker ORB also
supports server applications on the middle tier. You must install the full ORB on each
machine that runs the server application. Server applications or objects (that make
use of the ORB) on the same server machine share the ORB. Clients may be GUI front
ends, applets, or client programs. Server implementations contain the business logic
on the middle tier.

4-10 P r o g r a m m e r ’ s G u i d e

D e p l o y i n g a p p l i c a t i o n s w i t h V i s i B r o k e r

Figure 4.2 Client and server programs deployed with VisiBroker ORBs

VisiBroker for Java applications

Deploying applications
In order to deploy applications developed with VisiBroker for Java, you must first set
up a runtime environment on the host where the application is to be executed and
ensure that the necessary support services are available on the local network.

The runtime environment required for applications developed with VisiBroker for
Java includes these components,

• Java Runtime Environment.

• VisiBroker Java packages archived in the vbjorb.jar file, located in the lib
subdirectory where you installed VisiBroker.

• Availability of the support services required by the application.

A Java Runtime Environment must be installed on the host where the deployed
application is to execute, and the VisiBroker Java packages must be installed on the
host where the deployed application is to execute.

Java Applet

VisiBroker
ORB

Client
Program

VisiBroker
ORB

GUI front
end

VisiBroker
ORB

Internet/Intranet

Client Client Client

Server

Object A

Object B

Object C

VisiBroker
ORB

D e v e l o p i n g a n e x a m p l e a p p l i c a t i o n w i t h V i s i B r o k e r 4-11

D e p l o y i n g a p p l i c a t i o n s w i t h V i s i B r o k e r

Environment variables
When you use the vbj executable, the environmental variables are automatically set
up for you.

If the deployed application is to use a Smart Agent (osagent) on a particular host, you
must set the OSAGENT_ADDR environment variable before running the application. You
can use the vbroker.agent.addr property as a command-line argument to specify a
hostname or IP address, as described in Table 4.1.

If the deployed application is to use a particular UDP port when communicating
with a Smart Agent (osagent), you must set the OSAGENT_PORT environment variable
before running the application. You can use the vbroker.agent.port command-line
argument to specify the UDP port number.

For more information about environment variables, see Chapter 3, “Setting up your
environment.”

Support service availability
A Smart Agent (osagent) must be executing somewhere on the network where the
deployed application is to be executed. Depending on the requirements of the
application being deployed, you may need to ensure that other VisiBroker runtime
support services are available, as well. These services include:

Using vbj
You can use the vbj command to start your application and enter command-line
arguments that control the behavior of your application.

vbj -Dvbroker.agent.port=10000 <class>

Executing client applications
A client application is one that uses ORB objects, but does not offer any ORB objects
of its own to other client applications. A client may be started with the vbj command,
or from within a Java-enabled web browser.

Support services Needed when:

Object Activation Daemon (oad) A deployed application is a server that implements object
which needs to be started on demand.

Interface Repository (irep) A deployed application uses either the dynamic skeleton
interface or dynamic implementation interface. See Chapter 21,
“Using interface repositories,” for a description of these
interfaces.

Gatekeeper A deployed application needs to execute in an environment
that uses firewalls for network security.

4-12 P r o g r a m m e r ’ s G u i d e

D e p l o y i n g a p p l i c a t i o n s w i t h V i s i B r o k e r

The following table summarizes the command-line arguments that may be specified
for a client application.

Executing server applications
A server application is one that offers one or more ORB objects to client applications.
A server application may be started with the vbj command or it may be activated by
the Object Activation Daemon (oad).

Table 4.1 Command-line arguments for client applications

Options Description

-DORBagentAddr=<hostname|ip_address> Specifies the hostname or IP address of the host running
the Smart Agent this client should use. If a Smart Agent is
not found at the specified address or if this option is not
specified, broadcast messages will be used to locate a
Smart Agent.

-DORBagentPort= <port_number> Specifies the port number of the Smart Agent. This option
can be useful if multiple ORB domains are required. If not
specified, a default port number of 14000 will be used.

-DORBmbufSize= <buffer_size> Specifies the size of the intermediate buffer used by
VisiBroker for operation request processing. To improve
performance, the ORB does more complex buffer
management than in previous versions of VisiBroker. The
default size of send and receive buffers is 4 K. If data sent
or received is larger than the default, new buffers will be
allocated for each request/reply. If your application
frequently sends data larger than 4 K and you wish to take
advantage of buffer management, you may use this system
property to a specify a larger number of bytes for a default
buffer size.

-DORBtcpNoDelay=<false|true> When set to true, all network connections will send data
immediately. The default is false, which allows a network
connection to send data in batches, as the buffer fills.

-DORBconnectionMax=<number> Specifies the maximum number of connections allowed for
an object implementation when OAid TSession is selected. If
you do not specify, the default is unlimited.

-DORBconnectionMaxIdle= <number> Specifies the number of milliseconds which a network
connection can be idle before being shutdown by
VisiBroker. By default, this is set to 0 which means that
connections will never time-out. This option should be set
for Internet applications.

D e v e l o p i n g a n e x a m p l e a p p l i c a t i o n w i t h V i s i B r o k e r 4-13

D e p l o y i n g a p p l i c a t i o n s w i t h V i s i B r o k e r

The following table summarizes the command-line arguments that may be specified
for a server application.

Options Description

-DOAipAddr <hostname|ip_address> Specifies the hostname or IP address to be used for the Object
Adaptor. Use this option if your host has multiple network
interfaces and the BOA is associated with only one of those
interfaces. If no option is specified, the host’s default address is
used.

-DOAport <port_number> Specifies the port number to be used by the object adapter when
listening for a new connection.

-DOAid <TPool|TSession> Specifies the thread policy to be used by the BOA. The default is
TPool unless you are in backward compatibility mode; if you
are in backward compatibility, the default is TSession.

-DOAthreadMax <#> Specifies the maximum number of threads allowed when OAid
TPool is selected. If you do not specify or you Specify 0, this
selects unlimited number of threads or, to be more precise, a
number of threads limited only by your system resources.

-DOAthreadMin <#> Specifies the minimum number of threads available in the
thread pool. If you do not specify, the default is zero. You can
specify this only when OAid TPool is selected.

-DOAthreadMaxIdle This specifies the time which a thread can exist without
servicing any requests. Threads that idle beyond the time
specified can be returned to the system. By default, this is set to
300 seconds.

-DOAconnectionMax <#> Specifies the maximum number of connections allowed when
OAid TSession is selected. If you do not specify, the default is
unlimited.

-DOAconnectionMaxIdle This specifies the time which a connection can idle without any
traffic. Connections that idle beyond this time can be shutdown
by VisiBroker. By default, this is set to 0 which means that
connections will never automatically time-out. This option
should be set for Internet applications.

4-14 P r o g r a m m e r ’ s G u i d e

H a n d l i n g e x c e p t i o n s 5-1

C h a p t e r

5
Chapter5Handling exceptions

Exceptions in the CORBA model
The exceptions in the CORBA model include both system and user exceptions. The
CORBA specification defines a set of system exceptions that can be raised when errors
occur in the processing of a client request. Also, system exceptions are raised in the
case of communication failures. System exceptions can be raised at any time and they
do not need to be declared in the interface. You can define user exceptions in IDL for
objects you create and specify the circumstances under which those exceptions are to
be raised. They are included in the method signature. If an object raises an exception
while handling a client request, the ORB is responsible for reflecting this information
back to the client.

System exceptions
System exceptions are usually raised by the ORB, though it is possible for object
implementations to raise them through interceptors discussed in Chapter 24, “Using
interceptors.” When the ORB raises a SystemException, it will be one of the CORBA-
defined error conditions shown in Table 5.1.

Table 5.1 CORBA-defined system exceptions

Exception name Description

BAD_CONTEXT Error processing context object.

BAD_INV_ORDER Routine invocations out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

5-2 P r o g r a m m e r ’ s G u i d e

S y s t e m e x c e p t i o n s

Code sample 5.1 SystemException class

public abstract class org.omg.CORBA.SystemException extends java.lang.RuntimeException {
protected SystemException(java.lang.String reason,

int minor, CompletionStatus completed) { . . . }
public String toString() { . . . }
public CompletionStatus completed;
public int minor;

}

Obtaining completion status

System exceptions have a completion status that tells you whether or not the
operation that raised the exception was completed. The CompletionStatus enumerated
values are shown following. COMPLETED_MAYBE is returned when the status of the
operation cannot be determined.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS Error accessing interface repository.

INV_FLAG Invalid flag was specified.

INV_INDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference specified.

MARSHAL Error marshalling parameter or result.

INVALID_TRANSACTION Specified transaction was invalid (used in conjunction with ITS/OTS).

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTOR Failure detected by object adaptor.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

TRANSACTION_REQUIRED Transaction is required (used in conjunction with ITS/OTS).

TRANSACTION_ROLLEDBACK Transaction was rolled back(used in conjunction with ITS/OTS).

TIMEOUT Request timeout.

UNKNOWN Unknown exception.

Table 5.1 CORBA-defined system exceptions (continued)

Exception name Description

H a n d l i n g e x c e p t i o n s 5-3

S y s t e m e x c e p t i o n s

IDL sample 5.1 CompletionStatus values

enum CompletionStatus {
COMPLETED_YES = 0;
COMPLETED_NO = 1;
COMPLETED_MAYBE = 2;

};

Catching system exceptions

Your applications should enclose the ORB and remote calls in a try catch block.
Code sample 5.2 illustrates how the account client program, discussed in Chapter 4,
“Developing an example application with VisiBroker,” prints an exception.

Code sample 5.2 Printing an exception

public class Client {
public static void main(String[] args) {

try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
byte[] managerId = "BankManager".getBytes();
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa", managerId);
String name = args.length > 0 ? args[0] : "Jack B. Quick";
Bank.Account account = manager.open(name);
float balance = account.balance();
System.out.println("The balance in " + name + "'s account is $" + balance);

} catch (Exception e) {
System.err.println(e);

}
}

}

If you were to execute the client program with these modifications and without a
server present, the following output would indicate that the operation did not
complete and the reason for the exception.

prompt>vbj Client
org.omg.CORBA.OBJECT_NOT_EXIST:

Could not locate the following POA:
poa name : /bank_agent_poa
minor code: 0 completed: No

Downcasting exceptions to a system exception

You can modify the account client program to attempt to downcast any exception
that is caught to a SystemException. Code sample 5.3 shows how you might modify the
client program. Code sample 5.4 shows how the output would appear if a system
exception occurred.

5-4 P r o g r a m m e r ’ s G u i d e

S y s t e m e x c e p t i o n s

Code sample 5.3 Downcasting an exception to a system exception

public class Client {
public static void main(String[] args) {

try {
// Initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
// Bind to an account
Account account = AccountHelper.bind(orb, "/bank_poa",

"BankAccount".getBytes());
// Get the balance of the account
float balance = account.balance();
// Print the account balance
System.out.println("The account balance is $" + balance);
catch(Exception e) {
if (e instanceof org.omg.CORBA.SystemException) {

System.err.println(“System Exception occurred:”);
} else {

System.err.println(“Not a system exception”);
}
System.err.println(e);

}
}

}

Code sample 5.4 Output from the system exception

System Exception occured:
in thread "main" org.omg.CORBA.OBJECT_NOT_EXIST minor code: 0 completed: No

Catching specific types of system exceptions
Rather than catching all types of exceptions, you may choose to specifically catch
each type of exception that you expect. Code sample 5.5 shows this technique.

Code sample 5.5 Catching specific types of exceptions

public class Client {
public static void main(String[] args) {

try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
byte[] managerId = "BankManager".getBytes();
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa", managerId);
String name = args.length > 0 ? args[0] : "Jack B. Quick";
Bank.Account account = manager.open(name);
float balance = account.balance();
System.out.println("The balance in " + name + "'s account is $" + balance);

} catch(org.omg.CORBA.SystemException e) {
System.err.println("System Exception occurred:");
System.err.println(e);

}
}

}

H a n d l i n g e x c e p t i o n s 5-5

U s e r e x c e p t i o n s

User exceptions
When you define your object’s interface in IDL you can specify the user exceptions
that the object may raise. Code sample 5.6 shows the UserException code from which
the idl2java compiler will derive the user exceptions you specify for your object.

Code sample 5.6 UserException class

public abstract class UserException extends java.lang.Exception {
protected UserException();
protected UserException(String reason);

}

Defining user exceptions

Suppose that you want to enhance the account application, introduced in Chapter 4,
“Developing an example application with VisiBroker,” so that the account object will
raise an exception. If the account object has insufficient funds, you want a user
exception named AccountFrozen to be raised. The additions required to add the user
exception to the IDL specification for the Account interface are shown in bold.

IDL sample 5.2 Defining user exceptions

// Bank.idl
module Bank {

interface Account {
exception AccountFrozen {
};
float balance() raises(AccountFrozen);

};
};

The idl2java compiler will generate the following code for a AccountFrozen exception
class.

Code sample 5.7 AccountFrozen class generated by the idl compiler

package Bank;
public interface Account extends com.inprise.vbroker.CORBA.Object,

Bank.AccountOperations, org.omg.CORBA.portable.IDLEntity {
}

package Bank;
public interface AccountOperations {

public float balance () throws Bank.AccountPackage.AccountFrozen;
}

package Bank.AccountPackage;
public final class AccountFrozen extends org.omg.CORBA.UserException {

public AccountFrozen () { . . . }
public AccountFrozen (java.lang.String _reason) { . . . }
public synchronized java.lang.String toString() { . . . }

}

5-6 P r o g r a m m e r ’ s G u i d e

U s e r e x c e p t i o n s

Modifying the object to raise the exception
The AccountImpl object must be modified to use the exception by raising the exception
under the appropriate error conditions.

Code sample 5.8 Modifying the object implementation to raise an exception

public class AccountImpl extends Bank.AccountPOA {
public AccountImpl(float balance) {

_balance = balance;
}
public float balance() throws AccountFrozen {

if (_balance < 50) {
throws AccountFrozen();

} else {
return _balance;

}
private float _balance;

}

Catching user exceptions
When an object implementation raises an exception, the ORB is responsible for
reflecting the exception to your client program. Checking for a UserException is similar
to checking for a SystemException. To modify the account client program to catch the
AccountFrozen exception, make modifications like those shown in Code sample 5.9.

Code sample 5.9 Catching a UserException

public class Client {
public static void main(String[] args) {

try {
// Initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
// Bind to an account
Account account = AccountHelper.bind(orb, "/bank_poa",

"BankAccount".getBytes());

// Get the balance of the account
float balance = account.balance();

// Print the account balance
System.out.println("The account balance is $" + balance);

}
// Check for AccountFrozen exception
catch(Account.AccountFrozen e) {

System.err.println("AccountFrozen returned:");
System.err.println(e);

}
// Check for system errors
catch(org.omg.CORBA.SystemException sys_excep) {
...
}

}
}

H a n d l i n g e x c e p t i o n s 5-7

U s e r e x c e p t i o n s

Adding fields to user exceptions
You can associate values with user exceptions. Code sample 5.10 shows how to
modify the IDL interface specification to add a reason code to the AccountFrozen user
exception. The object implementation that raises the exception is responsible for
setting the reason code. The reason code is printed automatically when the exception
is put on the output stream.

Code sample 5.10 Adding a reason code to the AccountFrozen exception

// Bank.idl
module Bank {

interface Account {
exception AccountFrozen {

int reason;
};
float balance() raises(AccountFrozen);

};
};

5-8 P r o g r a m m e r ’ s G u i d e

S e r v e r c o n c e p t s

P a r t

II
PartIIServer concepts

This part of the VisiBroker for Java Programmer’s Guide includes these chapters.

Chapter 6 “Server basics”

Chapter 7 “Using POAs”

Chapter 8 “Managing threads and connections”

Chapter 9 “Using the tie mechanism”

S e r v e r b a s i c s 6-1

C h a p t e r

6
Chapter6Server basics

This chapter outlines the tasks that are necessary to set up a server to receive client
requests.

Overview
The basic steps that you’ll perform in setting up your server are:

• Initialize the ORB
• Create and setup the POA
• Activate the POA Manager
• Activate objects
• Wait for client requests

This chapter describes each task in a global manner to give you an idea of what you
must consider. The specifics of each step are dependent on your individual
requirements.

Initializing the ORB
As stated in the previous chapter, the ORB provides a communication link between
client requests and object implementations. Each application must initialize the ORB
before communicating with it.

Code sample 6.1 Initializing the ORB

// Initialize the ORB.
org.ogm.CORBA.ORB orb=org.omg.CORBA.ORB.init(args,null);

6-2 P r o g r a m m e r ’ s G u i d e

C r e a t i n g t h e P O A

Creating the POA
Early versions of the CORBA object adapter (the Basic Object Adapter, or BOA) didn’t
permit portable object server code. A new specification was developed by the OMG
to address these issues and the Portable Object Adapter (or POA) was created.

Note A discussion of the POA can be quite extensive. This section introduces you to some
of the basic features of the POA. For detailed information, see “Using POAs” on
page 7-1 and the OMG specification.

In basic terms, the POA (and its components) determine which servant should be
invoked when a client request is received, and then invokes that servant. A servant is
a programming object that provides the implementation of an abstract object. A
servant is not a CORBA object.

One POA (called the root POA) is supplied by each ORB. You can create additional
POAs and configure them with different behaviors. You can also define the
characteristics of the objects the POA controls.

The steps to setting up a POA with a servant include:

• Obtaining a reference to the root POA
• Defining the POA policies
• Creating a POA as a child of the root POA
• Creating a servant and activating it
• Activating the POA through its manager

Some of these steps may be different for your application.

Obtaining a reference to the root POA

All server applications must obtain a reference to the root POA to manage objects or
to create new POAs.

Code sample 6.2 Obtaining a reference to the root POA

//2. Get a reference to the root POA
org.omg.CORBA.Object obj = orb.reseolve_initial_reference(“RootPOA”);
// Narrow the object reference to a POA reference
POA rootPoa = org.omg.PortableServer.POAHelper.narrow(obj);

You can obtain a reference to the root POA by using resolve_initial_references.
resolve_initial_references returns a value of type CORBA::Object. You are responsible
for narrowing the returned object reference to the desired type, which is
PortableServer::POA in the above example.

You can then use this reference to create other POAs, if needed.

S e r v e r b a s i c s 6-3

C r e a t i n g t h e P O A

Creating the child POA

The root POA has a predefined set of policies that cannot be changed. A policy is an
object that controls the behavior of a POA and the objects the POA manages. If you
need a different behavior, such as different lifespan policy, you’ll need to create a
new POA.

POAs are created as children of existing POAs using create_POA. You can create as
many POAs as you think are required.

Note Child POAs do not inherit the policies of their parent POAs.

In the following example, a child POA is created from the root POA and has a
persistent lifespan policy. The POA Manager for the root POA is used to control the
state of this child POA. More information on POA Managers are described later in
this chapter.

Code sample 6.3 Creating the policies and the child POA

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(), policies);

Implementing servant methods

IDL has a syntax similar to C++ and can be used to define modules, interfaces, data
structures, and more. When you compile an IDL that contains an interface, a class is
generated which serves as the base class for your servant. For example, in the
Bank.IDL file, an AccountManager interface is described.

Code sample 6.4 Interfaces described in Bank.IDL

module Bank{
interface Account {

float balance();
};
interface AccountManager {

Account open (in string name);
};

};

An AccountManagerPOA.java is created and serves as the skeleton code (implementation
base code) for the AccountManager object implementation on the server side, which is
shown below.

Code sample 6.5 AccountManagerImpl code

import org.omg.PortableServer.*;
import java.util.*;
public class AccountManagerImpl extends Bank.AccountManagerPOA {

public synchronized Bank.Account open(String name) {

6-4 P r o g r a m m e r ’ s G u i d e

C r e a t i n g t h e P O A

// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get(name);
// If there was no account in the dictionary, create one.
if(account == null) {

// Make up the account’s balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
// Create the account implementation, given the balance.
AccountImpl accountServant = new AccountImpl(balance);
try {

// Activate it on the default POA which is root POA for this servant
account = Bank.AccountHelper.narrow(_default_POA().
servant_to_reference(accountServant));

} catch (Exception e) {
e.printStackTrace();

}
// Print out the new account.
System.out.println("Created " + name + "’s account: " + account);
// Save the account in the account dictionary.
_accounts.put(name, account);

}
// Return the account.
return account;

}
private Dictionary _accounts = new Hashtable();
private Random _random = new Random();

}

The AccountManager implementation must be created and activated in the server
code. In this example, AccountManager is activated with activate_object_with_id,
which passes the object ID to the Active Object Map where it is recorded. The Active
Object Map is simply a table that maps IDs to servants. This approach ensures that
this object is always available when the POA is active and is called explicit object
activation.

Code sample 6.6 Creating and activating the servant

// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);

S e r v e r b a s i c s 6-5

A c t i v a t i n g o b j e c t s

Activating the POA

The last step is to activate the POA Manager associated with your POA. By default,
POA Managers are created in a holding state. In this state, all requests are routed to a
holding queue and are not processed. To allow requests to be dispatched, the POA
Manager associated with the POA must be changed from the holding state to an
active state. A POA Manager is simply an object that controls the state of the POA
(whether requests are queued, processed, or discarded.) A POA Manager is
associated with a POA during POA creation. You can specify a POA Manager to use,
or let the system create a new one for you (enter null as the POA Manager name in
create_POA()).

Code sample 6.7 Activating the POA manager

// Activate the POA manager
rootPOA.the_POAManager().activate();

Activating objects
In the preceding section, there was a brief mention of explicit object activation. There
are several ways in which objects can be activated:

• Explicit: All objects are activated upon server start-up via calls to the POA

• On-demand: The servant manager activates an object when it receives a request
for a servant not yet associated with an object ID

• Implicit: Objects are implicitly activated by the server in response to an operation
by the POA, not by any client request

• Default servant: The POA uses the default servant to process the client request

A complete discussion of object activation is in Chapter 7, “Using POAs.” For now,
just be aware that there are several means for activating objects.

Waiting for client requests
Once your POA is set up, you can wait for client requests by using orb.run(). This
process will run until the server is terminated.

Code sample 6.8 Waiting for incoming requests

// Wait for incoming requests
orb.run();

6-6 P r o g r a m m e r ’ s G u i d e

C o m p l e t e e x a m p l e

Complete example
The following code shows the complete code described in this chapter.

Code sample 6.9 Complete server side code

// Server.java
import org.omg.PortableServer.*;
public class Server {
public static void main(String[] args) {

try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(),

policies);

// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);
// Activate the POA manager
rootPOA.the_POAManager().activate();
System.out.println(myPOA.servant_to_reference(managerServant) + " is ready.");
// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

U s i n g P O A s 7-1

C h a p t e r

7
Chapter7Using POAs

What is a Portable Object Adapter?
Portable Object Adapters replace Basic Object Adapters; they provide portability on
the server side.

A POA is the intermediary between the implementation of an object and the ORB. In
its role as an intermediary, a POA routes requests to servants and, as a result may
cause servants to run and create child POAs if necessary.

Servers can support multiple POAs. At least one POA must be present, which is
called the rootPOA. The rootPOA is created automatically for you. The set of POAs is
hierarchical; all POAs have the rootPOA as their ancestor.

Servant managers locate and assign servants to objects for the POA. When an abstract
object is assigned to a servant, it is called an active object and the servant is said to
incarnate the active object. Every POA has one Active Object Map which keeps track
of the object IDs of active objects and their associated active servants.

Note This chapter highlights only the major topics that relate to POAs. For a complete
description, see the OMG specification.

7-2 P r o g r a m m e r ’ s G u i d e

W h a t i s a P o r t a b l e O b j e c t A d a p t e r ?

Figure 7.1 Overview of the POA

POA terminology

Following are definitions of some terms with which you will become more familiar
as you read through this chapter.

Table 7.1 Portable Object Adapter terminology

Term Description

Active Object Map Table that maps active CORBA objects (through their object IDs) to
servants. There is one Active Object Map per POA.

adapter activator Object that can create a POA on demand when a request is received for a
child POA that does not exist.

etherealize Remove the association between a servant and an abstract CORBA object.

incarnate Associate a servant with an abstract CORBA object.

ObjectID Way to identify a CORBA object within the object adapter. An ObjectID
can be assigned by the object adapter or the application and is unique only
within the object adapter in which it was created. Servants are associated
with abstract objects through ObjectIDs.

persistent object CORBA objects that live beyond the server process that created them.

POA manager Object that controls the state of the POA; for example, whether the POA is
receiving or discarding incoming requests.

Policy Object that controls the behavior of the associated POA and the objects the
POA manages.

rootPOA Each ORB is created with one POA called the rootPOA. You can create
additional POAs (if necessary) from the rootPOA.

servant Any code that implements the methods of a CORBA object, but is not the
CORBA object itself.

Client request

Servant Manager

Servant

Servant

Servant

ObjectID
ObjectID
ObjectID

Active Object Map

Servant Manager

rootPOA

POA

POA

Server

U s i n g P O A s 7-3

P O A p o l i c i e s

Steps for creating and using POAs

Although the exact process can vary, following are the basic steps that occur during
the POA lifecycle are:

1 Define the POA’s policies.
2 Create the POA.
3 Activate the POA through its POA manager.
4 Create and activate servants.
5 Create and use servant managers.
6 Use adapter activators.

Depending on your needs, some of these steps may be optional. For example, you
only have to activate the POA if you want it to process requests.

POA policies
Each POA has a set of policies that define its characteristics. When creating a new
POA, you can use the default set of policies or use different values to suit your
requirements. You can only set the policies when creating a POA; you can not change
the policies of an existing POA. POAs do not inherit the policies from their parent
POA.

The following sections lists the POA policies, their values, and the default value
(used by the rootPOA).

Thread policy
The thread policy specifies the threading model to be used by the POA. The thread
policy can have the following values:

ORB_CTRL_MODEL: (Default) The POA is responsible for assigning requests to
threads. In a multi-threaded environment, concurrent requests may be delivered
using multiple threads. Note that VisiBroker uses multithreading model.

SINGLE_THREAD_MODEL: The POA processes requests sequentially. In a
multi-threaded environment, all calls made by the POA to servants and servant
managers are thread-safe.

servant manager An object responsible for managing the association of objects with
servants, and for determining whether an object exists. More than one
servant manager can exist.

transient object A CORBA object that lives only within the process that created it.

Table 7.1 Portable Object Adapter terminology (continued)

Term Description

7-4 P r o g r a m m e r ’ s G u i d e

P O A p o l i c i e s

Lifespan policy
The lifespan policy specifies the lifespan of the objects implemented in the POA. The
lifespan policy can have the following values:

TRANSIENT: (Default) A transient object activated by a POA cannot outlive the
POA that created it. Once the POA is deactivated, an OBJECT_NOT_EXIST exception
occurs if an attempt is made to use any object references generated by the POA.

PERSISTENT: A persistent object activated by a POA can outlive the process in
which it was first created. Requests invoked on a persistent object may result in the
implicit activation of a process, a POA and the servant that implements the object.

Object ID Uniqueness policy
The Object ID Uniqueness policy allows a single servant to be shared by many
abstract objects. The Object ID Uniqueness policy can have the following values:

UNIQUE_ID: (Default) Activated servants support only one Object ID.

MULTIPLE_ID: Activated servants can have one or more Object IDs. The Object ID
must be determined within the method being invoked at run time.

ID Assignment policy
The ID assignment policy specifies whether object IDs are generated by server
applications or by the POA. The ID Assignment policy can have the following values:

USER_ID: Objects are assigned object IDs by the application.

SYSTEM_ID: (Default) Objects are assigned object IDs by the POA. If the
PERSISTENT policy is also set, object IDs must be unique across all instantiations of
the same POA.

Typically, USER_ID is for persistent objects, and SYSTEM_ID is for transient objects.
If you want to use SYSTEM_ID for persistent objects, you can extract them from the
servant or object reference.

Servant Retention policy
The Servant Retention policy specifies whether the POA retains active servants in the
Active Object Map. The Servant Retention policy can have the following values:

RETAIN: (Default) The POA tracks object activations in the Active Object Map.
RETAIN is usually used with ServantActivators or explicit activation methods on
POA.

NON_RETAIN: The POA does not retain active servants in the Active Object Map.
NON_RETAIN must be used with ServantLocators.

ServantActivators and ServantLocators are types of servant managers. For more
information on servant managers, see “Using servants and servant managers” on
page 7-12.

U s i n g P O A s 7-5

P O A p o l i c i e s

Request Processing policy
The Request Processing policy specifies how requests are processed by the POA.

USE_ACTIVE_OBJECT_MAP_ONLY: (Default) If the Object ID is not listed in the
Active Object Map, an OBJECT_NOT _EXIST exception is returned. The POA must
also use the RETAIN policy with this value.

USE_DEFAULT_SERVANT: If the Object ID is not listed in the Active Object Map
or the NON_RETAIN policy is set, the request is dispatched to the default servant. If
no default servant has been registered, an OBJ_ADAPTER exception is returned. The
POA must also use the MULTIPLE_ID policy with this value.

USE_SERVANT_MANAGER: If the Object ID is not listed in the Active Object Map
or the NON_RETAIN policy is set, the servant manager is used to obtain a servant.

Implicit Activation policy
The Implicit Activation policy specifies whether the POA supports implicit activation
of servants. The Implicit Activation policy can have the following values:

IMPLICIT_ACTIVATION: The POA supports implicit activation of servants.
Servants can be activated by converting them to an object reference with
org.omg.PortableServer.POA.servant_to_reference() or by invoking _this() on the
servant. The POA must also use the SYSTEM_ID and RETAIN policies with this
value.

NO_IMPLICIT_ACTIVATION: (Default) The POA does not support implicit
activation of servants.

Bind Support policy
The Bind Support policy (a VisiBroker-specific policy) controls the registration of
POAs and active objects with the VisiBroker osagent. If you have several thousands
of objects, it is not feasible to register all of them with the osagent. Instead, you can
register the POA with the osagent. When a client request is made, the POA name and
the object ID is included in the bind request so that the osagent can correctly forward
the request.

The BindSupport policy can have the following values:

BY_INSTANCE: All active objects are registered with the osagent. The POA must
also use the PERSISTENT and RETAIN policy with this value.

BY_POA: (Default) Only POAs are registered with the osagent. The POA must also
use the PERSISTENT policy with this value.

NONE: Neither POAs nor active objects are registered with the osagent.

7-6 P r o g r a m m e r ’ s G u i d e

C r e a t i n g P O A s

Creating POAs
To implement objects using the POA, at least one POA object must exist on the
server. To ensure that a POA exists, a rootPOA is provided during the ORB
initialization. This POA uses the default POA policies described earlier in this
chapter.

Once the rootPOA is obtained, you can create child POAs that implement a specific
server-side policy set.

POA naming convention

Each POA keeps track of its name and its full POA name (the full hierarchical path
name.) The hierarchy is indicated by a slash (/). For example, /A/B/C means that
POA C is a child of POA B, which in turn is a child of POA A. The first slash (see the
previous example) indicates the rootPOA. If the Bind Support:BY_POA policy is set
on POA C, then /A/B/C is registered with the osagent and the client binds with /A/B/C.

If your POA name contains escape characters or other delimiters, VisiBroker
precedes these characters with a double backslash (\\) when recording the names
internally. For example, if you have two POAs in a hierarchy like

org.omg.PortableServer.POA myPOA1 = rootPOA.create_POA("A/B",
poaManager,
policies);

org.omg.PortableServer.POA myPOA2 = myPOA1.create_POA("\t",
poaManager,
policies);

a client would bind using:

org.omg.CORBA.Object manager = ((com.inprise.vbroker.orb.ORB) orb).bind("/A\\/B/\t",
managerId,
null,
null);

Obtaining the rootPOA

The following code sample illustrates how a server application can obtain its
rootPOA.

Code sample 7.1 Obtaining the rootPOA

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
// get a reference to the rootPOA
org.omg.PortableServer.POA rootPOA =

POAHelper.narrow(orb.resolve_initial_references("RootPOA"));

U s i n g P O A s 7-7

C r e a t i n g P O A s

Note The resolve_initial_references method returns a value of type org.omg.CORBA.Object.
You are responsible for narrowing the returned object reference to the desired type,
which is org.omg.PortableServer.POA in the previous example.

Setting the POA properties

Policies are not inherited from the parent POA. If you want a POA to have a specific
characteristic, you must identify all the policies that are different from the default
value. For more information about POA policies, see “POA policies” on page 7-3.

Code sample 7.2 Example of creating policies for a POA

org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)

};

Creating and activating the POA

A POA is created using create_POA on its parent POA. You can name the POA
anything you like; however, the name must be unique with respect to all other POAs
with the same parent. If you attempt to give two POAs the same name, a CORBA
exception (AdapterAlreadyExists) is raised.

To create a new POA, use create_POA as follows:

POA create_POA(POA_Name, POAManager, PolicyList);

The POA manager controls the state of the POA (for example, whether it is
processing requests). If null is passed to create_POA as the POA manager name, a new
POA manager object is created and associated with the POA. Typically, you’ll want
to have the same POA manager for all POAs. For more information about the POA
manager, see “Managing POAs with the POA manager” on page 7-17.

POA managers (and POAs) are not automatically activated once created. Use
activate() to activate the POA manager associated with your POA.

Code sample 7.3 Example of creating a POA

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)};
// Create myPOA with the right policies
org.omg.PortableServer.POA myPOA =

rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(), policies);

7-8 P r o g r a m m e r ’ s G u i d e

A c t i v a t i n g o b j e c t s

Activating objects
When CORBA objects are associated with an active servant, if the POA’s Servant
Retention Policy is RETAIN, the associated object ID is recorded in the Active Object
Map and the object is activated. Activation can occur in one of several ways:

• Explicit activation

The server application itself explicitly activates objects by calling activate_object or
activate_object_with_id.

• On-demand activation

The server application instructs the POA to activate objects through a
user-supplied servant manager. The servant manager must first be registered with
the POA through set_servant_manager.

• Implicit activation

The server activates objects solely by in response to certain operations. If a servant
is not active, there is nothing a client can do to make it active (for example,
requesting for an inactive object does not make it active.)

• Default servant

The POA uses a single servant to implement all of its objects.

Activating objects explicitly

By setting IdAssignmentPolicy::SYSTEM_ID on a POA, objects can be explicitly activated
without having to specify an object ID. The server invokes activate_object on the
POA which activates, assigns and returns an object ID for the object. This type of
activation is most common for transient objects. No servant manager is required
since neither the object nor the servant is needed for very long.

Objects can also be explicitly activated using object IDs. A common scenario is during
server initialization where the user invokes activate_object_with_id to activate all the
objects managed by the server. No servant manager is required since all the objects
are already activated. If a request for a non-existent object is received, an
OBJECT_NOT_EXIST exception is raised. This has obvious negative effects if your server
manages large numbers of objects.

Code sample 7.4 Example of explicit activation using activate_object_with_id

// Create the account manager servant.
Servant managerServant = new AccountManagerImpl(rootPoa);
// Activate the newly created servant.
testPoa.activate_object_with_id("BankManager".getBytes(), managerServant);
// Activate the POAs
testPoa.the_POAManager().activate();

U s i n g P O A s 7-9

A c t i v a t i n g o b j e c t s

Activating objects on demand

On-demand activation occurs when a client requests an object that does not have an
associated servant. After receiving the request, the POA searches the Active Object
Map for an active servant associated with the object ID. If none is found, the POA
invokes incarnate on the servant manager which passes the object ID value to the
servant manager. The servant manager can do one of three things:

• Find an appropriate servant which then performs the appropriate operation for
the request

• Raise an OBJECT_NOT_EXIST exception that is returned to the client

• Forward the request to another object

The POA policies determine any additional steps that may occur. For example, if
RequestProcessingPolicy.USE_SERVANT_MANAGER and ServantRetentionPolicy.RETAIN are
enabled, the Active Object Map is updated with the servant and object ID association.

An example of on-demand activation is shown in Code sample 7.7 on page 7-13.

Activating objects implicitly

A servant can be implicitly activated by certain operations if the POA has been
created with ImplicitActivationPolicy.IMPLICIT_ACTIVATION,
IdAssignmentPolicy.SYSTEM_ID and ServantRetentionPolicy.RETAIN. Implicit activation can
occur with:

• POA.servant_to_reference method
• POA.servant_to_id method
• _this() servant method

If the POA has ObjectIdUniquenessPolicy.UNIQUE_ID set, implicit activation can occur
when any of the above operations are performed on an inactive servant.

If the POA has ObjectIdUniquenessPolicy.MULTIPLE_ID set, servant_to_reference and
servant_to_id operations always perform implicit activation, even if the servant is
already active.

Activating with the default servant

Use the RequestProcessing.USE_DEFAULT_SERVANT policy to have the POA invoke the same
servant no matter what the object ID is. This is useful when little data is associated
with each object.

Code sample 7.5 Example of activating all objects with the same servant

import org.omg.PortableServer.*;
public class Server {

public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

7-10 P r o g r a m m e r ’ s G u i d e

A c t i v a t i n g o b j e c t s

// get a reference to the rootPOA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
rootPOA.create_request_processing_policy(

RequestProcessingPolicyValue.USE_DEFAULT_SERVANT
)

}; // Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_default_servant_poa",

rootPOA.the_POAManager(),
policies);

// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();

// Set the default servant on our POA
myPOA.set_servant(managerServant);
org.omg.CORBA.Object ref;
// Activate the POA manager
rootPOA.the_POAManager().activate();
// Generate the reference and write it out. One for each Checking and Savings
// account types. Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.
try {

ref = myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");

// Write out checking object ID
java.io.PrintWriter pw = new java.io.PrintWriter(

new java.io.FileWriter("cref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
ref = myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),

"IDL:Bank/AccountManager:1.0");
// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
System.gc();
pw.println(orb.object_to_string(ref));
pw.close();

} catch (java.io.IOException e) {
System.out.println("Error writing the IOR to file ");
return;

}
System.out.println("Bank Manager is ready.");
// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

U s i n g P O A s 7-11

A c t i v a t i n g o b j e c t s

Deactivating objects

A POA can remove a servant from its Active Object Map. This may occur, for
example, as a form of garbage-collection scheme. When the servant is removed from
the map, it is deactivated. You can deactivate an object using deactivate_object().
When an object is deactivated, it doesn’t mean this object is lost forever. It can always
be reactivated at a later time.

Code sample 7.6 Example of deactivating an object

import org.omg.PortableServer.*;
public class AccountManagerActivator extends ServantActivatorPOA {

public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest {
Servant servant;
String accountType = new String(oid);
System.out.println("\nAccountManagerActivator.incarnate called with ID = "

+ accountType + "\n");
// Create Savings or Checking Servant based on AccountType
if (accountType.equalsIgnoreCase("SavingsAccountManager"))

servant = (Servant)new SavingsAccountManagerImpl();
else

servant =(Servant)new CheckingAccountManagerImpl();
new DeactivateThread(oid, adapter).start();
return servant;

}
public void etherealize (byte[] oid,

POA adapter,
Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations) {

System.out.println("\nAccountManagerActivator.etherealize called with ID = "
+ new String(oid) + "\n");

System.gc();
}

}
class DeactivateThread extends Thread {

byte[] _oid;
POA _adapter;
public DeactivateThread(byte[] oid, POA adapter) {

_oid = oid;
_adapter = adapter;

}
public void run() {

try {
Thread.currentThread().sleep(15000);
System.out.println("\nDeactivating the object with ID = " +
new String(_oid) + "\n");
_adapter.deactivate_object(_oid);

} catch (Exception e) {
e.printStackTrace();

}
}
}

7-12 P r o g r a m m e r ’ s G u i d e

U s i n g s e r v a n t s a n d s e r v a n t m a n a g e r s

Using servants and servant managers
Servant managers perform two types of operations: find and return a servant, and
deactivate a servant. They allow the POA to activate objects when a request for an
inactive object is received. Servant managers are optional. For example, servant
managers are not needed when your server loads all objects at startup. Servant
managers may also inform clients to forward requests to another object using
ForwardRequest.

A servant is an active instance of an implementation. The POA maintains a map of
the active servants and the object IDs of the servants. When a client request is
received, the POA first checks this map to see if the object ID (embedded in the client
request) has been recorded. If it exists, then the POA forwards the request to the
servant. If the object ID is not found in the map, the servant manager is asked to
locate and activate the appropriate servant. This is only an example scenario; the
exact scenario depends on what POA policies you have in place.

Figure 7.2 Example servant manager function

There are two types of servant managers: ServantActivator and ServantLocator. The
type of policy already in place determines which callback is used. For more
information on POA policy, see “POA policies” on page 7-3. Typically, a
ServantActivator activates persistent objects and a ServantLocator activates transient
objects.

To use servant managers, RequestProcessingPolicy.USE_SERVANT_MANAGER must be set as
well as the policy which defines the type of servant manager
(ServantRetentionPolicy.RETAIN for ServantActivator or
ServantRetentionPolicy.NON_RETAIN for ServantLocator.)

1. Client makes a
request, but the
required object is not
present.

2. POA asks the servant manager to
find an appropriate object.

3. Servant Manager constructs the
appropriate servant and returns it to the
POA, which completes the request.

Server

POA

Active Object Map

ObjectID
ObjectID
ObjectID

Servant
Manager

Servant

U s i n g P O A s 7-13

U s i n g s e r v a n t s a n d s e r v a n t m a n a g e r s

ServantActivators

ServantActivators are used when ServantRetentionPolicy.RETAIN and
RequestProcessingPolicy.USE_SERVANT_MANAGER are set. Servants activated by this type of
servant manager are tracked in the Active Object Map.

The following events occur while processing requests using servant activators:

1 A client request is received (client request contains POA name, the object ID, and a
few others.)

2 The POA first checks the active object map. If the object ID is found there, the
operation is passed to the servant, and the response is returned to the client.

3 If the object ID is not found in the active object map, the POA invokes incarnate on
a servant manager. incarnate passes the object ID and the POA in which the object
is being activated.

4 The servant manager locates the appropriate servant.

5 The servant ID is entered into the active object map, and the response is returned
to the client.

Note The etherealize and incarnate method implementations are user-supplied code.

At a later date, the servant can be deactivated. This may occur from several sources,
including the deactivate_object operation, deactivation of the POA manager
associated with that POA, and so forth. More information on deactivating objects is
described in “Deactivating objects” on page 7-11.

Code sample 7.7 Example server code illustrating servant activator-type servant manager

import org.omg.PortableServer.*;
public class Server {

public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.FORB.init(args,null);
// get a reference to the rootPOA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our POA. We need persistence life span and
// use servant manager request processing policies
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
rootPOA.create_request_processing_policy(RequestProcessingPolicyValue.

USE_SERVANT_MANAGER)
};

// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_servant_activator_poa",

rootPOA.the_POAManager(),
policies);

// Create the servant activator servant and get its reference
ServantActivator sa = new AccountManagerActivator()._this(orb);
// Set the servant activator on our POA
myPOA.set_servant_manager(sa);
org.omg.CORBA.Object ref;

7-14 P r o g r a m m e r ’ s G u i d e

U s i n g s e r v a n t s a n d s e r v a n t m a n a g e r s

// Activate the POA manager
rootPOA.the_POAManager().activate();
// Generate the reference and write it out. One for each Checking and Savings
// account types .Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.
try {

ref = myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");

// Write out checking object ID
java.io.PrintWriter pw =

new java.io.PrintWriter(new java.io.FileWriter("cref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
ref = myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),

"IDL:Bank/AccountManager:1.0");

// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
System.gc();
pw.println(orb.object_to_string(ref));
pw.close();

} catch (java.io.IOException e) {
System.out.println("Error writing the IOR to file ");
return;

}
System.out.println("Bank Manager is ready.");
// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

The servant manager for this example follows.

Code sample 7.8 Servant manager for servant activator example

import org.omg.PortableServer.*;
public class AccountManagerActivator extends ServantActivatorPOA {

public Servant incarnate (byte[] oid, POA adapter) throws ForwardRequest {
Servant servant;
String accountType = new String(oid);
System.out.println("\nAccountManagerActivator.incarnate called with ID = " +

accountType + "\n");
// Create Savings or Checking Servant based on AccountType
if (accountType.equalsIgnoreCase("SavingsAccountManager"))

servant = (Servant)new SavingsAccountManagerImpl();
else

servant =(Servant)new CheckingAccountManagerImpl();
new DeactivateThread(oid, adapter).start();
return servant;

}

U s i n g P O A s 7-15

U s i n g s e r v a n t s a n d s e r v a n t m a n a g e r s

public void etherealize (byte[] oid,
POA adapter,
Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations) {

System.out.println("\nAccountManagerActivator.etherealize called with ID = " +
new String(oid) + "\n");

System.gc();
}

}
class DeactivateThread extends Thread {

byte[] _oid;
POA _adapter;
public DeactivateThread(byte[] oid, POA adapter) {

_oid = oid;
_adapter = adapter;

}

public void run() {
try {

Thread.currentThread().sleep(15000);
System.out.println("\nDeactivating the object with ID = " +

new String(_oid) + "\n");
_adapter.deactivate_object(_oid);

} catch (Exception e) {
e.printStackTrace();

}
}

}

ServantLocators

In many situations, the POA’s Active Object Map could become quite large and
consume memory. To reduce memory consumption, a POA can be created with
RequestProcessingPolicy.USE_SERVANT_MANAGER and ServantRetentionPolicy.NON_RETAIN,
meaning that the servant-to-object association is not stored in the active object map.
Since no association is stored, ServantLocator servant managers are invoked for each
request.

The following events occur while processing requests using servant locators:

1 A client request, which contains the POA name and the object id, is received.

2 Since ServantRetentionPolicy.NON_RETAIN is used, the POA does not search the active
object map for the object ID.

3 The POA invokes preinvoke on a servant manager. preinvoke passes the object ID,
the POA in which the object is being activated, and a few other parameters.

4 The servant locator locates the appropriate servant.

7-16 P r o g r a m m e r ’ s G u i d e

U s i n g s e r v a n t s a n d s e r v a n t m a n a g e r s

5 The operation is performed on the servant and the response is returned to the
client.

6 The POA invokes postinvoke on the servant manager.

Note The preinvoke and postinvoke methods are user-supplied code.

Code sample 7.9 Example server code illustrating servant locator-type servant managers

import org.omg.PortableServer.*;
public class Server {

public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the rootPOA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our POA. We need persistence life span,
// use servant manager request processing policies and non retain
// retention policy. This non retain policy will let us use the

// servant locator instead of servant activator
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
rootPOA.create_servant_retention_policy(ServantRetentionPolicyValue.

NON_RETAIN),
rootPOA.create_request_processing_policy(RequestProcessingPolicyValue.

USE_SERVANT_MANAGER)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_servant_locator_poa",

rootPOA.the_POAManager(),
policies);

// Create the servant locator servant and get its reference
ServantLocator sl = new AccountManagerLocator()._this(orb);
// Set the servant locator on our POA
myPOA.set_servant_manager(sl);
org.omg.CORBA.Object ref ;
// Activate the POA manager
rootPOA.the_POAManager().activate();
// Generate the reference and write it out. One for each Checking and Savings
// account types .Note that we are not creating any
// servants here and just manufacturing a reference which is not
// yet backed by a servant.
try {

ref = myPOA.create_reference_with_id("CheckingAccountManager".getBytes(),
"IDL:Bank/AccountManager:1.0");

// Write out checking object ID
java.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter("cref.dat"));
pw.println(orb.object_to_string(ref));
pw.close();
ref = myPOA.create_reference_with_id("SavingsAccountManager".getBytes(),

"IDL:Bank/AccountManager:1.0");

U s i n g P O A s 7-17

M a n a g i n g P O A s w i t h t h e P O A m a n a g e r

// Write out savings object ID
pw = new java.io.PrintWriter(new java.io.FileWriter("sref.dat"));
System.gc();
pw.println(orb.object_to_string(ref));
pw.close();

} catch (java.io.IOException e) {
System.out.println("Error writing the IOR to file ");
return;

}
System.out.println("BankManager is ready.");
// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

The servant manager for this example follows.

Code sample 7.10 Servant manager for servant locator example

import org.omg.PortableServer.*;
import org.omg.PortableServer.ServantLocatorPackage.CookieHolder;
public class AccountManagerLocator extends ServantLocatorPOA {

public Servant preinvoke (byte[] oid,POA adapter,
java.lang.String operation,
CookieHolder the_cookie) throws ForwardRequest {

String accountType = new String(oid);
System.out.println("\nAccountManagerLocator.preinvoke called with ID = " +

accountType + "\n");
if (accountType.equalsIgnoreCase("SavingsAccountManager"))

return new SavingsAccountManagerImpl();
return new CheckingAccountManagerImpl();

}
public void postinvoke (byte[] oid,

POA adapter,
java.lang.String operation,
java.lang.Object the_cookie,
Servant the_servant) {

System.out.println("\nAccountManagerLocator.postinvoke called with ID = " +
new String(oid) + "\n");

}
}

Managing POAs with the POA manager
A POA manager controls the state of the POA (whether requests are queued or
discarded), and can deactivate the POA. Each POA is associated with a POA
manager object. A POA manager can control one or several POAs.

7-18 P r o g r a m m e r ’ s G u i d e

M a n a g i n g P O A s w i t h t h e P O A m a n a g e r

A POA manager is associated with a POA when the POA is created. You can specify
the POA manager to use, or specify null to have a new POA Manager created.

Code sample 7.11 Naming the POA and its POA Manager

POA myPOA = rootPOA.create_POA("bank_agent_poa",
rootPOA.the_POAManager(),
policies);

POA myPOA = rootPOA.create_POA("bank_agent_poa",
null,
policies);

A POA manager is “destroyed” when all its associated POAs are destroyed.

A POA manager can have the following four states:

• Holding
• Active
• Discarding
• Inactive

These states in turn determine the state of the POA. They are each described in detail
in the following sections.

Getting the current state

To get the current state of the POA manager, use

enum State{HOLDING, ACTIVE, DISCARDING, INACTIVE};
State get_state();

Holding state

By default, when a POA manager is created, it is in the holding state. When the POA
manager is in the holding state, the POA queues all incoming requests.

Requests that require an adapter activator are also queued when the POA manager is
in the holding state.

To change the state of a POA manager to holding, use

void hold_requests(wait_for_completion)
raises (AdapterInactive);

wait_for_completion is Boolean. If FALSE, this operation returns immediately after
changing the state to holding. If TRUE, this operation returns only when all requeusts
started prior to the state change have completed or when the POA manager is
changed to a state other than holding. AdapterInactive is the exception raised if the
POA manager was in the inactive state prior to calling this operation.

Note POA managers in the inactive state cannot change to the holding state.

Any requests that have been queued but not yet started will continue to be queued
during the holding state.

U s i n g P O A s 7-19

M a n a g i n g P O A s w i t h t h e P O A m a n a g e r

Active state

When the POA manager is in the active state, its associated POAs process requests.

To change the POA manager to the active state, use

void activate()
raises (AdapterInactive);

AdapterInactive is the exception raised if the POA manager was in the inactive state
prior to calling this operation.

Note POA managers currently in the inactive state can not change to the active state.

Discarding state

When the POA manager is in the discarding state, its associated POAs discard all
requests that have not yet started. In addition, the adapter activators registered with
the associated POAs are not called. This state is useful when the POA is receiving too
many requests. You need to notify the client that their request has been discarded
and to resend their request. There is no inherent behavior for determining if and
when the POA is receiving too many requests. It is up to you to set-up thread
monitoring if so desired.

To change the POA manager to the discarding state, use

void discard_requests(wait_for_completion)
raises (AdapterInactive);

The wait_for_completion option is Boolean. If FALSE, this operation returns immediately
after changing the state to holding. If TRUE, this operation returns only when all
requests started prior to the state change have completed or when the POA manager
is changed to a state other than discarding. AdapterInactive is the exception raised if
the POA manager was in the inactive state prior to calling this operation.

Note POA managers currently in the inactive state can not change to the discarding state.

Inactive state

When the POA manager is in the inactive state, its associated POAs reject incoming
requests. This state is used when the associated POAs are to be shut down.

Note POA managers in the inactive state can not change to any other state.

To change the POA manager to the inactive state, use

void deactivate(etherealize_objects, wait_for_completion)
raises (AdapterInactive);

After the state changes, if etherealize_objects is TRUE, then all associated POAs that
have Servant RetentionPolicy.RETAIN and RequestProcessingPolicy.USE_SERVANT_MANAGER
set call etherealize on the servant manager for all active objects. If etherealize_objects
is FALSE, then etherealize is not called. The wait_for_completion option is Boolean. If
FALSE, this operation returns immediately after changing the state to inactive. If TRUE,

7-20 P r o g r a m m e r ’ s G u i d e

S e t t i n g t h e l i s t e n i n g a n d d i s p a t c h i n g p r o p e r t i e s

this operation returns only when all requests started prior to the state change have
completed or etherealize has been called on all associated POAs (that have Servant
RetentionPolicy.RETAIN and RequestProcessingPolicy.USE_SERVANT_MANAGER).
AdapterInactive is the exception raised if the POA manager was in the inactive state
prior to calling this operation.

Setting the listening and dispatching properties
Policies that cover listener and dispatcher features previously supported by the BOA
are not supported by POAs. In order to provide these features, a VisiBroker-specific
policy (ServerEnginePolicy) can be used.

A server engine consists of:

• Host name
• Proxy host name
• Server connection manager or list of server connection managers

The following illustration shows how these fit together.

Figure 7.3 Server engine overview

The simplest case is where POAs have their own unique single server engine. Here,
requests for different POAs arrive on different ports. A POA can also have multiple
server engines. In this scenario, a single POA supports requests coming from
multiple input ports.

Notice that POAs can share server engines. When server engines are shared, the
POAs listen to the same port. Even though the requests for (multiple) POAs arrive at
the same port, they are dispatched correctly because of the POA name embedded in
the request. This scenario occurs, for example, when you use a default server engine
and create multiple POAs (without specifying a new server engine during the POA
creation).

POA1

POA2

POA3

ServerEngine1

ServerEngine2

ServerEngine3

ServerEngine4

ServerConnectionManager1

ServerConnectionManager2

ServerConnectionManager3

ServerConnectionManager4

ServerConnectionManager5

U s i n g P O A s 7-21

S e t t i n g t h e l i s t e n i n g a n d d i s p a t c h i n g p r o p e r t i e s

Setting the server engine properties

The following properties determine which server engine(s) are used by default:

vbroker.se.<server_engine_name>.host
vbroker.se.<server_engine_name>.proxyHost
vbroker.se.<server_engine_name>.scms

If you don’t specify a server engine policy, the POA assumes a server engine name of
iiop and uses the following default values:

vbroker.se.iiop_tp.host=null
vbroker.se.iiop_tp.proxyHost=null
vbroker.se.iiop_tp.scms=iiop

To change the default server engine policy, enter its name using the
vbroker.se.default property and define the values for all the components of the new
server engine. For example,

vbroker.se.default=abc,def
vbroker.se.abc.host=cob
vbroker.se.abc.proxyHost=null
vbroker.se.abc.scms=cobscm1, cobscm2
vbroker.se.def.host=gob
vbroker.se.def.proxyHost=null
vbroker.se.def.scms=gobscm1

For more information on how to set properties, see Chapter 14, “Setting properties.”

Setting the server connection manager properties

The server connection manager consists of three property groups: manager, listener,
and dispatcher.

Manager properties
You can set the following manager properties:

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.type

Identifies the connection manager type.Currently, Socket is the only type
supported.

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.connectionMax

Defines the maximum number of concurrent, incoming connections allowed. The
default value is 0, meaning an unlimited number of connections.

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.connectionMaxIdle

Defines the maximum number of idle seconds before the connection is shutdown.
The default value is 0, meaning there is no timeout.

7-22 P r o g r a m m e r ’ s G u i d e

S e t t i n g t h e l i s t e n i n g a n d d i s p a t c h i n g p r o p e r t i e s

Listener properties
You can set the following listener properties:

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.listener.type

Identifies the listener type. Currently, IIOP is the only type supported.

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.listener.port

Defines the listening port that the POA associated with this server which the
connection manager uses. The default port is 0 (zero), meaning the system will
pick a random port number.

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.listener.proxyPort

Specifies the proxy port number used with the proxy host name property. The
default value, 0 (zero), means the system will pick a random port number.

Dispatcher properties
You can set the following dispatcher properties:

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.dispatcher.type

Identifies the dispatcher type. Currently, ThreadPool and ThreadSession are the only
types supported.

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.dispatcher.threadMax

Used only when type is set to ThreadPool.

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.dispatcher.threadMaxIdle

Used only when type is set to ThreadPool.

• vbroker.se.<server_engine>.scm.<server_connection_mgr>.dispatcher.threadMin

Used only when type is set to ThreadPool.

When to use these properties

There are many times where you need to change some of the server engine
properties. The method for changing these properties depends on what you need.
For example, suppose you want to change the port number. You could accomplish
this by:

• Changing the default listener.port property
• Creating a new server engine

Changing the default listener.port property is the simplest method, but this affects
all POAs that use the default server engine. This may or may not be what you want.

U s i n g P O A s 7-23

S e t t i n g t h e l i s t e n i n g a n d d i s p a t c h i n g p r o p e r t i e s

If you want to change the port number on a specific POA, then you’ll have to create a
new server engine, define the properties for this new server engine, and then
reference the new server engine when creating the POA. The previous sections show
how to update the server engine properties. The following code snippet shows how
to define properties of a server engine and create a POA with a user-defined server
engine policy.

Code sample 7.12 Creating a POA with a specific server engine

// Server.java
import org.omg.PortableServer.*;
public class Server {

public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Get property manager
com.inprise.vbroker.properties.PropertyManager pm =

((com.inprise.vbroker.orb.ORB)orb).getPropertyManager();
pm.addProperty("vbroker.se.mySe.host", "");
pm.addProperty("vbroker.se.mySe.proxyHost", "");
pm.addProperty("vbroker.se.mySe.scms", "scmlist");
pm.addProperty("vbroker.se.mySe.scm.scmlist.manager.type", "Socket");
pm.addProperty("vbroker.se.mySe.scm.scmlist.manager.connectionMax", 100);
pm.addProperty("vbroker.se.mySe.scm.scmlist.manager.connectionMaxIdle", 300);
pm.addProperty("vbroker.se.mySe.scm.scmlist.listener.type", "IIOP");
pm.addProperty("vbroker.se.mySe.scm.scmlist.listener.port", 55000);
pm.addProperty("vbroker.se.mySe.scm.scmlist.listener.proxyPort", 0);
pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.type", "ThreadPool");
pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMax", 100);
pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMin", 5);
pm.addProperty("vbroker.se.mySe.scm.scmlist.dispatcher.threadMaxIdle", 300);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create our server engine policy
org.omg.CORBA.Any seAny = orb.create_any();
org.omg.CORBA.StringSequenceHelper.insert(seAny, new String[]{"mySe"});
org.omg.CORBA.Policy sePolicy =
orb.create_policy(

com.inprise.vbroker.PortableServerExt.SERVER_ENGINE_POLICY_TYPE.value, seAny);
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),sePolicy

};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_se_policy_poa",

rootPOA.the_POAManager(),
policies);

// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Activate the servant
myPOA.activate_object_with_id("BankManager".getBytes(), managerServant);
// Obtaining the reference
org.omg.CORBA.Object ref = myPOA.servant_to_reference(managerServant);

7-24 P r o g r a m m e r ’ s G u i d e

A d a p t e r a c t i v a t o r s

// Now write out the IOR
try {

java.io.PrintWriter pw =
new java.io.PrintWriter(new java.io.FileWriter("ior.dat"));

pw.println(orb.object_to_string(ref));
pw.close();

} catch (java.io.IOException e) {
System.out.println("Error writing the IOR to file ior.dat");
return;

}
// Activate the POA manager
rootPOA.the_POAManager().activate();
System.out.println(ref + " is ready.");
// Wait for incoming requests
orb.run();
} catch (Exception e) {

e.printStackTrace();
}

}
}

Adapter activators
Adapter activators are associated with POAs and provide the ability to create child
POAs on-demand. This can be done during the find_POA operation, or when a request
is received that names a specific child POA.

An adapter activator supplies a POA with the ability to create child POAs on
demand, as a side-effect of receiving a request that names the child POA (or one of its
children), or when find_POA is called with an activate parameter value of TRUE. An
application server that creates all its needed POAs at the beginning of execution does
not need to use or provide an adapter activator; it is necessary only for the case in
which POAs need to be created during request processing.

While a request from the POA to an adapter activator is in progress, all requests to
objects managed by the new POA (or any descendant POAs) will be queued. This
serialization allows the adapter activator to complete any initialization of the new
POA before requests are delivered to that POA.

For an example on using adapter activators, see the POA adaptor_activator example
included with the product.

U s i n g P O A s 7-25

P r o c e s s i n g r e q u e s t s

Processing requests
Requests contain the Object ID of the target object and the POA that created the
target object reference. When a client sends a request, the ORB first locates the
appropriate server, or starts the server if needed. It then locates the appropriate POA
within that server.

Once the ORB has located the appropriate POA, it delivers the request to that POA.
How the request is processed at that point depends on the policies of the POA and
the object’s activation state. For information about object activation states, see
“Activating objects” on page 7-8.

• If the POA has ServantRetentionPolicy.RETAIN, the POA looks at the Active Object
Map to locate a servant associated with the Object ID from the request. If a servant
exists, the POA invokes the appropriate method on the servant.

• If the POA has ServantRetentionPolicy.NON_RETAIN or has
ServantRetentionPolicy.RETAIN but did not find the appropriate servant, the
following may take place:

• If the POA has RequestProcessingPolicy.USE_DEFAULT_SERVANT, the POA invokes the
appropriate method on the default servant.

• If the POA has RequestProcessingPolicy.USE_SERVANT_MANAGER, the POA invokes
incarnate or preinvoke on the servant manager.

• If the POA has RequestProcessingPolicy.USE_OBJECT_MAP_ONLY, an exception is
raised.

If a servant manager has been invoked but can not incarnate the object, the servant
manager can raise a ForwardRequest exception.

7-26 P r o g r a m m e r ’ s G u i d e

M a n a g i n g t h r e a d s a n d c o n n e c t i o n s 8-1

C h a p t e r

8
Chapter8Managing threads and connections

This chapter discusses the use of multiple threads in client programs and object
implementations, and will help you understand the thread and connection model
that VisiBroker uses.

Using threads with VisiBroker
A thread, or a single sequential flow of control within a process, is also called a
lightweight process that reduces overhead by sharing fundamental parts with other
threads. Threads are lightweight so that there can be many of them present within a
process.

Using multiple threads provides concurrency within an application and improves
performance. Applications can be structured efficiently with threads servicing
several independent computations simultaneously. For example, a database system
may have many user interactions in progress while at the same time performing
several file and network operations. Although it is possible to write the software as
one thread of control moving asynchronously from request to request, the code may
be simplified by writing each request as a separate sequence, and letting the
underlying system handle the synchronous interleaving of the different operations.

Multiple threads are useful when

• There are groups of lengthy operations that do not necessarily depend on other
processing (like painting a window, printing a document, responding to a
mouse-click, calculating a spreadsheet column, signal handling).

• There will be few locks on data (the amount of shared data is identifiable and
small).

• The task can be broken into various responsibilities. For example, one thread can
handle the signals and another thread can handle the user interface.

8-2 P r o g r a m m e r ’ s G u i d e

W h a t t h r e a d p o l i c i e s d o e s V i s i B r o k e r p r o v i d e ?

What thread policies does VisiBroker provide?
VisiBroker provides two thread policies: thread pooling or thread-per-session. The
thread pooling and thread-per-session models differ in these fundamental ways

• Situation in which they are created
• How simultaneous requests from the same client are handled
• When and how threads are released

The default thread policy is thread pooling. For information about setting
thread-per-session or changing properties in thread pooling, see “Setting dispatch
policies and properties” on page 8-9.

Thread pooling policy
When your server uses the thread pooling policy, it defines the maximum number of
threads that can be allocated to handle client requests. A worker thread is assigned
for each client request, but only for the duration of that particular request. When a
request is completed, the worker thread that was assigned to that request is placed
into a pool of available threads so that it may be reassigned to process future requests
from any of the clients.

Using this model, threads are allocated based on the amount of request traffic to the
server object. This means that a highly active client that makes many requests to the
server at the same time will be serviced by multiple threads—ensuring that the
requests are quickly executed—while less active clients can share a single thread, and
still have their requests immediately serviced. Additionally, the overhead associated
with the creation and destruction of worker threads is reduced, because threads are
reused rather than destroyed, and can be assigned to multiple connections.

VisiBroker conserves system resources by dynamically allocating the number of
threads in the thread pool based on the number of concurrent client requests. If the
client becomes very active, threads are allocated to meet its needs. If the threads
remain inactive, VisiBroker releases them, only keeping enough threads to meet
current client demand. This enables the optimal number of threads to be active in the
server at all times.

The size of the thread pool grows based upon server activity and is fully
configurable—either before or during execution—to meet the needs of specific
distributed systems. With thread pooling, you can configure the following:

• Maximum and minimum number of threads
• Maximum idle time

M a n a g i n g t h r e a d s a n d c o n n e c t i o n s 8-3

T h r e a d p o o l i n g p o l i c y

Each time a client request is received, an attempt is made to assign a thread from the
thread pool to process the request. If this is the first client request and the pool is
empty, a thread will be created. Likewise, if all threads are busy, a new thread will be
created to service the request.

A server can define a maximum number of threads that can be allocated to handle
client requests. If there are no threads available in the pool and the maximum
number of threads have already been created, the request will block until a thread
currently in use has been released back into the pool.

Thread pooling is the default thread policy. You do not have to set up anything to
define this environment. If you want to set properties for thread pooling, see “Setting
dispatch policies and properties” on page 8-9.

Figure 8.1 Pool of threads is available

Figure 8.1 shows the object implementation using the thread pooling policy. As the
name implies, in this policy there is an available pool of worker threads.

Worker
thread 2

Worker
thread 1

Worker
thread 3

Object
Implementation

Client
application #1

Client
application #2

Thread pool

8-4 P r o g r a m m e r ’ s G u i d e

T h r e a d p o o l i n g p o l i c y

Figure 8.2 Client application #1 sends a request

In Figure 8.2, Client application #1 establishes a connection to the Object
Implementation and a thread is created to handle requests. In thread pooling, there is
one connection per client and one thread per connection. When a request comes in, a
worker thread receives the request; that worker thread is no longer in the pool.

A worker thread is removed from the thread pool and is always listening for
requests. When a request comes in, that worker thread reads in the request and
dispatches the request to the appropriate object implementation. Prior to dispatching
the request, the worker thread wakes up one other worker thread which then listens
for the next request.

Object
Implementation

Worker
thread 2Connection

Client
application #1

Client
application #2

Worker
thread 1

Worker
thread 3

Thread pool

M a n a g i n g t h r e a d s a n d c o n n e c t i o n s 8-5

T h r e a d p o o l i n g p o l i c y

Figure 8.3 Client application #2 sends a request

As Figure 8.3 shows, when Client application #2 establishes its own connection and
sends a request, a second worker thread is created. Worker thread #3 is now listening
for incoming requests.

Object
Implementation

Worker
thread 1

Client
application #1

Client
application #2

Worker
thread 2

Worker thread 4
listening for the
next request
from
Application 2

Thread pool

request

request

Worker thread 3
listening for the
next request
from
Application 1

8-6 P r o g r a m m e r ’ s G u i d e

T h r e a d p o o l i n g p o l i c y

Figure 8.4 Client application #1 sends a second request

Figure 8.4 shows that when a second request comes in from Client application #1, it
uses worker thread #4. Worker thread #5 is spawned to listen for new requests. If
more requests came in from Client application #1, more threads would be assigned to
handle them—each spawned after the listening thread receives a request. As worker
threads complete their tasks, they are returned to the pool and become available to
handle requests from any client.

Object
Implementation

Client
application #1

Worker
thread 1

Worker
thread 4

Worker
thread 2

Client
application #2

Thread pool

request

request 2

request 1

listening

listening
Worker
thread 3

Worker
thread 5

M a n a g i n g t h r e a d s a n d c o n n e c t i o n s 8-7

T h r e a d - p e r - s e s s i o n p o l i c y

Thread-per-session policy
With the thread-per-session policy, threading is driven by connections between the
client and server processes. When your server selects the thread-per-session policy, a
new thread is allocated each time a new client connects to a server. A thread is
assigned to handle all the requests received from a particular client. Because of this,
thread-per-session is also referred to as thread-per-connection. When the client
disconnects from the server, the thread is destroyed. You may limit the maximum
number of threads that can be allocated for client connections by setting the
vbroker.se.iiop_ts.scm.iiop_ts.manager.connectionMax property.

Figure 8.5 Object implementation using the thread-per-session policy

Figure 8.5 shows the use of the thread-per-session policy. The Client application #1
establishes a connection with the object implementation. A separate connection exists
between Client application #2 and the object implementation. When a request comes
in to the object implementation from Client application #1, a worker thread handles
the request. When a request from Client application #2 comes in, a different worker
thread is assigned to handle this request.

Object
Implementation

Client
application #1

Client
application #2

connection

request

request

Thread

connection

Thread

8-8 P r o g r a m m e r ’ s G u i d e

W h a t c o n n e c t i o n m a n a g e m e n t d o e s V i s i B r o k e r p r o v i d e ?

Figure 8.6 Second request comes in from the same client

In Figure 8.6, a second request has come in to the object implementation from Client
application #1. The same thread that handles request 1 will handle request 2. The
thread blocks request #2 until it completes request 1. (With thread-per-session,
requests from the same Client are not handled in parallel.) When request #1 has
completed, the thread can handle request 2 from Client application #1. Multiple
requests may come in from Client application #1—they are handled in the order that
they come in, no additional threads are assigned to Client application #1.

What connection management does VisiBroker provide?
Overall, VisiBroker’s connection management minimizes the number of client
connections to the server. In other words there is only one connection per server
process which is shared. All client requests are multiplexed over the same
connection, even if they originate from different threads. Additionally, released client
connections are recycled for subsequent reconnects to the same server, eliminating
the need for clients to incur the overhead of new connections to the server.

In the following scenario, a client application is bound to two objects in the server
process. Each bind() shares a common connection to the server process, even though
the bind() is for a different object in the server process.

Object
Implementation

Client
application #1

Client
application #2

request

request 2

thread

thread

request 1

connection

connection

M a n a g i n g t h r e a d s a n d c o n n e c t i o n s 8-9

S e t t i n g d i s p a t c h p o l i c i e s a n d p r o p e r t i e s

Figure 8.7 Binding to two objects in the same server process

Figure 8.8 shows the connections for a client using multiple threads that has several
threads bound to an object on the server.

Figure 8.8 Binding to an object in a server process

As Figure 8.8 shows, all invocations from all threads are serviced by the same
connection. For the scenario shown in Figure 8.8, the most efficient multithreading
model to use is the thread pooling model (which is the default). If the
thread-per-session model is used with this scenario, only one thread on the server
will be allocated to service all requests from all threads in the client
application—which could easily result in poor performance.

The maximum number of connections to a server or from a client can be configured.
Inactive connections will be recycled when the maximum is reached, ensuring
resource conservation.

Setting dispatch policies and properties
Each POA in a multi-threaded object server can choose between two dispatch
models: thread-per-session or thread pooling. You choose a dispatch policy by setting
the dispatcher.type property of the ServerEngine.

vbroker.se.<srvr_eng_name>.scm.<srvr_connection_mngr_name>.dispatcher.type="ThreadPool"
vbroker.se.<srvr_eng_name>.scm.<srvr_connection_mngr_name>.dispatcher.type="ThreadSession"

For more information about these properties, see the VisiBroker for Java Reference or
“Setting the listening and dispatching properties” on page 7-20.

Client application

Server process

bind() to Object A

bind() to Object B
Object A

Object B

Both requests are serviced
through a single connection

Client application

Server process

bind() to Object A

bind() to Object A

Object A

Requests from all three threads are
serviced through a single connection

bind() to Object A

8-10 P r o g r a m m e r ’ s G u i d e

S e t t i n g d i s p a t c h p o l i c i e s a n d p r o p e r t i e s

Thread pooling

ThreadPool (thread pooling) is the default dispatch policy when you create a POA
without specifying the ServerEnginePolicy.

For ThreadPool, you can set the following properties:

• vbroker.se.default.dispatcher.tp.threadMax
• vbroker.se.default.dispatcher.tp.threadMin
• vbroker.se.default.dispatcher.tp.threadMaxIdle

Threads-per-session

When using the ThreadSession as the dispatcher type, you must set the se.default
property to iiop_ts.

vbroker.se.default=iiop_ts

Coding considerations

All code within a server that implements an ORB object must be thread-safe. You
must take special care when accessing a system-wide resource within an object
implementation. For example, many database access methods are not thread-safe.
Before your object implementation attempts to access such a resource, it must first
lock access to the resource using a synchronized block.

If serialized access to an object is required, you need to create the POA on which this
object is activated with the SINGLE_THREAD_MODEL value for the ThreadPolicy.

U s i n g t h e t i e m e c h a n i s m 9-1

C h a p t e r

9
Chapter9Using the tie mechanism

This chapter describes how the tie mechanism may be used to integrate existing Java
code into a distributed object system. This chapter will enable you to create a
delegation implementation or to provide implementation inheritance.

How does the tie mechanism work?
Object implementation classes normally inherit from a servant class generated by the
idl2java compiler. The servant class, in turn, inherits from
org.omg.PortableServer.Servant. When it is not convenient or possible to change
existing classes to inherit from the VisiBroker servant class, the tie mechanism offers
an attractive alternative.

The tie mechanism provides object servers with a delegator implementation class that
inherits from org.omg.PortableServer.Servant. The delegator implementation does not
provide any semantics of its own. It simply delegates every request it receives to the
real implementation class, which can be implemented separately. The real
implementation class is not required to inherit from org.omg.PortableServer.Servant.

With using the tie mechanism, two additional files are generated from the IDL
compiler.

• <InterfaceName>POATie defers implementation of all IDL defined methods to a
delegate. The delegate implements the interface <InterfaceName>Operations. Legacy
implementations can be trivially extended to implement the operations interface
and in turn delegate to the real implementation.

• <InterfaceName>Operations defines all of the methods that must be implemented by
the object implementation. This interface acts as the delegate object for the
associated <InterfaceName>POATie class when the tie mechanism is used.

9-2 P r o g r a m m e r ’ s G u i d e

E x a m p l e p r o g r a m

Example program

Location of an example program using the tie mechanism

A version of the Bank example using the tie mechanism can be found in the
VisiBroker for Java distribution under examples/basic/bank_tie.

Changes to the server class

The following code sample shows the modifications to the Server class. Note the extra
step of creating an instance of AccountManagerManagerPOATie.

Code sample 9.1 Server.java file from the bank_tie directory

import org.omg.PortableServer.*;
public class Server {

public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa",

rootPOA.the_POAManager(), policies);
// Create the tie which delegates to an instance of AccountManagerImpl
Bank.AccountManagerPOATie tie =

new Bank.AccountManagerPOATie(new AccountManagerImpl(rootPOA));
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, tie);
// Activate the POA manager
rootPOA.the_POAManager().activate();
System.out.println("Server is ready.");
// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

U s i n g t h e t i e m e c h a n i s m 9-3

E x a m p l e p r o g r a m

Changes to the AccountManager

The changes made to the AccountManager class (in comparison to the Bank_agent
example) include:

• AccountManagerImpl no longer extends Bank.AccountManagerPOA.

• When a new Account is to be created, an AccountPOATie is also created and
initialized.

Code sample 9.2 AccountManagerImpl class

import org.omg.PortableServer.*;
import java.util.*;

public class AccountManagerImpl implements Bank.AccountManagerOperations {
public AccountManagerImpl(POA poa) {

_accountPOA = poa;
}
public synchronized Bank.Account open(String name) {

// Lookup the account in the account dictionary.
Bank.Account account = (Bank.Account) _accounts.get(name);
// If there was no account in the dictionary, create one.
if (account == null) {

// Make up the account's balance, between 0 and 1000 dollars.
float balance = Math.abs(_random.nextInt()) % 100000 / 100f;
// Create an account tie which delegate to an instance of AccountImpl
Bank.AccountPOATie tie =

new Bank.AccountPOATie(new AccountImpl(balance));
try {

// Activate it on the default POA which is root POA for this servant
account = Bank.AccountHelper.narrow(_accountPOA.servant_to_reference(tie));

} catch (Exception e) {
e.printStackTrace();

}
// Print out the new account.
System.out.println("Created " + name + "'s account: " + account);
// Save the account in the account dictionary.
_accounts.put(name, account);

}
// Return the account.
return account;

}
private Dictionary _accounts = new Hashtable();
private Random _random = new Random();
private POA _accountPOA = null;

}

9-4 P r o g r a m m e r ’ s G u i d e

E x a m p l e p r o g r a m

Changes to the Account class

The changes made to the Account class (in comparison to the Bank example) are that it
no longer extends Bank.AccountPOA.

Code sample 9.3 AccountImpl class

// Server.java
public class AccountImpl implements Bank.AccountOperations {

public AccountImpl(float balance) {
_balance = balance;

}
public float balance() {

return _balance;
}
private float _balance;

}

Building the tie example

The instructions described in Chapter 4, “Developing an example application with
VisiBroker,” are also valid for building the tie example.

C l i e n t c o n c e p t s

P a r t

III
PartIIIClient concepts

This part of the VisiBroker for Java Programmer’s Guide includes the following
chapter.

Chapter 10 “Client basics”

C l i e n t b a s i c s 10-1

C h a p t e r

10
Chapter10Client basics

This chapter describes how client programs access and use distributed objects.

Initializing the ORB
The Object Request Broker (ORB) provides a communication link between the client
and the server. When a client makes a request, the ORB locates the object
implementation, activates the object if necessary, delivers the request to the object,
and returns the response to the client. The client is unaware whether the object is on
the same machine or across a network.

Note: The ORB is an intensive user of system resources. It is therefore advised that you
create only one single instance of the ORB per process.

Though much of the work done by the ORB is transparent to you, your client
program must explicitly initialize the ORB. ORB options, described in VisiBroker for
Java Reference, can be specified as command-line arguments. Therefore, you must
pass args to ORB.init to ensure that these options take effect.

Code sample 10.1 Initializing the ORB

public class Client {
public static void main (String[] args) {

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
. . .

}

Binding to objects
A client program uses a remote object by obtaining a reference to the object. Object
references are usually obtained using the <interface>Helper’s bind() method. The ORB
hides most of the details involved with obtaining the object reference, such as

10-2 P r o g r a m m e r ’ s G u i d e

B i n d i n g t o o b j e c t s

locating the server that implements the object and establishing a connection to that
server.

Action performed during the bind process

When the server process starts, it performs an ORB.init() and announces itself to
Smart Agents on the network.

When your client program invokes the bind() method, the ORB performs several
functions on behalf of your program.

• ORB contacts the Smart Agent to locate an object implementation that offers the
requested interface. If an object name was specified when bind() was invoked, that
name is used to further qualify the directory service search. The Object Activation
Daemon (OAD), described in Chapter 20, “Using the Object Activation Daemon,”
may be involved in this process if the server object has been registered with the
OAD.

• When an object implementation is located, the ORB attempts to establish a
connection between the object implementation that was located and your client
program.

• Once the connection is successfully established, the ORB will create a proxy object
and return a reference to that object. The client will invoke methods on the proxy
object which will, in turn, interact with the server object.

Figure 10.1 Client interaction with the Smart Agent

Note Your client program will never invoke a constructor for the server class. Instead, an
object reference is obtained by invoking the static bind() method.

Code sample 10.2 Example of bind call

. . .
Bank.AccountManager manager =

Client Server

System

Smart
Agent

1. Client locates Smart Agent.
When found, the client obtains
an object reference by calling
bind().

2. Once the object reference is
received, the client can issue
requests to the appropriate
server object.

C l i e n t b a s i c s 10-3

I n v o k i n g o p e r a t i o n s o n a n o b j e c t

Bank.AccountManagerHelper.bind(orb, "/bank_agent_poa", "BankManager".getBytes());
. . .

Invoking operations on an object
Your client program uses an object reference to invoke an operation on an object or to
reference data contained by the object. “Manipulating object references” describes
the variety of ways that object references can be manipulated.

Code sample 10.3 Invoking an operation using an object reference

. . .
// Invoke the balance operation.

System.out.println("The balance in Account1: $" + account1.balance());
. . .

Manipulating object references
The object reference returned to your client program by the bind() method a CORBA
object. Your client program can use the object reference to invoke operations on the
object that have been defined in the object’s IDL interface specification. In addition,
there are methods that all ORB objects inherit from the class org.omg.CORBA.Object
that you can use to manipulate the object.

Converting a reference to a string

VisiBroker provides an ORB class with methods that allow you to convert an object
reference to a string or convert a string back into an object reference. The CORBA
specification refers to this process as stringification.

A client program can use the object_to_string method convert an object reference to a
string and pass it to another client program. The second client may then de-stringify
the object reference, using the string_to_object method, use the object reference
without having to explicitly bind to the object.

Note Locally-scoped object references like the ORB or the POA cannot be stringified. If an
attempt is made to do so, a MARSHAL exception is raised with the minor code 4.

Table 10.1 Methods stringification and de-stringification

Method Description

object_to_string Converts an object reference to a string.

string_to_object Converts a string to an object reference.

10-4 P r o g r a m m e r ’ s G u i d e

M a n i p u l a t i n g o b j e c t r e f e r e n c e s

Obtaining object and interface names

Table 10.2 shows the methods by the Object class that you can use to obtain the
interface and object names as well as the repository id associated with an object
reference. The interface repository is discussed in Chapter 21, “Using interface
repositories.”

Note If you did not specify an object name when you invoked the bind() method, invoking
the _object_name() method with the resulting object reference will return null.

Determining the type of an object reference

You can check whether an object reference is of a particular type by using the _is_a()
method. You must first obtain the repository id of the type you wish to check using
the _repository_id() method. This method returns true if the object is either an
instance of the type represented by repository_id() or if it is a sub-type. The method
false if the object is not of the type specified. Note that this may require remote
invocation to determine the type.

Note You cannot use the instanceof keyword to determine the runtime type.

You can use the _is_equivalent() method to check if two object references refer to the
same object implementation. This method returns true if the object references are
equivalent. This method returns false if the object references are distinct, but does
not necessarily indicate that the object references are two distinct objects. This is a
lightweight method and does not involve actual communication with the server
object.

Determining the location and state of bound objects

Given a valid object reference, your client program can use the _is_bound() method to
determine if the object bound. The method returns true if the object is bound and
false if the object is not bound.

The _is_local() method returns true if the client program and the object
implementation reside within the same process or address space.

Table 10.2 Methods obtaining interface and object names

Method Description

_object_name Returns this object’s name.

_repository_id Returns the repository’s type identifier.

Table 10.3 Methods determining the type of an object reference

Method Description

_is_a Determines if an object implements a specified interface.

_is_equivalent Returns true if two objects refer to the same interface implementation.

C l i e n t b a s i c s 10-5

M a n i p u l a t i n g o b j e c t r e f e r e n c e s

The _is_remote() method returns true if the client program and the object
implementation reside in different processes, which may or may not be located on
the same host.

Note If the object is in the same process where the method is invoked, _is_local()
returns true.

Narrowing object references

The process of converting an object reference’s type from a general super-type to a
more specific sub-type is called narrowing.

Note You cannot use the Java casting facilities for narrowing.

VisiBroker maintains a typegraph for each object interface so that narrowing can be
accomplished by using the object’s narrow() method. The IDL exception
CORBA::BAD_PARAM is thrown if the narrow fails, because the object reference does not
support the requested type.

Code sample 10.4 Narrow method generated for the AccountManager

public abstract class AccountManagerHelper {
. . .
public static Bank.AccountManager narrow(org.omg.CORBA.Object object) {

. . .
}
. . .

}

Widening object references

Converting an object reference’s type to a super-type is called widening.
Code sample 10.5 shows an example of widening an Account pointer to an Object
pointer. The pointer acct can be cast as an Object pointer because the Account class
inherits from the Object class.

Code sample 10.5 Widening an object reference

. . .
Account account;
org.omg.CORBA.Object obj;
account = AccountHelper.bind();
obj = (org.omg.CORBA.Object) account;
. . .

Table 10.4 Methods for determining location and state of object reference

Method Description

_is_bound Returns true if a connection is currently active for this object.

_is_local Returns true if this object is implemented in the local address space.

_is_remote Returns true if this object’s implementation does not reside in the local address
space.

10-6 P r o g r a m m e r ’ s G u i d e

U s i n g q u a l i t y o f s e r v i c e

Using quality of service
Quality of Service (QoS) utilizes policies to define and manage the connection
between your client applications and the servers to which they connect.

Understanding Quality of Service

Quality of Service policy management is performed through operations accessible in
the following contexts:

• ORB level policies are handled by a locality constrained PolicyManager, through
which you can set Policies and view the current Policy overrides. Policies set at the
ORB level override system defaults.

• Thread level policies are set through PolicyCurrent, which contains operations for
viewing and setting Policy overrides at the thread level. Policies set at the thread
level override system defaults and values set at the ORB level.

• Object level policies can be applied by accessing the base Object interface’s quality
of service operations. Policies applied at the Object level override system defaults
and values set in at the ORB or thread level.

Policy overrides and effective policies
The effective policy is the policy that would be applied to a request after all
applicable policy overrides have been applied. The effective policy is determined by
comparing the Policy as specified by the IOR with the effective override. The
effective Policy is the intersection of the values allowed by the effective override and
the IOR-specified Policy. If the intersection is empty a org.omg.CORBA.INV_POLICY
exception is raised.

QoS interfaces

The following interfaces are used to get and set QoS policies.

org.omg.CORBA.Object
org.omg.CORBA.Object contains the following methods used to get the effective policy
and get or set the policy override.

• _get_policy returns the effective policy for an object reference.

• _set_policy_override returns a new object reference with the requested list of Policy
overrides at the object level.

com.inprise.vbroker.CORBA.Object
In order to use this interface, you must cast org.omg.CORBA.Object to
com.inprise.vbroker.CORBA.Object. Because this interface is derived from
org.omg.CORBA.Object, the following methods are available in addition to the one s
defined in org.omg.CORBA.Object.

C l i e n t b a s i c s 10-7

U s i n g q u a l i t y o f s e r v i c e

• _get_client_policy returns the effective Policy for the object reference without
doing the intersection with the server-side policies. The effective override is
obtained by checking the specified overrides in first the object level, then at the
thread level, and finally at the ORB level. If no overrides are specified for the
requested PolicyType the system default value for PolicyType is used.

• _get_policy_overrides returns a list of Policy overrides of the specified policy types
set at the object level. If the specified sequence is empty, all overrides at the object
level will be returned. If no PolicyTypes are overriden at the object level, an empty
sequence is returned.

• _validate_connection returns a boolean value based on whether the current
effective policies for the object will allow an invocation to be made. If the object
reference is not bound, a binding will occur. If the object reference is already
bound, but current policy overrides have changed, or the binding is no longer
valid, a rebind will be attempted, regardless of the setting of the RebindPolicy
overrides. A false return value occurs if the current effective policies would raise
an INV_POLICY exception. If the current effective policies are incompatible, a
sequence of type PolicyList is returned listing the incompatible policies.

org.omg.CORBA.PolicyManager
The PolicyManager is an interface that provides methods for getting and setting Policy
overrides for the ORB level.

• get_policy_overrides returns a PolicyList sequence of all the overriden policies for
the requested PolicyTypes. If the specified sequence is empty, all Policy overrides at
the current context level will be returned. If none of the requested PolicyTypes are
overriden at the target PolicyManager, an empty sequence is returned.

• set_policy_overrides modifies the current set of overrides with the requested list of
Policy overrides. The first input parameter, policies, is a sequence of references to
Policy objects. The second parameter, set_add, of type org.omg.CORBA.SetOverrideType
indicates whether these policies should be added onto any other overrides that
already exist in the PolicyManager using ADD_OVERRIDE, or they should be added to a
PolicyManager that doesn’t contain any overrides using SET_OVERRIDES. Calling
set_policy_overrides with an empty sequence of policies and a SET_OVERRIDES mode
removes all overrides from a PolicyManager. Should you attempt to override
policies that do not apply to your client, an org.omg.CORBA.NO_PERMISSION exception
will be raised. If the request would cause the specified PolicyManager to be in an
inconsistent state, no policies are changed or added, and an InvalidPolicies
exception is raised.

org.omg.CORBA.PolicyCurrent
The PolicyCurrent interface derives from PolicyManager without adding new methods.
It provides access to the policies overridden at the thread level. A reference to a
thread’s PolicyCurrent is obtained by invoking
org.omg.CORBA.ORB.resolve_initial_references and specifying an identifier of
“PolicyCurrent.”

10-8 P r o g r a m m e r ’ s G u i d e

U s i n g q u a l i t y o f s e r v i c e

org.omg.Messaging.RebindPolicy
RebindPolicy accepts values of type org.omg.Messaging.RebindMode to define the behavior
of the client when rebinding. RebindPolicys are set only on the client side. It can have
one of six values that determines the behavior in the case of a disconnection, an object
forwarding request, or an object failure. The currently supported values are:

• org.omg.Messaging.TRANSPARENT allows the ORB to silently handle object-forwarding
and necessary reconnections during the course of making a remote request.

• org.omg.Messaging.NO_REBIND allows the ORB to silently handle reopening of closed
connections while making a remote request, but prevents any transparent
object-forwarding that would cause a change in client-visible effective QoS
policies. When RebindMode is set to NO_REBIND, only explicit rebind is allowed.

• org.omg.Messaging.NO_RECONNECT prevents the ORB from silently handling
object-forwards or the reopening of closed connections. You must explicity rebind
and reconnect when RebindMode is set to NO_RECONNECT.

• com.inprise.vbroker.QoSExt.VB_TRANSPARENT is the default policy. It extends the
functionality of TRANSPARENT by allowing transparent rebinding with both implicit
and explicit binding. VB_TRANSPARENT is designed to be compatible with the object
failover implementation in VisiBroker 3.x.

• com.inprise.vbroker.QoSExt.VB_NOTIFY_REBIND throws an exception if a rebind is
necessary. The client catches this exception, and binds on the second invocation.

• com.inprise.vbroker.QoSExt.VB_NO_REBIND does not enable failover. It only allows the
client ORB to reopen a closed connection to the same server; it does not allow
object forwarding of any kind.

Note Be aware that if the effective policy for your client is VB_TRANSPARENT and your client
is working with servers that hold state data, VB_TRANSPARENT could connect the client
to a new server without the client being aware of the change of server, any state
data held by the original server will be lost.

For more information on QoS policies and types, see the VisiBroker for Java Reference
and the Messaging chapter of the CORBA 2.4 specification.

com.inprise.vbroker.QoSExt.RelativeConnectionTimeoutPolicy
The RelativeConnectionTimeoutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The timeout
situation is likely to happen with objects protected by firewalls, where HTTP
tunneling is the only way to connect to the object.

com.inprise.vbroker.QoSExt.DeferBindPolicy
The DeferBindPolicy determines if the ORB will attempt to contact the remote object
when it is first created, or to delay this contact until the first invocation is made. The
values of DeferBindPolicy are true and false. If DeferBindPolicy is set to true all binds
will be deferred until the first invocation of a binding instance. The default value is
false.

C l i e n t b a s i c s 10-9

U s i n g q u a l i t y o f s e r v i c e

If you create a client object, and DeferBindPolicy is set to true, you may delay the
server startup until the first invocation. This option existed before as an option to the
Bind method on the generated helper classes.

com.inprise.vbroker.QoSExt.ExclusiveConnectionPolicy
The ExclusiveConnectionPolicy is a Visibroker-specific policy that gives you the ability
to establish an exclusive (non-shared) connection to the specified server object. You
assign this policy a boolean value of true or false. If the policy is true, connections to
the server object are exclusive. If the policy is false, existing connections are reused if
possible and a new connection is opened only if reuse is not possible. The default
value is false.

This policy provides the same capabilities as were provided by Object._clone() in
Visibroker 3.x.

An example of how to establish exclusive and non-exclusive connections is provided
in the CloneClient.java example.

com.inprise.vbroker.QoSExt.SyncScopePolicy
The SyncScopePolicy defines the level of synchronization for a request with respect to
the target. Values of type SyncScope are used in conjunction with a SyncScopePolicy to
control the behavior of oneway operations.

The default SyncScopePolicy is SYNC_WITH_TRANSPORT.

Note: Applications must explicitly set an ORB-level SyncScopePolicy to ensure portability
across ORB implementations. When instances of SyncScopePolicy are created, a value
of type Messaging::SyncScope is passed to CORBA::ORB::create_policy. This policy is only
applicable as a client-side override.

QoS exceptions
• org.omg.CORBA.INV_POLICY is raised when there is an incompatibility between Policy

overrides.

• org.omg.CORBA.REBIND is raised when the RebindPolicy has a value of NO_REBIND,
NO_RECONNECT, or VB_NOTIFY_REBIND and an invocation on a bound object references
results in an object-forward or location-forward message.

• org.omg.CORBA.PolicyError is raised when the requested Policy is not supported.

• org.omg.CORBA.InvalidPolicies can be raised when an operation is passed a
PolicyList sequence. The exception body contains the policies from the sequence
that are not valid, either because the policies are already overriden within the
current scope, or are not valid in conjuction with other requested policies.

10-10 P r o g r a m m e r ’ s G u i d e

U s i n g q u a l i t y o f s e r v i c e

QoS example

The following example creates a RebindPolicy of type TRANSPARENT and sets the
policy on the ORB, thread, and object levels.

Any policyValue= orb.create_any();
RebindModeHelper.insert(policyValue, org.omg.Messaging.TRANSPARENT.value);
Policy myRebindPolicy = orb.create_policy(REBIND_POLICY_TYPE.value, policyValue);

//get a reference to the ORB policy manager
org.omg.CORBA.PolicyManager manager;

try {
manager =

PolicyManagerHelper.narrow(orb.resolve_initial_references("ORBPolicyManager"));
}
catch(org.omg.CORBA.ORBPackage.InvalidName e) {}

//get a reference to the per-thread manager
org.omg.CORBA.PolicyManager current;
try {

current=PolicyManagerHelper.narrow(orb.resolve_initial_references("PolicyCurrent"));
}
catch(org.omg.CORBA.ORBPackage.InvalidName e) {}

//set the policy on the orb level
try{

manager.set_policy_overrides(myRebindPolicy,
SetOverrideType.SET_OVERRIDE);

}
catch (InvalidPolicies e){}

// set the policy on the Thread level
try{

current.set_policy_overrides(myRebindPolicy,
SetOverrideType.SET_OVERRIDE);

}
catch (InvalidPolicies e){}

//set the policy on the object level:
org.omg.CORBA.Object oldObjectReference=bind(...);
org.omg.CORBA.Object

newObjectReference=oldObjectReference._set_policy_override(myRebindPolicy,
SetOverrideType.SET_OVERRIDE);

C o n f i g u r a t i o n a n d m a n a g e m e n t

P a r t

IV
PartIVConfiguration and management

This part of the VisiBroker for Java Programmer’s Guide includes these chapters.

Chapter 11 “Using the VisiBroker Console”

Chapter 12 “Using the ORB Services browsers”

Chapter 13 “Using the Server Manager”

Chapter 14 “Setting properties”

U s i n g t h e V i s i B r o k e r C o n s o l e 11-1

C h a p t e r

11
Chapter11Using the VisiBroker Console

This chapter describes the Inprise VisiBroker Console and provides brief descriptions
of the VisiBroker ORB that can be accessed from the Console. Instructions on the
interface’s basic navigational features and those specific to the VisiBroker Console
are covered in this chapter. Instructions on the navigational features specific to the
individual ORB Services are covered in those chapters.

What is the VisiBroker Console?
The Inprise VisiBroker Console is a tool that allows you to view and manage the
VisiBroker ORB Services in a graphical interface. In particular, you can use the ORB
Services browsers to manage object servers, control the configuration of gatekeepers,
browse the interface repository, edit naming contexts, look up object instances, and
view the OADs on your network.

The design of the VisiBroker Console is similar to the graphical interfaces of the
Consoles in the Inprise Application Server and Inprise AppCenter products.

The VisiBroker Console provides browser support and is divided as follows into the
following areas, which correspond to the ORB Services that it supports:

• Location Service
• Naming Services
• Interface Repositories
• Implementation Repositories
• Server Managers
• Gatekeepers

11-2 P r o g r a m m e r ’ s G u i d e

S t a r t i n g t h e V i s i B r o k e r C o n s o l e

Figure 11.1 VisiBroker Console

Starting the VisiBroker Console
Use one of the following methods to start the Console:

Windows • Choose the Start button on the taskbar, select Programs|VisiBroker|VisiBroker
Console.

or

• Run the console.bat file from the vbroker/console/bin directory

UNIX • Run console.sh for the Bourne shell

Once the Console starts, the preferences that were configured during installation take
effect. If you have problems, check the path and classpath settings.

Configuring the Console
You can set preferences for the Console at any time during a Console session.
However, for some changes made during a Console session, you will be prompted to
end that session and restart the Console for the new settings to take effect.

U s i n g t h e V i s i B r o k e r C o n s o l e 11-3

C o n f i g u r i n g t h e C o n s o l e

Setting preferences

You can use the Preferences dialog to change the configured settings, including the
Smart Agent Port number setting, during your session. Make sure that the
configuration is accurate and that the options are set correctly.

To set the general preferences for a Console session

1 During login, open the Preferences dialog box by choosing File|Preferences.

Figure 11.2 General tab of the Preferences dialog box

2 From the General tab, choose the options that you want to set as defaults for the
Console.

• In the User Interface section, the Look and Feel field allows you to configure the
appearance of your display for a specific user interface style. Your choices
include Metal, CDE/Motif, and Windows.

• The HTML Browser field allows you to select the HTML browser in which you
want to view the VisiBroker documentation.

• In the Network section, check the Lookup Host Names for IP Addresses
checkbox if you want to resolve the IP address name to host names.

If this box is checked, when you open the Services in the Console, you will see
host names as well as IP addresses.

Note that if you select this option, the console will resolve IP addresses to
domain names by looking them up in DNS. This can adversely effect
performance, and also fail, if DNS is not configured correctly. Uncheck this box
if you do not have access to DNS.

11-4 P r o g r a m m e r ’ s G u i d e

C o n f i g u r i n g t h e C o n s o l e

• In the Debugging section, the Debug Level field allows you to set the level of
debug information that you see about your Console session. The higher the
level, the more detailed the information you see. However, setting a high debug
level may slow down the Console’s response time.

3 Select the VisiBroker tab.

Figure 11.3 VisiBroker tab of the Preferences dialog box

4 From the VisiBroker tab, change the Smart Agent Port number of the ORB domain.
You can specify any unused number from 1024 to 32767.

This value was specified when VisiBroker was installed

5 Choose OK to accept the changes.

Viewing system information

You can view information about your system by choosing File|System Information.
This displays a System Information dialog which has the following three tabs:

• General: This tab displays platform and application information.

• Java properties: This tab displays the properties that you set for Java.

• Plug-ins: This tab displays information about any plug-ins you may be using
including a description of the product and the path.

U s i n g t h e V i s i B r o k e r C o n s o l e 11-5

N a v i g a t i n g t h e V i s i B r o k e r C o n s o l e

Navigating the VisiBroker Console
The VisiBroker Console has a typical Explorer-style user interface with elements such
as menus, tools, and status bars; a navigation pane on the left side of the viewing
area; and a content pane on the right side. You choose options from pull-down or
context (right-click) menus to perform common functions; select specific ORB
Services from the navigation pane; or perform tasks in the content pane (work area)
related to the ORB Service that you select.

The Console’s main window consists of the following elements that help you
complete the tasks related to the specific ORB Service:

• Menu bar
• Toolbar
• Status bar
• Pull down or context menus
• Navigation pane
• Content pane

Menu bar

The menu bar is located at the top of the Console’s main window. The menu bar
provides you with some of the common navigational and management options in the
Console.

Toolbar

The toolbar is located at the top of the Console main window, just under the menu
bar. The toolbar lets you perform some of the Console functions with a single click of
the mouse. Toolbar functions are dimmed when their functions are not available in a
specific context.

Status bar

The status bar is located at the bottom of the main window of the Console. The status
bar displays information about the status of your actions and also displays any
warning messages for the current session.

Pull down or context menus

The pull down menus are located in the menu bar area, at the top of the Console’s
main window. The context menus display when you right-click an item on the
Console. You can perform many common functions by either using pull-down or
context (right-click) menus. In some cases, you have the option to use either menu to
perform the same function.

11-6 P r o g r a m m e r ’ s G u i d e

S u p p o r t e d O R B S e r v i c e s

Navigation pane

The Console’s viewing area is divided into two major parts: the Navigation pane on
the left side and the Content pane on the right side.

The Navigation pane shows you a hierarchical tree structure in which you can
expand items to navigate to the next level. The hierarchical tree contains folders that
represent the ORB Services.

Clicking these folders selects the Service and displays a browser to the right of the
tree. Right-clicking provides a menu of possible actions on the folder. Once you click
an item, the right side of the panel—the Content pane—shows you information about
the item you just selected.

Content pane

The Content pane contains the content of the item you select in the Navigation pane.
Depending on which item you select, different sets of tabs appear at the bottom of the
Content pane. Selecting one of theses tabs changes the information that appears in
the Content pane.

Supported ORB Services
From the VisiBroker Console, you can view, configure, and manage the ORB Services
by accessing a browser for each Service. To get to the ORB Services browsers, you
click the VisiBroker Services folder in the navigation pane of the VisiBroker Console.
This displays a folder for each ORB Service. From here, you select the specific service
that you want to browse. A browser for that service appears in the content pane of
the Console.

The VisiBroker Console supports the following ORB Services.

Location Service

The Location Service is the interface to the Smart Agent. This browser provides
general purpose facilities for locating object instances and displays all instances of an
object to which a client can bind. Also, it provides a list of all smart agents running on
the current port.

For more information about the Location Service, see Chapter 17, “Using the
Location Service.”

Naming Services

The Naming Services browser displays, in a hierarchical format, the contents of the
naming services running on your VisiBroker domain. From this browser, you can
select, navigate, and edit naming contexts and name bindings.

U s i n g t h e V i s i B r o k e r C o n s o l e 11-7

S u p p o r t e d O R B S e r v i c e s

For more information about the Naming Service, see Chapter 18, “Using the Naming
Service.”

Interface Repositories

The Interface Repositories browser displays, in a hierarchical format, the contents of
the interface repository on your VisiBroker domain. An interface repository is like a
database of CORBA object interface information. The information in an interface
repository is equivalent to the information in an IDL file.

For more information about the Interface Repositories, see Chapter 21, “Using
interface repositories.”

Implementation Repositories

The Implementation Repositories browser shows a list of all object implementations
registered with each OAD.

For more information about the Implementation Repositories, see Chapter 20, “Using
the Object Activation Daemon.”

Server Manager

From within the Server Manger browser, an object server can publish its own
properties. These properties appear in the Console. The ORB properties are
published by default, but each server can hide or rearrange the containers, methods,
or properties if it chooses to. This browser allows you to monitor and manage
running servers, view the POA hierarchy, and set properties. The Server Manager
interface replaces the VisiBroker 3.x ORB Manager interface. You can access the
Server Manager interface from the VisiBroker Services area in the navigational pane
of the VisiBroker and then selecting the Server Manager folder.

For more information about the Server Manager, see Chapter 13, “Using the Server
Manager.”

Gatekeeper

The Gatekeeper browser displays a list of active Gatekeeper instances from which
you select, to browse and configure their properties. The selected Gatekeeper
instance displays in the content pane of the Console. You can access the Gatekeeper
from the VisiBroker Services area in the navigational pane of the VisiBroker Console
from the Gatekeepers folder.

For more information on the Gatekeeper and instructions on how to use the
Gatekeeper browser within the VisiBroker Console, see the VisiBroker for Java
VisiBroker Gatekeeper Guide.

11-8 P r o g r a m m e r ’ s G u i d e

U s i n g t h e O R B S e r v i c e s b r o w s e r s 12-1

C h a p t e r

12
Chapter12Using the ORB Services browsers

Introduction
VisiBroker provides you with graphical interfaces for the ORB services from the
Inprise VisiBroker Console. The VisiBroker Console is a tool that allows you to view
and manage the ORB Services in a graphical interface. Using these interfaces, you can
perform several related ORB functions that previously were performed at the
command line. VisiBroker provides browsers for the following ORB services:

• Location Service
• Naming Services
• Implementation Repositories
• Interface Repositories

See Chapter 11, “Using the VisiBroker Console,” for more information about the
VisiBroker Console. For additional information on using the services that relate to
each browser, see the following chapters:

Location Service
The Location Service, the interface to the Smart Agent, is an extension to the CORBA
specification that provides general-purpose facilities for locating object instances.
The Location Service communicates directly with one Smart Agent which maintains
a list of the instances it knows, along with information it knows about the instances.

Service See chapter

Location Service Chapter 17, “Using the Location Service”

Naming Service Chapter 18, “Using the Naming Service”

Implementation Repository Chapter 20, “Using the Object Activation Daemon”

Interface Repository Chapter 21, “Using interface repositories”

12-2 P r o g r a m m e r ’ s G u i d e

L o c a t i o n S e r v i c e

When queried by the Location Service, a Smart Agent forwards the query to the other
Smart Agents, and aggregates their replies in the result it returns to the Location
Service. In this way, the Location Service sees all the object instances to which a client
can bind. Smart Agents only know about instances with persistent object references
that are accessible. An accessible instance is either an active object—an object whose
server is running and has activated the object on its POA—or an activable object—an
object that has been registered with an OAD.

Accessing the Location Service browser

To use the Location Service browser

1 Expand the VisiBroker Services folder.

2 Select the Location Service icon.

The Location Service browser appears in the Content pane.

Figure 12.1 Console’s Location Service browser

3 Choose the Smart Agent tab to view the Smart Agents running on your subnet.
This list only displays the Smart Agents that were configured to run on the same
port as your Console’s Smart Agent port. The Smart Agent port number appears
in the lower right-hand corner of the Console.

4 Choose the Object Instances tab to view the object instances running on your
subnet.

U s i n g t h e O R B S e r v i c e s b r o w s e r s 12-3

N a m i n g S e r v i c e s

The Location Service browser lists each active object instance and the following
object attributes:

Refreshing the active object list

The Location Service browser searches for all active objects registered with Smart
Agents in your CORBA network. You can refresh the list any time you want to see
objects that have been activated since the last time you refreshed the display.

To refresh the list of active objects, click the Refresh button. The time required to
complete the search depends on the size of your CORBA network.

Naming Services
The Naming Services browser is a graphical tool that displays, in hierarchical form,
the contents of the naming service running on your CORBA network. It provides an
intuitive, visual interface that allows you to select, navigate, and edit naming
contexts and name bindings.

The VisiBroker Naming Services for Java and C++ are full implementations of the
OMG’s CORBA Naming Service specification. They enable developers to register
object names at runtime. Client applications can then use the Naming Service to
discover the names of objects they want to use simply by traversing the naming
context graph.

Name Description

Interface Interface exposed by the object instance.

Instance Name The name of the object instance.

Activatable Whether the object instance has been registered (true) with an Object
Activation Daemon (OAD), or has been started by some other means
(false).

Host The name of the host on which the object instance is running or the domain
name, if the Look Up Host Names for IP Addresses checkbox was selected
in the Preferences dialog box.

IP Address IP address of the host machine on which the object instance is running.

Port Port number, on the host, that is associated with the object instance.

12-4 P r o g r a m m e r ’ s G u i d e

N a m i n g S e r v i c e s

Accessing the Naming Services

To use the Naming Services browser

1 Expand the VisiBroker Services area.

2 Expand the Naming Services folder.

3 Choose the Naming Service you want to browse.

4 The Naming Services browser appears in the Content pane.

Figure 12.2 Console’s Naming Services browser with the Naming Service selected

U s i n g t h e O R B S e r v i c e s b r o w s e r s 12-5

N a m i n g S e r v i c e s

Browsing the Naming Service

To browse the Naming Service

1 Expand or collapse the context of the tree as desired.

Figure 12.3 Console’s Naming Service browser with the context selected

This example shows the bindings for the London.Branch context and the objects
that are associated with each binding.

Browsing the VisiBroker Naming Service clusters

The clustering feature of the VisiBroker Naming Service allows you to associate a
number of object bindings with a single name. See “Clusters” on page 18-20 for more
information on clustering.

To browse the Naming Service clusters and see their associated object bindings

1 Select the cluster tab in the Naming Service browser.

2 Expand and collapse the clusters for the associated object bindings.

12-6 P r o g r a m m e r ’ s G u i d e

N a m i n g S e r v i c e s

Figure 12.4 Console’s Naming Service browser showing a cluster with two objects

Browsing the VisiBroker Naming Service federations

The federation feature of the VisiBroker Naming Service allows you to link together
information in naming services, thereby allowing name servers to make references to
one another. This means that one name server is linked in such a way that a name can
be resolved across the different name servers.

The Smart Agent must be configured to allow the objects to be resolved across
different domains. See “Configuring the Naming Service” on page 18-6, and the
VisiBroker Naming Service FAQ for more information on setting up the Naming
Service to use federations at runtime.

To browse the federations in the Naming Services

1 Expand the Naming Services folder to view the list of Naming Services running on
your domain.

2 Select the federated Naming Service.

3 Expand the Naming Service in the content pane to view the federations.

4 Using the right click menu, you can add a new context and delete or rename
existing ones and delete or rename objects.

U s i n g t h e O R B S e r v i c e s b r o w s e r s 12-7

I m p l e m e n t a t i o n R e p o s i t o r i e s

Figure 12.5 Console’s Naming Services browser showing a list of federations

Implementation Repositories
The Implementation Repositories browser provides a visual interface to
implementation repositories managed by Object Activation Daemons (OADs) on
your CORBA network. An implementation repository contains the object
implementations that are registered with an OAD. You can use the Implementation
Repositories browser to view these object implementations, their state of activation,
and activation policies.

Accessing the Implementation Repositories

To use the Implementation Repositories browser

1 Expand the VisiBroker Services area.

2 Expand the Implementation Repositories folder to view the OADs running on
your subnet.

3 Select the Implementation Repository that you want to browse.

The selected repository appears in the Content pane.

12-8 P r o g r a m m e r ’ s G u i d e

I n t e r f a c e R e p o s i t o r i e s

Figure 12.6 Console’s Implementation Repositories browser

Interface Repositories
An interface repository (IR) contains descriptions of CORBA interfaces. The data in
an IR is the same as in IDL files—descriptions of modules, interfaces, operations, and
parameters—but it’s organized for runtime access by clients. A client can browse an
interface repository (perhaps serving as an online reference tool for developers) or
can look up the interface of any object for which it has a reference (perhaps in
preparation for invoking the object with the dynamic invocation interface.

An interface repository (IR) is like a database of CORBA object interface information.
In contrast to the Location Services, which holds data describing object instances, an
IR’s data describes interfaces (types). There may or may not be instances satisfying
the interfaces in an IR. The information in an IR is equivalent to the information in an
IDL file (or files), but it is represented in a way that is easier for clients to use.
Summarizing, an IR enables clients to learn about or update interface descriptions at
runtime.

Clients that use interface repositories may also use the VisiBroker Dynamic
Invocation Interface (DII). Such clients use an interface repository to learn about an
unknown object’s interface, and they use the DII to invoke methods on the object.
However, there is no necessary connection between an IR and the DII.

U s i n g t h e O R B S e r v i c e s b r o w s e r s 12-9

I n t e r f a c e R e p o s i t o r i e s

Viewing an Interface Repository

The Interface Repository browser is a graphical tool that displays, in hierarchical
form, the contents of one or more interface repositories stored on your CORBA
network.

Interface repositories can contain any of the following types of definitions:

For more detailed information about interface repositories, see Chapter 21, “Using
interface repositories,” of this documentation or Chapter 6, “The Interface
Repository,” of the The CORBA 2.0 Specification (97-02-05).

Object Type Description

Repository Top-level module.

ModuleDef Logical grouping of interfaces.

InterfaceDef Interface definition.

AttributeDef Attribute definition associated with an interface.

OperationDef Operation definition associated with an interface.

TypedefDef Type definition for a named type (other than primitives or interfaces), such as
enumerated types.

ConstantDef Named constant definition.

ExceptionDef Exception definition for an exception triggered by an operation.

StructDef An IDL structure definition.

UnionDef An IDL union definition.

EnumDef An IDL enumeration definition.

AliasDef An IDL typedef that aliases another definition.

StringDef An IDL bounded string type.

SequenceDef An IDL sequence type

ArrayDef An IDL array type.

PrimitiveDef One of the IDL primitive types

WstringDef An IDL wide string.

12-10 P r o g r a m m e r ’ s G u i d e

I n t e r f a c e R e p o s i t o r i e s

Accessing the Interface Repositories

To use the Interface Repositories browser

1 Expand the VisiBroker Services area.

2 Expand the Interface Repositories folder.

3 Choose the repository you want to browse.

4 The Interface Repositories browser appears in the Content pane.

Figure 12.7 Console’s Interface Repositories browser with the repository selected

U s i n g t h e O R B S e r v i c e s b r o w s e r s 12-11

I n t e r f a c e R e p o s i t o r i e s

Browsing the Interface Repositories

To browse the Interface Repository, expand or collapse the module as desired.

Figure 12.8 Console’s Interface Repositories browser with the repository expanded

12-12 P r o g r a m m e r ’ s G u i d e

U s i n g t h e S e r v e r M a n a g e r 13-1

C h a p t e r

13
Chapter13Using the Server Manager

This chapter describes the VisiBroker Server Manager that is used to manage object
servers and explains how to use the Server Manager browser to easily perform these
related tasks.

What is the Server Manager
The VisiBroker Server Manager allows your client applications to monitor and
manage object servers, view and set properties at runtime for those servers, and view
and invoke methods on server manager objects. The Server Manager has an element
known as a container which represents each major ORB component. A container can
contain properties, operations, and other containers.

The Server Manager replaces the VisiBroker 3.x ORB Manager and this interface is
where you set the attributes of a server application.

For example, the top level container corresponds to the ORB, which in turn contains
ORB properties, a shutdown method, and other containers such as the RootPOA,
Agent, and the OAD. For more information on the top level container, see “Viewing
the top-level container” on page 13-2.

Each container provides a number of methods you can invoke, as well as properties
that you can get and set.

The Server Manager can support the properties added by other ORB Services such as
the Gatekeeper.

13-2 P r o g r a m m e r ’ s G u i d e

W h a t i s t h e S e r v e r M a n a g e r

Viewing the top-level container

The top level container or root container, which represents the server object in the
Console, does not support any properties and operations. It just contains the ORB
container. When you choose the Server Manager browser, the top level container
appears in the tree. You cannot replace the top level container.

You can expand this container to view its contents in the Server Manager browser.

Server Manager browser

The Server Manager browser allows you to easily monitor and manage object servers
using the browser and to see a graphical representation of the information from
within the VisiBroker Console. For more information on the VisiBroker Console, see
Chapter 11, “Using the VisiBroker Console.”

With the Server Manager browser, you can traverse through the hierarchy of
Portable Object Adaptors (POAs). From within the hierarchy, you can get properties
for a particular POA, manage the POAs, see the various properties of the server you
selected, set properties for the current session that you are running or for future
sessions, or invoke methods for selected containers.

Using the VisiBroker 4.x example server

To manage a server in the Server Manager browser, you need a VisiBroker 4.x server.
An example is provided with the VisiBroker distribution. The example server is
called Bank Agent. It provides you with a sample server.

The example is found in the following location:

<install_directory>/examples/basic/bank_agent

To use the example with the Server Manager browser you must:

Windows 1 Run the command vbmake to compile the file.

Solaris Run make to compile the file.

This produces a Server.class file.4.x

2 Enter the following at the command line to run the server:

vbj -Dvbroker.orb.enableServerManager=true -Dvbroker.serverManager.name=<name> <server_name>

This exposes the server objects in the Server Manager browser.

U s i n g t h e S e r v e r M a n a g e r 13-3

W h a t i s t h e S e r v e r M a n a g e r

Figure 13.1 Server Manager browser

3 Choose the Bank Agent to view its contents in the right pane.

Figure 13.2 Server Manager with Bank Agent Server object selected

13-4 P r o g r a m m e r ’ s G u i d e

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

Setting security for the Server Manager

There are two levels of security that the Server Manager supports. These are:

• Enabling the Server Manager on the server side for access by the client.

• Setting the following flags to control what can be done to a server through the
client:

• vbroker.ServerManager.enableOperations=true

If this flag is set to false, the client will not be able to invoke do_operations on
any container.

• vbroker.ServerManager.enablesSetProperty=true

If this flag is set to false, the client will not be able to set a property on any
container. However, it can still get the property.

Also, you can install a security interceptor that can compare the client credentials
with the required credentials using an authentication server.

Using the Server Manager browser
The Server Manager browser displays in the Inprise VisiBroker Console. When you
choose the Server Managers folder, a top-level container for your server object
appears in the tree. You can view the contents of the server by clicking this container.
Although the contents of the container will vary depending on the particular server
object that you select, most likely you will see sub-containers, root POA, Smart
Agent, and OAD.

The appearance of the browser or context area changes depending on which sub-
container you select. Each choice displays some information relating to the selection.
For example, the top level container for a server object provides the methods which
you can invoke from within the Server Manager browser.

Viewing the contents of a server
To view the contents of the server manager from within the Inprise VisiBroker
Console:

1 Expand the VisiBroker Services folder to view the list of available VisiBroker
services.

U s i n g t h e S e r v e r M a n a g e r 13-5

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

2 Expand the Server Managers folder to view the list of enabled servers.

You must enable the server manager before you can view it in the Server Manager
browser. For instructions on enabling a server manager, see “Enabling the server”
on page 13-5.

3 Choose the server object that you want to manage from the list of enabled servers.

The expanded container for the server looks something like the following sample.

Figure 13.3 Server Manager browser with selected server object

Enabling the server

Before you can view a server in the Server Manager browser, you must enable the
server manager using the following command-line prompt:

vbj -Dvbroker.orb enableServerManager=true -Dvbroker.serverManager.name=<server_manager_name> <server_name>

By default, the server is not enabled for management until you enable it in this way.

13-6 P r o g r a m m e r ’ s G u i d e

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

Invoking methods

In the Server Manager browser, each node in the tree represents either a container,
property, or method/operation.

1 To invoke a method, double click the Value field associated with the method.

Figure 13.4 Server Manager browser with the server method’s associated value field selected

2 In the Invoke Server Method dialog box, enter the parameter values and click the
Invoke button to invoke the method or exit the dialog box.

U s i n g t h e S e r v e r M a n a g e r 13-7

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

Figure 13.5 Invoke Server Method dialog box appears

Setting properties

From within the Server Manager browser, you can set properties for the server
objects on a per session or future session basis. The per session changes take effect in
the current session that you are running and the future session changes are stored in
a file for later use. These settings take effect the next time the server is run.

The ORB container can only support persistent changes in future sessions if you
specify a storage file name on the command line using the ORBpropStorage option
and if the file that you specified already exists. The ORB container saves any changes
that you make during a session to that file. If the file does not exist, the ORB container
throws a StorageException.

Property types
The Server Manager supports the following types of properties:

• READ ONLY: These properties cannot be changed in session, nor stored for
future sessions. These types deal with statistics like the current number of
connections, or bytes of incoming data for a session.

• READ ONLY IN SESSION: These properties can be changed for future sessions,
but cannot be changed for a current session. These types typically include
properties that are used in initialization and cannot be changed at runtime. For
example, the Agent port number used by the server.

• READ AND WRITE: These properties can be changed for a current session and
also saved for future sessions.

When you view the properties in the Server Manager browser, only the READ ONLY
IN SESSION and READ AND WRITE properties have editable fields. You can change

13-8 P r o g r a m m e r ’ s G u i d e

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

these properties and then determine which property setting type you want to assign
to the change. See “Changing property settings” on page 13-8 for more information.

Specifying the property storage file
The property storage file must be specified before you enable the server, as the server
reads the property settings in this file, when it is initialized. If the file is not specified,
the server will not be aware of these settings during the session. Also, this file must
be specified each time you enable the server if you want to use those property
settings or save changes to the settings. For example, if you are running the server
and it crashes, when you restarted the server, you also must specify the storage file
name again.

If you make changes to the property settings during a Server Manager session, and
save these changes to the property storage file, that property storage file name must
be specified the next time you start the server or those changes will not take effect.

To enable a server, specify a name for the Server Manager, and specify the storage
file, where you can store properties for future sessions, enter the following command
line option.

vbj -Dvbroker.orb.enableSeverManager=true -Dvbroker.serverManager.name=BigBoss -
-ORBpropStorage=<property_file-name> Server

Changing property settings
To change the property settings in the Server Manager browser:

1 Double click a property in the Server Manager browser pane.

U s i n g t h e S e r v e r M a n a g e r 13-9

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

Figure 13.6 Clicking on a property in the Server Manager browser

2 In the Server Manager browser pane, make your change on the same line as the
property (in place editing) if the property is Read Only in Session or Read and
Write. A check appears on the same line as the changed property.

3 Choose the following options from the toolbar buttons:

• Update Server

Figure 13.7 Server Manager toolbar—Update Server button

13-10 P r o g r a m m e r ’ s G u i d e

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

This button updates the server properties with your changed properties but
does not save the changes to a file. This button will only be enabled if you
change a property. Use this feature to fine tune the server properties before
saving the changes to the file. The server will not recognize any Read Only in
Session Properties properties until you persist the changes and restart the
server.

• Update Server and Save Properties to File

Figure 13.8 Server Manager toolbar—Update Server and Properties to File button

This button updates the server and instructs the server to save the properties to
the property storage file. See “Specifying the property storage file” on page 13-8
for instructions on specifying a storage file. If the property storage file has not
been set up, this button will be disabled.

• Restart Server

Figure 13.9 Server Manager toolbar—Restart Server button

This button instructs the server to restart. It is only enabled if the server
publishes a restart method in its root container.

Update Server
and Save

Restart

U s i n g t h e S e r v e r M a n a g e r 13-11

U s i n g t h e S e r v e r M a n a g e r b r o w s e r

• Reload Properties from Server

Figure 13.10 Server Manager toolbar—Reload Properties from Server button

This button reloads the properties from the server and refreshes the view.

4 When you exit the Server Manager browser without saving your changes, it
prompts you to save them by displaying the Save Properties dialog box.

5 This will update the server and persist the properties to a property file, if the
storage file has been set up.

6 Click OK to save changes.

Figure 13.11 Server Manager’s Save Properties dialog box

Reload

13-12 P r o g r a m m e r ’ s G u i d e

S e t t i n g p r o p e r t i e s 14-1

C h a p t e r

14
Chapter14Setting properties

This chapter describes how to set ORB properties through a property text file or as
command-line arguments.

Overview
Each ORB has properties that define its characteristics. For example,
vbroker.agent.debug directs the ORB to turn on output of debugging information for
all communication with the Smart Agent. Each property has a predetermined data
type, such as string, unsigned long and boolean; and a value that describes that
property for the ORB. For example, vbroker.agent.enableLocator=false disables
lookups to the smart agent.

When the ORB starts its initialization process, many of these properties are read.

You can specify ORB properties in a property text file or in command-line arguments
when starting applications. A statement in the properties file may look like the
following:

Code sample 14.1 Excerpt from a properties file

vbroker.agent.enableLocator=false

Specifying a property in a command-line argument could look like:

Code sample 14.2 Example of setting properties through command-line arguments

vbj -Dvbroker.agent.port=5024 Server

The order in which these properties take precedence is listed in “Property precedence
under NT and Unix” on page 14-5 and “Property precedence for applets” on
page 14-5.

Properties are read when ORB.init() is called. Once the properties are stored in
memory within the Property Manager, the files or command-line arguments are no
longer referenced.

14-2 P r o g r a m m e r ’ s G u i d e

S e t t i n g V i s i b r o k e r p r o p e r t i e s

Setting Visibroker properties
Properties may be set in the following ways:

• Shell/console environment

• Windows registry (NT only)

• Command line arguments (the first parameter of ORB.init)

• Applet parameters (the first parameter of ORB.init)

• System properties

• Programmatically via ORB.init (the second parameter)

• Property file via ORBpropStorage option

• Default property file ORB.properties inside vbjorb.jar

When properties are set using the first two options, they are converted to system
properties.

Shell/console environment variables

Several properties can be set as environment variables. They are automatically
picked up when the program starts. VisiBroker for Java converts them to system
properties as follows:

Following are examples of how to set environment variables:

Code sample 14.3 Setting environment variables

UNIX setenv OSAGENT_PORT 10000
setenv VBROKER_ADM /usr/local/vbroker/adm

Windows set OSAGENT_PORT=10000
set VBROKER_ADM=c:\c:Inprise\VBroker\adm

Note For more information about setting VisiBroker environment variables, see Chapter 3,
“Setting up your environment.”

Windows registry

You can also put environmental variables into the Windows registry. VisiBroker
provides a tool called vregedit to make it easier to modify these entries.

Environmental variable Property

OSAGENT_ADDR vbroker.agent.addr

OSAGENT_ADDR_FILE vbroker.agent.addrFile

OSAGENT_PORT vbroker.agent.port

VBROKER_ADM vbroker.orb.admDir

S e t t i n g p r o p e r t i e s 14-3

S e t t i n g V i s i b r o k e r p r o p e r t i e s

Environmental variables in the Windows registry are converted into system
properties in the same way as environment variables. However, the environment
settings take higher precedence than registry entries.

Command line arguments

Any property listed in the properties file can be set through command-line
arguments.

Code sample 14.4 Setting properties from the command-line

vbj -Dvbroker.agent.port=1024 Server

Note The -D is required and indicates that the string following it is a property.

A property set at the command line overrides that property’s setting in Properties.

Command line arguments passed to an application are passed as parameters to the
application class. For example, the command:

vbj Server -vbroker.agent.port 15000

passes property vbroker.agent.port with value 15000 to an application called Server.
You can have more than one property on the parameter list.

Only properties starting with ORB, OA, and vbroker. can be specified in this way. In
addition, ORB and OA properties are migrated to appropriate vbroker. properties except
for ORBpropStorage.

These settings are passed as the first parameter of ORB.init.

Applet parameters

Parameters to an applet are specified using the html <param> tag:

<applet ...>
<param name="vbroker.agent.port" value="15000">

</applet>

Each param defines one property. No migration is performed here. These settings are
passed as the first parameter of ORB.init.

Code sample 14.5 Setting applet properties from the HTML

. . .
<applet class = “MyCORBAApplet.class”

codebase = “.”
archive=”my Lib.jar”

<param name = ”vbroker.orb.alwaysTunnel” value = ”true”>
<param name = ”vbroker.orb.gatekeeper.ior” value = ””>

</applet>
. . .

14-4 P r o g r a m m e r ’ s G u i d e

S e t t i n g V i s i b r o k e r p r o p e r t i e s

System properties

Properties defined using -D are set as system properties by the Java virtual machine:

vbj -Dvbroker.agent.port=15000 Server

Two alternatives to -D are:

-J-D<name>=<value>
-VBJprop <name>=<value>

These differ from command line arguments because they are parsed by the Java
virtual machine and not by VisiBroker itself. Settings from the environment and
registry are converted into system properties and passed to JVM.

Programmatically via ORB.init

ORB.init accepts a parameter of type java.util.Properties. You can use this parameter
to pass in a set of properties.

Property file via ORBpropStorage option

The name of a property file can be supplied in a command line argument, as a system
property, or an applet parameter by using the property name ORBpropStorage. Inside
the file, properties are listed line by line. Each line takes the form:

<property name>=<property value>

Empty lines and comments (lines starting with #) are ignored.

Properties file
The properties file is a text file with the following format:

property_name=value

The ORB has a predefined set of property names for you to use. These names are
case-sensitive, so make sure you type the names exactly as they are listed. The default
properties file, ORB.properties, is free-form, meaning that you can enter properties in
any order as long as you follow the correct format. However, the file can be read
more easily if you break the properties into logical groups. You can label each group
with a comment line. Comment lines are any lines that start with a pound sign (#).

Code sample 14.6 Example of grouping properties

OSAgent properties
vbroker.agent.debug=false
vbroker.agent.addr=null
vbroker.agent.port=14000
vbroker.agent.addrFile=null
vbroker.agent.enableLocator=true

There are only three property data types.

• String

S e t t i n g p r o p e r t i e s 14-5

P r o p e r t y p r e c e d e n c e u n d e r N T a n d U n i x

• Unsigned long
• Boolean

If the string value is null, you can enter null as the property value:

Code sample 14.7 Setting a null value

vbroker.repository.name=null

If the value is boolean, enter true or false.

Code sample 14.8 Setting a boolean value

vbroker.agent.enableLocator=true

To use your properties, place them in a file and reference them through the following
command-line argument:

-DORBpropStorage=filename

filename can be a relative or absolute path.

Code sample 14.9 Specifying a property file

vbj -DORBpropStorage=myprops Server

Note The -D is required and indicates that the string following it is a property.

Default properties file

The file ORB.properties, located in vbjorb.jar, shows the default properties.

Property precedence under NT and Unix
Properties are set in the following order (from highest priority to lowest priority):

1 Command line arguments

2 System properties (NT environment settings come before NT registry settings)

3 Property file (ORBpropStorage)

4 Properties programmatically passed to ORB.init

5 Default property file ORB.properties

Property precedence for applets
Properties are set in the following order (from highest priority to lowest priority):

1 Applet parameters

2 Property file (ORBpropStorage); may from an URL

3 Programmatically passed to ORB.init

4 Default property file ORB.properties

14-6 P r o g r a m m e r ’ s G u i d e

V i s i B r o k e r f o r J a v a p r o p e r t i e s

VisiBroker for Java properties
For a list of the properties available in VisiBroker for Java, see Appendix B, “Using
VisiBroker properties,” in the VisiBroker for Java Reference.

For information about BOA properties, See Chapter 31, “Using the BOA with
VisiBroker 4.x.”

For information about the server engine properties, see Chapter 7, “Using POAs.”

T o o l s a n d s e r v i c e s

P a r t

V
PartVTools and services

This part of the VisiBroker for Java Programmer’s Guide includes these chapters.

Chapter 15 “Using IDL”

Chapter 16 “Using the Smart Agent”

Chapter 17 “Using the Location Service”

Chapter 18 “Using the Naming Service”

Chapter 19 “Using the Event Service”

Chapter 20 “Using the Object Activation Daemon”

Chapter 21 “Using interface repositories”

U s i n g I D L 15-1

C h a p t e r

15
Chapter15Using IDL

This chapter describes how to use the CORBA interface description language (IDL).

Introduction to IDL
The Interface Definition Language (IDL) is a descriptive language (not a programming
language) to describe the interfaces being implemented by the remote objects. Within
IDL, you define the name of the interface, the names of each of the attributes and
methods, and so forth. Once you’ve created the IDL file, you can use an IDL compiler
to generate the client stub file and the server skeleton file in the Java programming
language. For more information on the VisiBroker idl2java compiler see Chapter 3,
“IDL to Java mapping,” in the VisiBroker for Java Reference.

The OMG has defined specifications for such language mapping. Information about
the language mapping is not covered in this manual since VisiBroker adheres to the
specification set forth by OMG. If you need more information about language
mapping, see the OMG web site at http://www.omg.org/.

Note The CORBA formal specification can be found at
http://www.omg.org/corba/corbaiiop.html. See Chapter 24 for mapping of
OMG IDL to Java.

Discussions on the IDL can be quite extensive. Because VisiBroker adheres to the
specification defined by OMG, you can visit the OMG site for more information
about IDL.

15-2 P r o g r a m m e r ’ s G u i d e

H o w t h e I D L c o m p i l e r g e n e r a t e s c o d e

How the IDL compiler generates code
You use the Interface Definition Language (IDL) to define the object interfaces that
client programs may use. The idl2java compiler uses your interface definition to
generate code.

For details on usage syntax for the idl2java compiler, see the VisiBroker for Java
Reference.

Example IDL specification

Your interface definition defines the name of the object as well as all of the methods
the object offers. Each method specifies the parameters that will be passed to the
method, their type, and whether they are for input or output or both.
IDL sample 15.1 shows an IDL specification for an object named example. The example
object has only one method, op1.

IDL sample 15.1 Example IDL specification

// IDL specification for the example object
interface example {

long op1(in char x, out short y);
};

Looking at the generated code
The IDL compiler generates several files from the above example IDL.

• _exampleStub.java is the stub code for the example object on the client side.

• example.java is the example interface declaration.

• exampleHelper.java declares the exampleHelper class, which defines helpful utility
functions and support functions for the example interface.

• exampleHolder.java declares the exampleHolder class, which provides a holder for
passing out and inout parameters.

• exampleOperations.java defines the methods in the example interface and is used
both on the client and the server side. It also works together with the tie classes to
provide the tie mechanism.

• examplePOA.java contains the skeleton code (implementation base code) for the
example object on the server side.

• examplePOATie.java contains the class used to implement the example object on the
server side using the tie mechanism.

U s i n g I D L 15-3

L o o k i n g a t t h e g e n e r a t e d c o d e

_<interface name>Stub.java

For each user-defined type, a stub class is created by the idl2java compiler. This is the
class which is instantiated on the client side which implements the <interface name>
interface.

Code sample 15.1 Example of the stub class code

public class exampleStub extends com.inprise.vbroker.CORBA.portable.ObjectImpl
implements example {

final public static java.lang.Class _opsClass = exampleOperations.class;
public java.lang.String[] ids () {

. . .
}
public int op1 (char x, org.omg.CORBA.ShortHolder y) {

. . .
}

<interface name>.java

The <interface name>.java file is the Java interface generated for each IDL interface.
This is the direct mapping of the IDL interface definition to the appropriate Java
interface. This interface is then implemented by both the client and server skeleton.

Code sample 15.2 Example of the interface declaration code

public interface example extends com.inprise.vbroker.CORBA.Object,
exampleOperations,
org.omg.CORBA.portable.IDLEntity {

}

<interface name>Helper.java

For each user-defined type, a helper class is created by idl2java. The helper class is an
abstract class with various static methods for the generated Java interface.

Code sample 15.3 Example of the helper class code

public final class exampleHelper {
public static example narrow (final org.omg.CORBA.Object obj) {

. . .
}
public static example unchecked_narrow (org.omg.CORBA.Object obj) {

. . .
}
public static example bind (org.omg.CORBA.ORB orb) {

. . .
}
public static example bind (org.omg.CORBA.ORB orb, java.lang.String name) {

. . .
}

15-4 P r o g r a m m e r ’ s G u i d e

L o o k i n g a t t h e g e n e r a t e d c o d e

public static example bind (org.omg.CORBA.ORB orb, java.lang.String name,
java.lang.String host,
com.inprise.vbroker.CORBA.BindOptions _options) {

. . .
}
public static example bind (org.omg.CORBA.ORB orb, java.lang.String fullPoaName,

byte[] oid) {
. . .

}
public static example bind (org.omg.CORBA.ORB orb,

java.lang.String fullPoaName, byte[] oid,
java.lang.String host,
com.inprise.vbroker.CORBA.BindOptions _options) {

. . .
}
public java.lang.Object read_Object (final org.omg.CORBA.portable.InputStream istream) {

. . .
}
public void write_Object (final org.omg.CORBA.portable.OutputStream ostream,

final java.lang.Object obj) {
. . .

}

public java.lang.String get_id () {
. . .

}
public org.omg.CORBA.TypeCode get_type () {

. . .
}
public static example read (final org.omg.CORBA.portable.InputStream _input) {

. . .
}
public static void write (final org.omg.CORBA.portable.OutputStream _output,

final example value) {
. . .

}
public static void insert (final org.omg.CORBA.Any any, final example value) {

. . .
}
public static example extract (final org.omg.CORBA.Any any) {

. . .
}
public static org.omg.CORBA.TypeCode type () {

. . .
}
public static java.lang.String id () {

. . .
}

}

U s i n g I D L 15-5

L o o k i n g a t t h e g e n e r a t e d c o d e

<interface name>Holder.java

For each user-defined type, a holder class is created by the idl2java compiler. It
provides a class for an object which wraps objects which support the <interface name>
interface when passed as out and inout parameters.

Code sample 15.4 Example of the Holder class

public final class exampleHolder implements org.omg.CORBA.portable.Streamable {
public foo.example value;
public exampleHolder () {
}
public exampleHolder (final foo.example _vis_value) {

. . .
}
public void _read (final org.omg.CORBA.portable.InputStream input) {

. . .
}
public void _write (final org.omg.CORBA.portable.OutputStream output) {

. . .
}
public org.omg.CORBA.TypeCode _type () {

. . .
}

}

<interface name>Operations.java

For each user-defined type, an operations class is created by the idl2java compiler
which contains all the methods defined in the IDL declaration.

Code sample 15.5 Example of the operation code

public interface exampleOperations {
public int op1 (char x, org.omg.CORBA.ShortHolder y);

}

<interface name>POA.java

The <interface name>POA.java file is the server-side skeleton for the interface. It
unmarshals in parameters and passes them in an upcall to the object implementation
and marshals back the return value and any out parameters.

Code sample 15.6 ExamplePOA.java file

public abstract class examplePOA extends org.omg.PortableServer.Servant implements
org.omg.CORBA.portable.InvokeHandler, exampleOperations {

public example _this () {
. . .

}
public example _this (org.omg.CORBA.ORB orb) {

. . .
}

15-6 P r o g r a m m e r ’ s G u i d e

L o o k i n g a t t h e g e n e r a t e d c o d e

public java.lang.String[] _all_interfaces (final org.omg.PortableServer.POA poa,
. . .

}
public org.omg.CORBA.portable.OutputStream _invoke (java.lang.String opName,

org.omg.CORBA.portable.InputStream _input,
org.omg.CORBA.portable.ResponseHandler handler) {

. . .
}
public static org.omg.CORBA.portable.OutputStream _invoke (exampleOperations _self,

int _method_id, org.omg.CORBA.portable.InputStream _input,
org.omg.CORBA.portable.ResponseHandler _handler) {

. . .
}

}

<interface name>POATie.java

The <interface name>POATie.java file is a deletagor implementation for the
<interface name> interface. Each instance of the tie class must be initialized with an
instance of an implementation class that implements the <interface name>Operations
class to which it delegates every operation.

Code sample 15.7 Example POATie file

public class examplePOATie extends examplePOA {
public examplePOATie (final exampleOperations _delegate) {

. . .
}
public examplePOATie (final exampleOperations _delegate,

final org.omg.PortableServer.POA _poa) {
. . .

}
public exampleOperations _delegate () {

. . .
}
public void _delegate (final exampleOperations delegate) {

. . .
}
public org.omg.PortableServer.POA _default_POA () {

. . .
}

public int op1 (char x, org.omg.CORBA.ShortHolder y) {
. . .

}
}

U s i n g I D L 15-7

D e f i n i n g i n t e r f a c e a t t r i b u t e s i n t h e I D L

Defining interface attributes in the IDL
In addition to operations, an interface specification can also define attributes as part
of the interface. By default, all attributes are read-write and the IDL compiler will
generate two methods—one to set the attribute’s value, and one to get the attribute’s
value. You can also specify read-only attributes, for which only the reader method is
generated.

IDL sample 15.2 shows an IDL specification that defines two attributes—one
read-write and one read-only. Code sample 15.8 shows the operations class
generated for the interface declared in the IDL.

IDL sample 15.2 IDL specification with two attributes—one read-write and one read-only

interface Test {
attribute long count;
readonly attribute string name;

};

Code sample 15.8 Code generated for the testOperations interface

public interface TestOperations {
public int count ();
public void count (int count);
public java.lang.String name ();

}

Specifying oneway methods with no return value
IDL allows you to specify operations that have no return value, called oneway
methods. These operations may only have input parameters. When a oneway method
is invoked, a request is sent to the server but there is no confirmation from the object
implementation that the request was actually received. VisiBroker uses TCP/IP for
connecting clients to servers. This provides reliable delivery of all packets so the
client can be sure the request will be delivered to the server, as long as the server
remains available. Still, the client has no way of knowing if the request was actually
processed by the object implementation itself.

Note Oneway operations cannot raise exceptions or return values.

IDL sample 15.3 Defining a oneway operation

interface oneway_example {
oneway void set_value(in long val);

};

15-8 P r o g r a m m e r ’ s G u i d e

S p e c i f y i n g a n i n t e r f a c e i n I D L t h a t i n h e r i t s f r o m a n o t h e r i n t e r f a c e

Specifying an interface in IDL that inherits from another interface
IDL allows you to specify an interface that inherits from another interface. The
classes generated by the IDL compiler will reflect the inheritance relationship. All
methods, data type definitions, constants and enumerations declared by the parent
interface will be visible to the derived interface.

IDL sample 15.4 Example of inheritance in an interface specification

interface parent {
void operation1();

};
interface child : parent {

. . .
long operation2(in short s);

};

Code sample 15.9 shows the code that is generated from the interface specification
shown in IDL sample 15.4.

Code sample 15.9 Code generated from IDL sample 15.4

public interface parentOperations {
public void operation1 ();

}
public interface childOperations extends parentOperations {

public int operation2 (short s);
}
public interface parent extends com.inprise.vbroker.CORBA.Object, parentOperations,

org.omg.CORBA.portable.IDLEntity {
}
public interface child extends childOperations, Baz.parent,

org.omg.CORBA.portable.IDLEntity {
}

U s i n g t h e S m a r t A g e n t 16-1

C h a p t e r

16
Chapter16Using the Smart Agent

This chapter describes the Smart Agent (osagent), which client programs register with
in order to find object implementations. This chapter explains how to configure your
own ORB domain, connect Smart Agents on different local networks, and migrate
objects from one host to another.

What is the Smart Agent?
VisiBroker’s Smart Agent (osagent) is a dynamic, distributed directory service that
provides facilities used by both client programs and object implementations. A Smart
Agent must be started on at least one host within your local network. When your
client program invokes bind() on an object, the Smart Agent is automatically
consulted. The Smart Agent locates the specified implementation so that a connection
can be established between the client and the implementation. The communication
with the Smart Agent is completely transparent to the client program.

If the PERSISTENT policy is set on the POA, and activate_object_with_id is used, the
Smart Agent registers the object or implementation so that it can be used by client
programs. When an object or implementation is deactivated, the Smart Agent
removes it from the list of available objects. As with client programs, the
communication with the Smart Agent is completely transparent to the object
implementation.

Locating Smart Agents

VisiBroker locates a Smart Agent for use by a client program or object
implementation using a broadcast message. The first Smart Agent to respond is used.
After a Smart Agent has been located, a point-to-point UDP connection is used for
sending registration and look-up requests to the Smart Agent. The UDP protocol is
used because it consumes fewer network resources than a TCP connection. All

16-2 P r o g r a m m e r ’ s G u i d e

W h a t i s t h e S m a r t A g e n t ?

registration and locate requests are dynamic, so there are no required configuration
files or mappings to maintain.

Note Broadcast messages are used only to locate a Smart Agent. All other communication
with the Smart Agent makes use of point-to-point communication. See “Using
point-to-point communications” on page 16-8 for information on how to override the
use of broadcast messages.

Locating objects through Agent cooperation

When a Smart Agent is started on more than one host in the local network, each
Smart Agent will recognize a subset of the objects available and communicate with
other Smart Agents to locate objects it cannot find. If one of the Smart Agent
processes should terminate unexpectedly, all implementations registered with that
Smart Agent discover this event and they will automatically reregister with another
available Smart Agent.

Cooperating with the OAD to connect with objects

Object implementations may be registered with the OAD so that they can be started
on demand. Such objects are registered with the Smart Agent as if they are actually
active and located within the OAD. When a client requests one of these objects, it is
directed to the OAD. The OAD then forwards the client request to the real (possibly
newly) spawned server. The Smart Agent does not know that the real object
implementation is not actually active within the OAD.

Starting a Smart Agent (osagent)

At least one instance of the Smart Agent should be running on a host in your local
network. Local network refers to a subnetwork within which broadcast message can
be sent.

To start the Smart Agent under Windows, select its icon from the VisiBroker Program
Group or enter the following command at the DOS prompt:

WinNT prompt> osagent [options]

To start the Smart Agent on a UNIX system, enter the following command.

UNIX prompt> osagent &

The oasgent command accepts the following command line arguments:

Option Description

-p UDP_port Overrides the setting of OSAGENT_PORT and the registry setting.

-v Turns verbose mode on, which provides information and diagnostic messages
during execution.

-help or -? Prints the help message.

-n, -N Disables system tray icon on Windows.

U s i n g t h e S m a r t A g e n t 16-3

W h a t i s t h e S m a r t A g e n t ?

The following example of the osagent command specifies a particular UDP port:

Example osagent -p 17000

Verbose output
UNIX On a UNIX platform, the verbose output is sent to stdout.

WinNT On a Windows system, the verbose output is written to a log file stored at
<installation_location>\log\osagent.log or to the directory specified by the
VBROKER_ADM environment variable or use OSAGENT_LOG_DIR to specify a different
directory to put the log.

The Smart Agent can be installed as an NT service under Windows NT (by choosing
to do so during installation), allowing you to control it with the Service Manager
provided with Windows NT. You may also start the Smart Agent in console mode
from the DOS prompt entering the following command:

prompt> osagent

Disabling the agent
Communication with the Smart Agent can be disabled by passing the ORB the
property at runtime:

prompt> vbj -Dvbroker.agent.enableLocator=false

If you use string-to-object references, a naming service, or pass in a URL reference,
the Smart Agent is not required, and can be disabled. If you pass in an object name to
the bind method, you must use the Smart Agent.

Ensuring Agent availability

Starting a Smart Agent on more than one host within the local network allows clients
to continue to bind to objects, even if one of the Smart Agents terminates
unexpectedly. If a Smart Agent becomes unavailable, all object implementations
registered with that Smart Agent will be automatically re-registered with another
Smart Agent. If no Smart Agents are running on the local network, object
implementations will continue retrying until a new Smart Agent can be contacted.

If a Smart Agent terminates, any connections between a client and an object
implementation that were established before the Smart Agent terminated will
continue without interruption. However, any new bind() requests issued by a client
will cause a new Smart Agent to be contacted.

No special coding techniques are required to take advantage of these fault-tolerant
features. You only need to make sure a Smart Agent is started on one or more hosts
on the local network.

Checking client existence
A Smart Agent sends an “Are You Alive” message (often called a heartbeat message)
to its clients every two minutes to verify the client is still connected. If the client does
not respond, the Smart Agent assumes the client has terminated the connection.

16-4 P r o g r a m m e r ’ s G u i d e

W o r k i n g w i t h i n O R B d o m a i n s

You can not change the interval for polling the client.

Note The use of the term “client” does not necessarily describe the function of the object or
process. Any program that connects to the Smart Agent for object references is a
client.

Working within ORB domains
It is often desirable to have two or more separate ORB domains running at the same
time. One domain might consist of the production versions of client programs and
object implementations while another domain might be made up of test versions of
the same clients and objects that have not yet been released for general use. If several
developers are working on the same local network, each may want to establish their
own ORB domain so that their testing efforts do not conflict with one another.

Figure 16.1 Running separate ORB domains simultaneously

VisiBroker allows you to distinguish between multiple ORB domains on the same
network by using a unique UDP port number for the Smart Agents for each domain.
By default, the OSAGENT_PORT variable is set to 14000. If you wish to use a different port
number, check with your system administrator to determine what port numbers are
available. To override the default setting, the OSAGENT_PORT variable must be set
accordingly before running a Smart Agent, an OAD, object implementations, or client
programs assigned to that ORB domain.

Code sample 16.1 Setting the OSAGENT_PORT environment variable for a UNIX system running csh

prompt> setenv OSAGENT_PORT 5678
prompt> osagent &
prompt> oad &

Production Domain

Client ApplicationClient Application

ORB Smart Agent ORB Smart Agent

Object Impl.

Object Impl.

Object Impl.

Object Impl.

Test Domain

U s i n g t h e S m a r t A g e n t 16-5

C o n n e c t i n g S m a r t A g e n t s o n d i f f e r e n t l o c a l n e t w o r k s

The Smart Agent also uses another port number internally. This port number can be
set by using the OSAGENT_CLIENT_HANDLER_PORT environment variable. This port number
is used for both TCP and UDP protocols and is the same for both.

Windows Setting the OSAGENT_PORT environment variable overrides the Windows registry setting
or the setting set using the vregedit.exe utility program (located in the VisiBroker bin
directory).

Connecting Smart Agents on different local networks
If you start multiple Smart Agents on your local network, they will discover each
other by using UDP broadcast messages. Your network administrator configures a
local network by specifying the scope of broadcast messages using the IP subnet
mask. Figure 16.2 shows two local networks, connected by a network link.

Figure 16.2 Two Smart Agents on separate local networks

To allow the Smart Agent on one network to contact a Smart Agent on another local
network, you must make the IP address of the remote Smart Agent available in a file
named agentaddr. This is only necessary if the two Smart Agents can not detect each
other through the UDP broadcast. Code sample 16.2 shows what this file would
contain to allow the Smart Agent on Local Network #1 to connect to the Smart Agent
on the other network. The path to this file is specified by the VBROKER_ADM environment
variable that is set for the Smart Agent process. You can override this file name by
setting the OSAGENT_ADDR_FILE environment variable.

Code sample 16.2 Content of the agentaddr file for the Smart Agent on network #1

101.10.2.6

With the appropriate agentaddr file, the client program on Network #1 could locate
and use object implementations on Network #2. For more information on
environment variables, see “Setting up your environment” on page 3-1.

Note If a remote network has multiple Smart Agents running, you should list the IP
addresses of all of the Smart Agents on the remote network.

ORB Smart
Agent
101.10.2.6

ORB Smart
Agent
199.10.9.5

Client Application

Object Impl.

Local Network #1

Link

Local Network #2

16-6 P r o g r a m m e r ’ s G u i d e

W o r k i n g w i t h m u l t i h o m e d h o s t s

How Smart Agents detect each other

Suppose two agents, Agent 1 and Agent 2, are listening on the same UDP port from
two different machines on the same subnet. Agent 1 starts before Agent 2. The
following events occur:

• When Agent 2 starts, it UDP broadcasts its existence and sends a request message
to locate any other Smart Agents.

• Agent 1 makes note that Agent 2 is available on the network and responds to the
request message.

• Agent 2 makes note that another agent, Agent 1, is available on the network.

If Agent 2 is terminated gracefully (such as killing with Ctrl+C), Agent 1 is notified
that Agent 2 is no longer available.

If Agent 2 is terminated abnormally (such as killing Agent 2 using the Task Manager
window), Agent 1 is not notified that Agent 2 is no longer available (there is no
periodic heartbeat messages between the agents). Agent 1 continues until a client
asks for an object reference that does not exist in Agent 1’s dictionary. Agent 1
forwards the request to Agent 2. Since Agent 2 is no longer available, Agent 1 is
forced to clean up.

Until Agent 1 is forced to clean up, osfind still shows two agents listed and catches
ObjLocation::Fail exception.

Working with multihomed hosts
When you start the Smart Agent on a host that has more than one IP address (known
as a multihomed host) it can provide a powerful mechanism for bridging objects
located on separate local networks. All local networks to which the host is connected
will be able to communicate with a single Smart Agent, effectively bridging the local
networks.

Figure 16.3 Smart Agent on a multihomed host

Client program

Local
network #2

Object A

Multihomed host

199.10.9.5 101.10.2.6

Local
network #1

U s i n g t h e S m a r t A g e n t 16-7

W o r k i n g w i t h m u l t i h o m e d h o s t s

UNIX On a multihomed UNIX host, the Smart Agent dynamically configures itself to listen
and broadcast on all of the host’s interfaces which support point-to-point connections
or broadcast connections. You may explicitly specify interface settings using the
localaddr file as described in “Specifying interface usage for Smart Agents” below.

Windows On a multihomed Windows host, the Smart Agent is not able to dynamically
determine the correct subnet mask and broadcast address values. To overcome this
limitation, you must explicitly specify the interface settings you want the Smart
Agent to use with the localaddr file.

When you start the Smart Agent with the –v (verbose) option, each interface that the
Smart Agent uses will be listed at the beginning of the messages produced.
Code sample 16.3 shows the sample output from a Smart Agent started with the
verbose option on a multihomed host.

Code sample 16.3 Verbose output from a Smart Agent started on a multihomed host

Bound to the following interfaces:
Address: 199.10.9.5 Subnet: 255.255.255.0 Broadcast:199.10.9.255
Address: 101.10.2.6 Subnet: 255.255.255.0 Broadcast:101.10.2.255
...

As shown in Code sample 16.3, the output shows the address, subnet mask, and
broadcast address for each interface in the machine. For UNIX, this output should
match the results from the UNIX command ifconfig -a.

If you wish to override these settings, you can specify this interface information in
the localaddr file. See “Specifying interface usage for Smart Agents” below for details.

Specifying interface usage for Smart Agents

Note It is not necessary to specify interface information on a single-homed host.

You can specify interface information for each interface you wish the Smart Agent to
use on your multihomed host in the localaddr file. The localaddr file should have a
separate line for each interface that contains the host’s IP address, subnet mask, and
broadcast address. By default, VisiBroker searches for the localaddr file in the
VBROKER_ADM directory. You can override this location by setting the OSAGENT_LOCAL_FILE
environment variable to point to this file. Lines in this file that begin with a “#”
character are treated as comments and ignored. Code sample 16.4 shows the contents
of the localaddr file for the multihomed host listed above.

Code sample 16.4 Contents of an example localaddr file

#entries of format <address> <subnet_mask> <broadcast address>
199.10.9.5 255.255.255.0 199.10.9.255
101.10.2.6 255.255.255.0 101.10.2.255

UNIX Though the Smart Agent can automatically configure itself on a multihomed host
running UNIX, you can use the localaddr file to explicitly specify the interfaces that
your host contains. You can display all the available interface values for your UNIX
host by using the following command:

prompt> ifconfig -a

Output from this command appears similar to the following:

16-8 P r o g r a m m e r ’ s G u i d e

U s i n g p o i n t - t o - p o i n t c o m m u n i c a t i o n s

lo0: flags=849<UP,LOOPBACK,RUNNING,MULTICAST> mtu 8232
inet 127.0.0.1 netmask ff000000

le0: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
inet 199.10.9.5 netmask ffffff00 broadcast 199.10.9.255

le1: flags=863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST> mtu 1500
inet 101.10.2.6 netmask ffffff00 broadcast 101.10.2.255

Windows The use of the localaddr file with multihomed hosts is required for hosts running
Windows because the Smart Agent is not able to automatically configure itself. You
can obtain the appropriate values for this file by accessing the TCP/IP protocol
properties from the Network Control Panel. If your host is running Windows NT, the
ipconfig command will provide the needed values. You run this command as follows:

prompt>ipconfig

Output from this command appears similar to the following:

Ethernet adapter El59x1:
IP Address. : 199.10.9.5
Subnet Mask : 255.255.255.0
Default Gateway : 199.10.9.1

Ethernet adapter Elnk32:
IP Address. : 101.10.2.6
Subnet Mask : 255.255.255.0
Default Gateway : 101.10.2.1

Using point-to-point communications
VisiBroker provides you with three different mechanisms for circumventing the use
of UDP broadcast messages for locating Smart Agent processes. When a Smart Agent
is located with any of these alternate approaches, that Smart Agent will be used for
all subsequent interactions. If a Smart Agent cannot be located using any of these
alternate approaches, the ORB will revert to using the broadcast message scheme to
locate a Smart Agent.

Specifying a host as a runtime parameter

Code sample 16.5 shows how you can specify the IP address where a Smart Agent is
running as a runtime parameter for your client program or object implementation.
Since specifying an IP address will cause a point-to-point connection to be
established, you can even specify an IP address of a host located outside your local
network. This mechanism takes precedence over any other host specification.

Code sample 16.5 Specifying a Smart Agent’s IP address as a runtime parameter

prompt> vbj -Dvbroker.agent.addr=<ip_address> Server

You can also specify the IP address through the properties file. Look for the
vbroker.agent.addr entry.

Code sample 16.6 Specifying the Smart Agent’s IP address in the properties file

vbroker.agent.addr=<ip_address>

U s i n g t h e S m a r t A g e n t 16-9

U s i n g p o i n t - t o - p o i n t c o m m u n i c a t i o n s

By default, vbroker.agent.addr in the properties file is set to NULL.

You can also list the hostnames where the agent might reside and then point to that
file with the vbroker.agent.addrFile option in the properties file.

Specifying an IP address with an environment variable

You can specify the IP address of a Smart Agent by setting the OSAGENT_ADDR
environment variable prior to starting your client program or object implementation.
This environment variable takes precedence if a host is not specified as a runtime
parameter.

Figure 16.4 Setting the OSAGENT_ADDR environment variable using the C shell

UNIX prompt> setenv OSAGENT_ADDR 199.10.9.5
prompt> client

Win95 To set the OSAGENT_ADDR environment variable on a Windows 95 system, you can add
the following line to your autoexec.bat file:

SET OSAGENT_ADDR=199.10.9.5

WinNT To set the OSAGENT_ADDR environment variable on a Windows NT system, you can use
the System control panel and edit the environment variables:

1 Under System Variables, select any current variable.
2 Type OSAGENT_ADDR in the Variable edit box.
3 Type the IP address in the Value edit box. For example, 199.10.9.5.

Specifying hosts with the agentaddr file

Your client program or object implementation can use the agentaddr file, described in
“Connecting Smart Agents on different local networks” on page 16-5, to circumvent
the use of UDP broadcast message to locate a Smart Agent. Simply create a file
containing the IP addresses or fully qualified hostname of each host where a Smart
Agent is running and then set the OSAGENT_ADDR_FILE environment variable to point to
the path of the file. When a client program or object implementation has this
environment variable set, the ORB will try each address in the file until a Smart
Agent is located. This mechanism has the lowest precedence of all the mechanisms
for specifying a host. If this file is not specified, the VBROKER_ADM/agentaddr file is used.

16-10 P r o g r a m m e r ’ s G u i d e

E n s u r i n g o b j e c t a v a i l a b i l i t y

Ensuring object availability
You can provide fault tolerance for objects by starting instances of those objects on
multiple hosts. If an implementation becomes unavailable, the ORB will detect the
loss of the connection between the client program and the object implementation and
will automatically contact the Smart Agent to establish a connection with another
instance of the object implementation, depending on the effective rebind policy
established by the client. See “Using quality of service” on page 10-6 for more
information on establishing client policies.

Caution The rebind option must be enabled if the ORB is to attempt to reconnect the client
with a replica object implementation. This is the default behavior.

Invoking methods on stateless objects

Your client program can invoke a method on an object implementation which does
not maintain state without being concerned if a new instance of the object is being
used.

Achieving fault-tolerance for objects that maintain state

Fault tolerance can also be achieved with object implementations that maintain state,
but it will not be transparent to the client program. In these cases, your client
program must either use the Quality of Service (QoS) policy VB_NOTIFY_REBIND or
register an interceptor for the ORB object. For information on using QoS, see “Using
quality of service” on page 10-6.

When the connection to an object implementation fails and the ORB reconnects the
client to a replica object implementation, the bind method of the bind interceptor will
be invoked by the ORB. The client must provide an implementation of this bind
method to bring the state of the replica up to date. Interceptors are described in
Chapter 24, “Using interceptors.”

Replicating objects registered with the OAD

The OAD ensures greater object availability because if the object goes down, the
OAD will restart it. If you want fault tolerance for the case where a host becomes
unavailable, the OAD must be started on multiple hosts, and the objects must be
registered with each OAD instance.

Note The type of object replication provided by VisiBroker does not provide a multicast or
mirroring facility. At any given time there is always a one-to-one correspondence
between a client program and a particular object implementation.

U s i n g t h e S m a r t A g e n t 16-11

M i g r a t i n g o b j e c t s b e t w e e n h o s t s

Migrating objects between hosts
Object migration is the process of terminating an object implementation on one host,
and then starting it on another host. Object migration can be used to provide load
balancing by moving objects from overloaded hosts to hosts that have more
resources or processing power (there is no load balancing between servers registered
with different osagents.) Object migration can also be used to keep objects available
when a host has to be shutdown for hardware or software maintenance.

Note The migration of objects that do not maintain state is transparent to the client
program. If a client is connected to an object implementation that has migrated, the
Smart Agent will detect the loss of the connection and transparently reconnect the
client to the new object on the new host.

Migrating objects that maintain state

The migration of objects that maintain state is also possible, but it will not be
transparent to a client program that has connected before the migration process
begins. In these cases, the client program must register an interceptor for the object.
When the connection to the original object is lost and the ORB reconnects the client to
the object, the interceptor’s rebind_succeeded() method will be invoked by the ORB.
The client can implement this method to bring the state of the object up to date.
Interceptors are described in Chapter 24, “Using interceptors.”

Migrating instantiated objects

If the objects that you wish to migrate were created by a server process instantiating
the implementation’s class, you need only start it on a new host and terminate the
server process. When the original instance is terminated, it will be unregistered with
the Smart Agent. When the new instance is started on the new host, it will register
with the Smart Agent. From that point on, client invocations will be routed to the
object implementation on the new host.

Migrating objects registered with the OAD

If the ORB objects that you wish to migrate are registered with the OAD, you must
unregister them with the OAD on the old host. Then, reregister them with the OAD
on the new host. Here are the steps:

1 Unregister the object implementation from the OAD on the old host.
2 Register the object implementation with the OAD on the new host.
3 Terminate the object implementation on the old host.

See Chapter 20, “Using the Object Activation Daemon,” for detailed information on
registering and Unregistering object implementations.

16-12 P r o g r a m m e r ’ s G u i d e

R e p o r t i n g a l l o b j e c t s a n d s e r v i c e s

Reporting all objects and services
The Smart Finder (osfind) command reports on all VisiBroker related objects and
services which are currently available on a given network.

You can use osfind to determine the number of Smart Agent processes running on the
network and the exact host on which they are executing. The osfind command also
reports on all VisiBroker objects that are active on the network. You can use osfind to
monitor the status of the network and locate stray objects during the debugging
phase.

The osfind command has the following syntax:

Syntax osfind [options]

The following options are valid with osfind. If no options are specified, osfind lists all
of the agents, OAD’s, and implementations in your domain.

Windows osfind is a console application. If you start osfind from the Start menu, it runs until
completion and exits before you can view the results.

Binding to Objects
Before your client application can invoke methods on an interface, it must first obtain
an object reference using the bind method.

When your client application invokes the bind method, the ORB performs several
functions on behalf of your application.

• The ORB contacts the osagent to locate an object server that is offering the
requested interface. If an object name and a host name (or IP address) are
specified, they will be used to further qualify the directory service search.

• When an object implementation is located, the ORB attempts to establish a
connection between the object implementation that was located and your client
application.

• If the connection is successfully established, the ORB will create a proxy object, if
necessary, and return a reference to that object.

Note The ORB is not a separate process. It is a collection of classes and other resources that
allow communication between clients and servers.

Option Description

-a Lists all Smart Agents in your domain.

-o Lists all Object Activation Daemons in your domain.

-d Prints hostnames as quad addresses

U s i n g t h e L o c a t i o n S e r v i c e 17-1

C h a p t e r

17
Chapter17Using the Location Service

The VisiBroker Location Service provides enhanced object discovery that enables you
to find object instances based on particular attributes. Working with VisiBroker
Smart Agents, the Location Service notifies you of what objects are presently
accessible on the network, and where they reside. The Location Service is a
VisiBroker extension to the CORBA specification and is only useful for finding
objects implemented with VisiBroker.

What is the Location Service?
The Location Service is an extension to the CORBA specification that provides
general-purpose facilities for locating object instances. The Location Service
communicates directly with one Smart Agent which maintains a catalog, which
contains the list of the instances it knows about. When queried by the Location
Service, a Smart Agent forwards the query to the other Smart Agents, and aggregates
their replies in the result it returns to the Location Service.

The Location Service knows about all object instances that are registered on a POA
with the BY_INSTANCE Policy and objects that are registered as persistent on a BOA. The
server containing these objects may be started manually or automatically by the
OAD.

17-2 P r o g r a m m e r ’ s G u i d e

W h a t i s t h e L o c a t i o n S e r v i c e ?

The following diagram illustrates this concept.

Figure 17.1 Using the Smart Agent to find instances of objects

Note A server specifies an instance’s scope when it creates the instance. Only
globally-scoped instances are registered with Smart Agents.

The Location Service can make use of the information the Smart Agent keeps about
each object instance. For each object instance, the Location Service maintains
information encapsulated in the structure ObjLocation::Desc shown in
IDL sample 17.1.

IDL sample 17.1 IDL for the Desc structure

struct Desc {
Object ref;
::IIOP::ProfileBodyValue iiop_locator;
string repository_id;
string instance_name;
boolean activable;
string agent_hostname;

};
typedef sequence<Desc> DescSeq;

The IDL for the Desc structure contains the following information:

• The object reference, ref, is a handle for invoking the object.

• The iiop_locator interface provides access to the host name and the port of the
instance’s server. This information is only meaningful if the object is connected
with IIOP, which is the only supported protocol. Host names are returned as
strings in the instance description.

• The repository_ id, which is the interface designation for the object instance that
can be looked up in the Interface and Implementation Repositories. If an instance
satisfies multiple interfaces, the catalog contains an entry for each interface, as if
there were an instance for each interface.

• The instance_name, which is the name given to the object by its server.

• The activable flag, which differentiates between instances that can be activated by
an OAD and instances that are started manually.

• The agent_hostname, the name of the Smart Agent with which the instance is
registered.

Smart Agent
Smart Agent

Smart Agent
Location
Service

Query for all
objects returns:

= Registration of an active object

= Registration of an activable object

U s i n g t h e L o c a t i o n S e r v i c e 17-3

L o c a t i o n S e r v i c e c o m p o n e n t s

The Location Service is useful for purposes such as load balancing and monitoring.
Suppose that replicas of an object are located on several hosts. You could deploy a
bind interceptor that maintains a cache of the host names that offer a replica and each
host’s recent load average. The interceptor updates its cache by asking the Location
Service for the hosts currently offering instances of the object, and then queries the
hosts to obtain their load averages. The interceptor then returns an object reference
for the replica on the host with the lightest load. See Chapter 24, “Using
interceptors,” for more information about writing interceptors.

Location Service components
The Location Service is accessible through the Agent interface. Methods for the Agent
interface can be divided into two groups: those that query a Smart Agent for data
describing instances and those that register and unregister triggers. Triggers provide
a mechanism by which clients of the Location Service can be notified of changes to
the availability of instances.

What is the Location Service agent?

The Location Service Agent is a collection of methods that enable you to discover
objects on a network of Smart Agents. You can query based on the interface’s
repository ID, or based on a combination of the interface’s repository ID and the
instance name. Results of a query can be returned as either object references or more
complete instance descriptions. An object reference is simply a handle to a specific
instance of the object located by a Smart Agent. Instance descriptions contain the
object reference, as well as the instance’s interface name, instance name, host name
and port number, and information about its state (for example, whether it is running
or can be activated).

Note The locserv executable no longer exists since the service is now part of the core ORB.

Figure 17.2 illustrates the use of interface repository IDs and instance names given
the following example IDL:

module Automobile {
interface Car{...};
interface Sedan:Car {...};

}

Figure 17.2 Use of interface repository IDs and instance names

Given the example in Figure 17.2, the following diagram visually depicts Smart
Agents on a network with references to instances of Car. In this example, there are
three instances: one instance of Kerri’s Car and two replicas of Tom’s Car.

IDL:Automobile/Car:1.0

IDL:Automobile/Sedan:1.0

Kerri’s Car

Tom’s Car

= Interface’s repository ID
= Object instance

17-4 P r o g r a m m e r ’ s G u i d e

L o c a t i o n S e r v i c e c o m p o n e n t s

Figure 17.3 Smart Agents on a network with instances of an interface

The following sections explain how the methods provided by the Agent class can be
used to query VisiBroker Smart Agents for information. Each of the query methods
can raise the Fail exception, which provides a reason for the failure.

Obtaining names of all hosts running Smart Agents
Using the String[] all_agent_locations() method, you can find out which servers are
hosting VisiBroker Smart Agents. In the example shown in Figure 17.3, this method
would return the names of two servers: Athena and Zeus.

Finding all accessible interfaces
You can query the VisiBroker Smart Agents on a network to find out about all
accessible interfaces. To do so, you can use the String[] all_repository_ids() method.
In the example shown in Figure 17.3, this method would return the repository IDs of
two interfaces: Car and Sedan.

Note Earlier versions of the VisiBroker ORB used IDL interface names to identify
interfaces, but the Location Service uses the repository id instead. To illustrate the
difference, if an interface name is ::module1::module2::interface, the equivalent
repository id is IDL:module1/module2/interface:1.0. For the example shown in Figure
17.2, the repository ID for Car would be IDL:Automobile/Car:1.0, and the repository ID
for Sedan would be IDL:Automobile/Sedan:1.0.

Obtaining references to instances of an interface
You can query VisiBroker Smart Agents on a network to find all available instances
of a particular interface. When performing the query, you can use either of these
methods:

In the example shown in Figure 17.3, a call to either method with the request
IDL:Automobile/Car:1.0 would return three instances of the Car interface: Tom’s Car on
Athena, Tom’s Car on Zeus, and Kerri’s Car. The Tom’s Car instance is returned
twice because there are occurrences of it with two different Smart Agents.

Athena server

Location
Service

Tom’s Car

Zeus server

Tom’s Car

Kerri’s Car

= Object instance

= Smart Agent

Table 17.1 Obtaining references to objects that implement a given interface

Method Description

Object[] all_instances(String repository_id) Use this method to return object references to
instances of the interface.

Desc[]all_instance_descs(String repository_id) Use this method to return an instance
description for instances of the interface.

U s i n g t h e L o c a t i o n S e r v i c e 17-5

L o c a t i o n S e r v i c e c o m p o n e n t s

Obtaining references to like-named instances of an interface
Using one of the following methods, you can query VisiBroker Smart Agents on a
network to return all occurrences of a particular instance name.

In the example shown in Figure 17.3 on page 17-4, a call to either method specifying
the repository ID IDL:Automobile/Sedan:1.0 and instance name Tom’s Car would
return two instances because there are occurrences of it with two different Smart
Agents.

What is a trigger?

A trigger is essentially a callback mechanism that lets you determine changes to the
availability of a specified instance. It is an asynchronous alternative to polling an
Agent, and is typically used to recover after the connection to an object has been lost.
Whereas queries can be employed in many ways, triggers are special-purpose.

Looking at trigger methods
The trigger methods in the Agent class are described in the following table:

Both of the Agent trigger methods can raise the Fail exception, which provides a
reason for the failure.

Table 17.2 References to like-named instances of an interface

Method Description

Object[] all_replica(String repository_id,
String instance_name)

Use this method to return object references to
like-named instances of the interface.

Desc[] all_replica_descs(String
repository_id, String instance_name)

Use this method to return an instance description
for like-named instances of the interface.

Table 17.3 Trigger methods

Methods Description

void reg_trigger(
com.inprise.vbroker.ObjLocation.TriggerDesc desc,
com.inprise.vbroker.ObjLocation.TriggerHandler handler)

Use this method to register a trigger
handler.

void unreg_trigger(
com.inprise.vbroker.ObjLocation.TriggerDesc desc,
com.inprise.vbroker.ObjLocation.TriggerHandler handler)

Use this method to unregister a trigger
handler.

17-6 P r o g r a m m e r ’ s G u i d e

L o c a t i o n S e r v i c e c o m p o n e n t s

The TriggerHandler interface consists of the methods described in the following table:

Creating triggers
A TriggerHandler is a callback object. You implement a TriggerHandler by deriving from
the TriggerHandlerPOA class (or the TriggerHandlerImpl class with BOA), and
implementing its impl_is_ready() and impl_is_down() methods. To register a trigger with
the Location Service, you use the reg_trigger() method in the Agent interface. This
method requires that you provide a description of the instance you want to monitor,
and the TriggerHandler object you want invoked when the availability of the instance
changes. The instance description (TriggerDesc) can contain combinations of the
following instance information: repository ID, instance name, and host name. The more
instance information you provide, the more particular your specification of the instance.

IDL sample 17.2 IDL for TriggerDesc

struct TriggerDesc {
string repository_id;
string instance_name;
string host_name;

};

Note If a field in the TriggerDesc is set to the empty string (“”), it is ignored. The default for
each field value is the empty string.

For example, a TriggerDesc containing only a repository ID matches any instance of
the interface. Looking back to our example in Figure 17.3 on page 17-4, a trigger for
any instance of IDL:Automobile/Car:1.0 would occur when one of the following
instances becomes available or unavailable: Tom’s Car on Athena, Tom’s Car on
Zeus, or Kerri’s Car. Adding an instance name of “Tom’s Car” to the TriggerDesc
tightens the specification so that the trigger only occurs when the availability of one
of the two “Tom’s Car” instances changes. Finally, adding a host name of Athena
refines the trigger further so that it only occurs when the instance Tom’s Car on the
Athena server becomes available or unavailable.

Looking at only the first instance found by a trigger
Triggers are “sticky.” A TriggerHandler is invoked every time an object satisfying the
trigger description becomes accessible. You may only be interested in learning when
the first instance becomes accessible. If this is the case, invoke the Agent’s
unreg_trigger() method to unregister the trigger after the first occurrence is found.

Table 17.4 TriggerHandler interface method

Method Description

void impl_is_ready(
com.inprise.vbroker.ObjLocation.TriggerDesc desc)

This method is called by the Location Service
when an instance matching the desc becomes
accessible.

void impl_is_down(
com.inprise.vbroker.ObjLocation.TriggerDesc desc)

This method is called by the Location Service
when an instance becomes unavailable.

U s i n g t h e L o c a t i o n S e r v i c e 17-7

Q u e r y i n g a n a g e n t

Querying an agent
This section contains two examples of using the Location Service to find instances of
an interface. The first example uses the Account interface shown in the following IDL
excerpt:

IDL sample 17.3 Account example interface definition

// Bank.idl
module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open (in string name);
};

};

Finding all instances of an interface

The following code sample uses the all_instances() method to locate all instances of
the Account interface. Notice that the Smart Agents are queried by passing
“LocationService” to the ORB.resolve_initial_references() method, then narrowing
the object returned by that method to an ObjLocation.Agent. Notice, as well, the format
of the Account repository id—IDL:Bank/Account:1.0.

Code sample 17.1 Finding all instances satisfying the AccountManager interface

// AccountFinder.java
public class AccountFinder {

public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
com.inprise.vbroker.ObjLocation.Agent the_agent = null;
try {

the_agent =
com.inprise.vbroker.ObjLocation.AgentHelper.narrow(orb.resolve_initial_references("LocationS
ervice"));

} catch (org.omg.CORBA.ORBPackage.InvalidName e) {
System.out.println("Not able to resolve references " +

"for LocationService");
System.exit(1);

} catch (Exception e) {
System.out.println("Unable to locate LocationService!");
System.out.println("Caught exception: " + e);
System.exit(1);

}
org.omg.CORBA.Object[] accountRefs =

the_agent.all_instances("IDL:Bank/AccountManager:1.0");
System.out.println("Agent returned " + accountRefs.length +

" object references");
for (int i=0; i < accountRefs.length; i++) {

17-8 P r o g r a m m e r ’ s G u i d e

Q u e r y i n g a n a g e n t

System.out.println("Stringified IOR for account #" + (i+1) + ":");
System.out.println(orb.object_to_string(accountRefs[i]));
System.out.println();

}
} catch (Exception e) {

System.out.println("Caught exception: " + e);
System.exit(1);

}
}
}

Finding everything known to Smart Agents

The following code sample shows how to find everything known to Smart Agents. It
does this by invoking the all_repository_ids() method to obtain all known interfaces.
Then it invokes the all_instances_descs() method for each interface to obtain the
instance descriptions.

Code sample 17.2 Finding everything known to an osagent

// Find.java
public class Find {
public static void main(String[] args) {

try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
com.inprise.vbroker.ObjLocation.Agent agent = null;
try {

agent =
com.inprise.vbroker.ObjLocation.AgentHelper.narrow(orb.resolve_initial_references("LocationS
ervice"));

} catch (org.omg.CORBA.ORBPackage.InvalidName e) {
System.out.println("Not able to resolve references " + "for LocationService");
System.exit(1);

} catch (Exception e) {
System.out.println("Not able to resolve references " + "for LocationService");
System.out.println("Caught exception: " + e);
System.exit(1);

}
boolean done=false;
java.io.BufferedReader in =

new java.io.BufferedReader(new java.io.InputStreamReader(System.in));
while (! done) {

System.out.print("-> ");
System.out.flush();
String line = in.readLine();
if(line.startsWith("agents")) {

java.lang.String[] agentList = agent.all_agent_locations();
System.out.println("Located " + agentList.length + " agents");
for (int i=0; i < agentList.length; i++) {

System.out.println("\t" + "Agent #" + (i+1) + ": " + agentList[i]);
}

} else if(line.startsWith("rep")) {
java.lang.String[] repIds = agent.all_repository_ids();

U s i n g t h e L o c a t i o n S e r v i c e 17-9

Q u e r y i n g a n a g e n t

System.out.println("Located " + repIds.length + " repository Ids");
for (int i=0; i < repIds.length; i++) {

System.out.println("\t" + "Repository Id #" + (i+1) + ": " + repIds[i]);
}

} else if(line.startsWith("objects ")) {
String names = line.substring("objects ".length(), line.length());
PrintObjects(names,agent,orb);

} else if(line.startsWith("quit")) {
done = true;

} else {
System.out.println("Commands: agents\n" +

" repository_ids\n" +
" objects <rep Id>\n" +
" objects <rep Id> <obj name>\n" +
" quit\n");

}
}

} catch (com.inprise.vbroker.ObjLocation.Fail err) {
System.out.println("Location call failed with reason " + err.reason);

} catch (java.lang.Exception err) {
System.out.println("Caught error " + err);
err.printStackTrace();

}
}
public static void PrintObjects(String names,

com.inprise.vbroker.ObjLocation.Agent agent,
org.omg.CORBA.ORB orb)

throws com.inprise.vbroker.ObjLocation.Fail {
int space_pos = names.indexOf(' ');
String repository_id;
String object_name;
if (space_pos == -1) {

repository_id = names;
object_name = null;

} else {
repository_id = names.substring(0,names.indexOf(' '));
object_name = names.substring(names.indexOf(' ')+1);

}
org.omg.CORBA.Object[] objects;
com.inprise.vbroker.ObjLocation.Desc[] descriptors;
if (object_name == null) {

objects = agent.all_instances(repository_id);
descriptors = agent.all_instances_descs(repository_id);

} else {
objects = agent.all_replica(repository_id,object_name);
descriptors = agent.all_replica_descs(repository_id,object_name);

}
System.out.println("Returned " + objects.length + " objects");
for (int i=0; i<objects.length; i++) {

System.out.println("\n\nObject #" + (i+1) + ":");
System.out.println("==================");
System.out.println("\tRep ID: " +

((com.inprise.vbroker.CORBA.Object)objects[i])._repository_id());
System.out.println("\tInstance:" +

17-10 P r o g r a m m e r ’ s G u i d e

W r i t i n g a n d r e g i s t e r i n g a t r i g g e r h a n d l e r

((com.inprise.vbroker.CORBA.Object)objects[i])._object_name());
System.out.println("\tIOR: " + orb.object_to_string(objects[i]));
System.out.println();
System.out.println("Descriptor #" + (i+1));
System.out.println("=====================================");
System.out.println("Host: " + descriptors[i].iiop_locator.host);
System.out.println("Port: " + descriptors[i].iiop_locator.port);
System.out.println("Agent Host: " + descriptors[i].agent_hostname);
System.out.println("Repository Id: " + descriptors[i].repository_id);
System.out.println("Instance: " + descriptors[i].instance_name);
System.out.println("Activable: " + descriptors[i].activable);

}
}
}

Writing and registering a trigger handler
The following section illustrates how a trigger is implemented and registered.

Implementing and registering a trigger handler

The following code sample implements and registers a TriggerHandler. The
TriggerHandlerImpl’s impl_is_ready() and impl_is_down() methods display the
description of the instance that caused the trigger to be invoked, and optionally
unregister itself. If it is unregistered, the method calls System.exit() to terminate the
program.

Notice that the TriggerHandlerImpl class keeps a copy of the desc and Agent parameters
with which it was created. The unreg_trigger() method requires the desc parameter.
The Agent parameter is duplicated in case the reference from the main program is
released.

Code sample 17.3 Implementing a trigger handler

// AccountTrigger.java

import java.io.*;
import org.omg.PortableServer.*;

class TriggerHandlerImpl extends
com.inprise.vbroker.ObjLocation.TriggerHandlerPOA {

public TriggerHandlerImpl(com.inprise.vbroker.ObjLocation.Agent agent,
com.inprise.vbroker.ObjLocation.TriggerDesc initial_desc) {

agent = agent;
initial_desc = initial_desc;

}

public void impl_is_ready(com.inprise.vbroker.ObjLocation.Desc desc) {
notification(desc, true);

}
public void impl_is_down(com.inprise.vbroker.ObjLocation.Desc desc) {

U s i n g t h e L o c a t i o n S e r v i c e 17-11

W r i t i n g a n d r e g i s t e r i n g a t r i g g e r h a n d l e r

notification(desc, false);
}

private void notification(com.inprise.vbroker.ObjLocation.Desc desc, boolean isReady) {
if (isReady) {

System.out.println("Implementation is ready:");
} else {

System.out.println("Implementation is down:");
}
System.out.println("\tRepository Id = " + desc.repository_id + "\n" +

"\tInstance Name = " + desc.instance_name + "\n" +
"\tHost Name = " + desc.iiop_locator.host + "\n" +
"\tBOA Port = " + desc.iiop_locator.port + "\n" +
"\tActivable = " + desc.activable + "\n" + "\n");

System.out.println("Unregister this handler and exit (yes/no)?");
try {

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String line = in.readLine();
if(line.startsWith("y") || line.startsWith("Y")) {

try {
agent.unreg_trigger(_initial_desc, _this());

} catch (com.inprise.vbroker.ObjLocation.Fail e) {
System.out.println("Failed to unregister trigger with reason=[" +

e.reason + "]");
}
System.out.println("exiting...");
System.exit(0);

}
} catch (java.io.IOException e) {

System.out.println("Unexpected exception caught: " + e);
System.exit(1);

}
}

private com.inprise.vbroker.ObjLocation.Agent _agent;
private com.inprise.vbroker.ObjLocation.TriggerDesc _initial_desc;

}

public class AccountTrigger {

public static void main(String args[]) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
POA rootPoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
rootPoa.the_POAManager().activate();
com.inprise.vbroker.ObjLocation.Agent the_agent =

com.inprise.vbroker.ObjLocation.AgentHelper.narrow(
orb.resolve_initial_references("LocationService"));

// Create a trigger description and an appropriate TriggerHandler.
// The TriggerHandler will be invoked when the osagent becomes
// aware of any new implementations of the interface "Bank::AccountManger"
com.inprise.vbroker.ObjLocation.TriggerDesc desc =

new com.inprise.vbroker.ObjLocation.TriggerDesc(

17-12 P r o g r a m m e r ’ s G u i d e

W r i t i n g a n d r e g i s t e r i n g a t r i g g e r h a n d l e r

"IDL:Bank/AccountManager:1.0", "", "");
TriggerHandlerImpl trig = new TriggerHandlerImpl(the_agent, desc);
rootPoa.activate_object(trig);
the_agent.reg_trigger(desc, trig._this());
orb.run();

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

}

U s i n g t h e N a m i n g S e r v i c e 18-1

C h a p t e r

18
Chapter18Using the Naming Service

This chapter describes how to use the VisiBroker Naming Service which is a complete
implementation of the Interoperable Naming Specification document (orbos/98-10-11)
from the OMG.

Overview
The Naming Service allows you to associate one or more logical names with an object
reference and store those names in a namespace. It also allows your client applications
to use the Naming Service to obtain an object reference by using the logical name
assigned to that object.

Figure 18.1 contains a simplified view of the Naming Service that shows how

1 An object implementation can bind a name to one of its objects within a
namespace.

2 Client applications can then use the same namespace to resolve a name which
returns an object reference to a naming context or an object.

18-2 P r o g r a m m e r ’ s G u i d e

U n d e r s t a n d i n g t h e n a m e s p a c e

Figure 18.1 Binding, resolving, and using an object name from a naming context within a namespace

There are some important differences to consider between locating an object
implementation with the VisiBroker Naming Service as opposed to the Smart Agent.

• Smart Agent uses a flat namespace, while the Naming Service uses a hierarchical
one.

• Object’s interface name is defined at the time you compile your client and server
applications. Changing an interface name requires that you recompile your
applications. In contrast, the Naming Service allows object implementations to
bind logical names to its objects at runtime.

• Object may implement only one interface name, but the Naming Service allows
you to bind more than one logical name to a single object.

Understanding the namespace
Figure 18.2 shows how the Naming Service might be used to name objects that make
up an order entry system. This hypothetical order entry system organizes its
namespace by geographic region, then by department, and so on. The Naming
Service allows you to organize the namespace in a hierarchical structure of
NamingContext objects that can be traversed to locate a particular name. For example,
the logical name NorthAmerica/ShippingDepartment/Orders could be used to locate an
Order object.

Object Implementation

Client Application

1. bind(name, object_ref)

2. resolve(name)

Namespace

<name_1, objref_1>

<name_2, objref_2>

ƒ

<name_x–1, objref_x-1>

3. resolve() returns an
object reference

4. Invoke methods
on objects

U s i n g t h e N a m i n g S e r v i c e 18-3

U n d e r s t a n d i n g t h e n a m e s p a c e

Figure 18.2 Naming scheme for an order entry system

Naming contexts

To implement the namespace shown in Figure 18.2 with the VisiBroker Naming
Service, each of the shadowed boxes would be implemented by a NamingContext object.
A NamingContext object contains a list of Name structures that have been bound to
object implementations or to other NamingContext objects. Though a logical name may
be bound to a NamingContext, it is important to realize that a NamingContext does not, by
default, have a logical name associated with it nor is such a name required.

Object implementations use a NamingContext object to bind a name to an object that
they offer. Client applications use a NamingContext to resolve a bound name to an object
reference.

A NamingContextExt interface is also available which provides methods necessary for
using stringified names.

. . .

. . .

. . .

. . .

. . .

. . .

Inventory

Orders

Acme Lumber

International Supplies

Billing

Customers

Shipping Department

Sales Department

Asia

Europe

North America

Order
Implementation
Object

= NamingContext

= Object Implementation

18-4 P r o g r a m m e r ’ s G u i d e

U n d e r s t a n d i n g t h e n a m e s p a c e

Naming context factories

A naming context factory provides the interface for bootstrapping the Naming Service.
It has operations for shutting down a Naming Service and creating new contexts
when there are none. Factories also have an additional API that returns the root
context. The root context provides a very critical role as a reference point. This is the
common starting point to store all data that are supposed to be publicly available.

Two classes are provided with the VisiBroker Naming Service that allow you to
create a namespace; the default naming context factory and the extended naming
context factory. The default naming context factory creates an empty namespace that
has no root NamingContext. You may find it more convenient to use the extended
naming context factory because it creates a namespace with a root NamingContext.

You must obtain at least one of these NamingContext objects before your object
implementations can bind names to their objects and before client applications can
resolve a name to an object reference.

Each of the NamingContext objects shown in Figure 18.2 on page 18-3 could be
implemented within a single name service process, or they could be implemented
within as many as five distinct name server processes.

Names and NameComponent

A CosNaming::Name represents an identifier that can be bound to an object
implementation or a CosNaming::NamingContext. A Name is not simply a string of
alphanumeric characters; it is a sequence of one or more NameComponent structures.

Each NameComponent contains two attribute strings, id and kind. The naming service
does not interpret or manage these strings, except to ensure that each id and kind is
unique within a given NamingContext.

The id and kind attributes are strings which uniquely identify the object to which the
name is bound. The kind member adds a descriptive quality to the name. For
example, the name “Inventory.RDBMS” has an id member of “Inventory” and a kind
member of “RDBMS.”

IDL sample 18.1 IDL Specification for the NameComponent structure

module CosNaming
typedef string Istring;
struct NameComponent {

Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

};

The id and kind attributes of a NameComponent must be a character from the
ISO 8859-1 (Latin-1) character set, excluding the null character (0x00) and other
non-printable characters. Neither of the strings in a NameComponent can exceed 255
characters. Furthermore, the Naming Service does not support NameComponent which
uses wide strings.

U s i n g t h e N a m i n g S e r v i c e 18-5

U n d e r s t a n d i n g t h e n a m e s p a c e

Note The id attribute of a Name cannot be an empty string, but the kind attribute can be an
empty string.

Name resolution

Your client applications use the NamingContext method resolve to obtain an object
reference, given a logical Name. Because a Name consists of one or more NameComponent
objects, the resolution process requires that all of the NameComponent structures that
make up the Name be traversed.

Stringified names
Because the representation of CosNaming::Name is not in a form that is readable or
convenient for exchange, a stringfied name has been defined to resolve this problem.
A stringified name is a one-to-one mapping between a string and a CosNaming::Name. If
two CosNaming::Name objects are equal, then their stringified representations are equal
and vice versa. In a stringified name, a forward slash (/) serves as a name component
separator; a period (.) serves as the id and kind attributes separator; and a
backslash (\) serves as an escape character. By convention a NameComponent with an
empty kind attribute does not use a period (for example, Order).

Code sample 18.1 Stringified name example

"Inprise.Company/Engineering.Department/Printer.Resource"

Note In the following examples, NameComponent structures are given in their stringified
representations.

Simple and complex names
A simple name, such as Billing, has only a single NameComponent and is always resolved
relative to the target naming context. A simple name may be bound to an object
implementation or to a NamingContext.

A complex name, such as NorthAmerican/ShippingDepartment/Inventory, consists of a
sequence of three NameComponent structures. If a complex name consisting of n
NameComponent objects has been bound to an object implementation, then the first (n–1)
NameComponent objects in the sequence must each resolve to a NamingContext, and the last
NameComponent object must resolve to an object implementation.

If a Name is bound to a NamingContext, each NameComponent structure in the sequence must
refer to a NamingContext.

Code sample 18.2 shows a complex name, consisting of three components and bound
to a CORBA object. This name corresponds to the stringfied name, NorthAmerica/
SalesDepartment/Order. When resolved within the topmost naming context, the first
two components of this complex name resolve to NamingContext objects, while the last
component resolves to an object implementation with the logical name “Order.”

18-6 P r o g r a m m e r ’ s G u i d e

R u n n i n g t h e N a m i n g S e r v i c e

Code sample 18.2 Example of a complex name bound to an ORB object

. . .
// Name stringifies to “NorthAmerica/SalesDepartment/Order”
NameComponent[] continentName = { new NameComponent("NorthAmerica", "") };
NamingContext continentContext = rootNamingContext.bind_new_context(continentName);
NameComponent[] departmentName = { new NameComponent("SalesDepartment", "") };
NamingContext departmentContext = continentContext.bind_new_context(departmentName);
NameComponent[] objectName = { new NameComponent("Order", "") };
departmentContext.rebind(objectName, myPOA.servant_to_reference(managerServant));
. . .

Running the Naming Service
The Naming Service can be started with the following commands. Once you have
started the naming service, you may browse its contents by using the VisiBroker
Console. For more details see, “Naming Services” on page 11-6.

Installing the Naming Service

The Naming Service is installed automatically when you install VisiBroker for
Java 4.5. It consists of a file nameserv, which for Windows NT in a binary executable
and for UNIX is a script, and Java class files which are stored in the vbjorb.jar file.

Configuring the Naming Service

In previous versions of VisiBroker, the Naming Service maintained persistence by
logging any modifying operations to a flat-file. From version 4.0 on, the Naming
Service works in conjunction with backing store adaptors. It is important to note that
not all backing store adaptors support persistence. The default InMemory adaptor is
non-persistent while all the other adaptors are. For more details about adaptors, see
“Pluggable backing store” on page 18-14.

Note A Naming Server needs to register itself with the Smart Agent when it is starting up.
Therefore, you need to run the Smart Agent to bootstrap the Naming Service. This
allows clients to retrieve the initial root context by calling the
resolve_initial_references method. The resolving function works through the Smart
Agent for the retrieval of the required references. Similarly, Naming Servers that
participate in a federation also uses the same mechanism for setting up a federation.

Starting the Naming Service

You can start the Naming Service by using the nameserv launcher program in the bin
directory. The nameserv launcher uses the com.inprise.vbroker.naming.ExtFactory
factory class by default.

UNIX nameserv [driver_options] [nameserv_options] root_context_name &

U s i n g t h e N a m i n g S e r v i c e 18-7

I n v o k i n g t h e N a m i n g S e r v i c e f r o m t h e C o m m a n d L i n e

Windows start nameserv [driver_options] [nameserv_options] root_context_name

Starting the Naming Service with vbj
The Naming Service may still be started using vbj.

prompt>vbj com.inprise.vbroker.naming.ExtFactory <ns_name>

Invoking the Naming Service from the Command Line
The Naming Service Utility (nsutil) provides the ability to store and retrieve bindings
from the command line.

Configuring nsutil

To use nsutil, first configure the naming service instance using either:

prompt>nameserve <factory_name>

or

prompt>nsutil -VBJprop <ns_config> <cmd> [args]

Option Description

driver_options (Must appear before the factory name)
-J<Java option> Pass the specified option directly to the JVM.

-VBJversion Print the version number of the VBJ.

-VBJdebug Print debugging information for the VBJ.

nameserv_options
-?, -h, -help, -usage Print out the usage information.

-config=<properties_file> Use <properties_file> as the configuration file when starting up
the Naming Service

<ns_name> The name to use for this Naming Service. This is optional; the
default name is NameService.

Option Description

ns_config Defines the factory name
SVCnameroot=<factory_name> Note: Before using SVCnameroot, you must first run

OSAgent.

ORBInitRef=NameService=<url> File name or URL, prefixed by its type, which may
be (corbaloc:, corbaname:, file:, ftp:, http:, or ior:).
So, for example to assign a file in a local directory,
the ns_config string would be:
-VBJprop ORBInitRef=NameService=<file:ns.ior>

cmd Any CosNaming operation, and, in addition, ping
and shutdown.

18-8 P r o g r a m m e r ’ s G u i d e

I n v o k i n g t h e N a m i n g S e r v i c e f r o m t h e C o m m a n d L i n e

Running nsutil

The Naming Service Utility supports all the CosNaming operations as well as two
additional commands. The CosNaming operations supported are:

The additional nsutil commands are:

To run an operation from the nsutil command, place the operation name and its
parameters as the <cmd> parameter. For example:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior resolve myName

Closing nsutil

To close nsutil, use the shutdown command:

prompt>nsutil -VBJprop ORBInitRef=NameService=file://ns.ior shutdown

cmd Parameter(s)

bind name objRef

bind_context name objRef

bind_new_context name ctxRef

destroy name
list name*
new_context
rebind name objRef

rebind_context name ctxRef

resolve name
unbind name

cmd Parameter Description

ping name Resolves the stringified name and contacts the
object to see if it is still alive.

shutdown factory_name Shuts the Naming Service down gracefully from
the command line. The factory_name is the name
specified when the Naming Service was started.
Note: The initial context need not have been set
for this command to be invoked.

U s i n g t h e N a m i n g S e r v i c e 18-9

B o o t s t r a p p i n g a N a m i n g S e r v i c e

Bootstrapping a Naming Service
There are three ways to start a client application so that it can obtain an initial object
reference to a specified Naming Service. You can use the following three
command-line options when starting a Naming Service:

• ORBInitRef
• ORBDefaultInitRef
• SVCnameroot

Calling resolve_initial_references

The new Naming Service provides a simple mechanism by which the
resolve_initial_references method can be configured to return a common naming
context. You use the resolve_initial_references method which returns the root
context of the Naming Server to which the client program connects. Three simple
examples will illustrate how to use these three options. Suppose there are three
VisiBroker Naming Services running on the host TestHost: ns1, ns2, and ns3. And there
are three server applications: sr1, sr2, sr3, each running on a different port (20001,
20002, and 20003) on the host TestHost. Server sr1 binds itself in ns1, sr2 in ns2, and sr3
in ns3.

Code sample 18.3 Code snippet showing how to obtain the root naming context

. . .
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
org.omg.CORBA.Object rootObj = orb.resolve_initial_references("NameService");

. . .

Using -DSVCnameroot

You use the -DSVCnameroot option to specify which VisiBroker Naming Service
instance (especially important if several unrelated naming service instances are
running) you want to bootstrap. For instance, if you want to bootstrap into ns1, you
would start your client program as:

vbj -DSVCnameroot=ns1 <client_application>

You can then obtain the root context of ns1 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated in
Code sample 18.3.

Using -DORBInitRef

You can use either the corbaloc or corbaname URL naming schemes to specify which
VisiBroker Naming Service you want to bootstrap.

18-10 P r o g r a m m e r ’ s G u i d e

B o o t s t r a p p i n g a N a m i n g S e r v i c e

Using a corbaloc URL
If you want to bootstrap using Naming Service ns2, then you should start your client
application as follows:

vbj -DORBInitRef NameService=corbaloc::TestHost:20002/NameService <client_application>

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated in
Code sample 18.3 on page 18-9.

Note This example will work only if there is a server running at port 20002 that is bound to
the Naming Service you want to access.

Note The iiploc and iiopname URL schemes are implemented by corbaloc and corbaname,
respectively. For backwards compatibility, the old schemes are still supported.

Using a corbaname URL
If you want to bootstrap into ns3 by using corbaname, then you should start your client
program as:

vbj -DORBInitRef NameService=corbaname::TestHost:20003/ <client_application>

You can then obtain the root context of ns3 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated in
Code sample 18.3 on page 18-9.

-DORBDefaultInitRef

You can use either a corbaloc or corbaname URL to specify which VisiBroker Naming
Service you want to bootstrap.

Using -DORBDefaultInitRef with a corbaloc URL
If you want to bootstrap into ns2, then you should start your client program as:

vbj -DORBDefaultInitRef corbaloc::TestHost:20002 <client_application>

You can then obtain the root context of ns2 by calling the resolve_initial_references
method on an ORB reference inside your client application as illustrated in
Code sample 18.3 on page 18-9.

Using -DORBDefaultInitRef with corbaname
The combination of -DORBDefaultInitRef and corbaname works differently from what is
expected. If -DORBDefaultInitRef is specified, a slash and the stringified object key is
always appended to the corbaname. For example, if the URL corbaname::TestHost:20002,
then by specifying -DORBDefaultInitRef, resolve_initial_references will result in a new
URL: corbaname::TestHost:20003/NameService.

U s i n g t h e N a m i n g S e r v i c e 18-11

N a m i n g C o n t e x t

NamingContext
This object is used to contain and manipulate a list of names that are bound to ORB
objects or to other NamingContext objects. Client applications use this interface to
resolve or list all of the names within that context. Object implementations use this
object to bind names to object implementations or to bind a name to a NamingContext
object. IDL sample 18.2 shows the IDL specification for the NamingContext.

IDL sample 18.2 Specification for the NamingContext interface

module CosNaming {
interface NamingContext {

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
void destroy()

raises(NotEmpty);
void list(in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

};
};

18-12 P r o g r a m m e r ’ s G u i d e

N a m i n g C o n t e x t E x t

NamingContextExt
The NamingContextExt interface, which extends NamingContext, provides the operations
required to use stringified names and URLs.

IDL sample 18.3 Specification for the NamingContextExt interface

module CosNaming {
interface NamingContextExt : NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n)
raises(InvalidName);

Name to_name(in StringName sn)
raises(InvalidName);

exception InvalidAddress {};
URLString to_url(in Address addr, in StringName sn)

raises(InvalidAddress, InvalidName);
Object resolve_str(in StringName n)

raises(NotFound, CannotProceed, InvalidName);
};

};

Default naming contexts
A client application can specify a default naming context, which is the naming context
that the application will consider to be its root context. Note that the default naming
context is the root only in relation to this client application and, in fact, it may be
contained by another context.

Obtaining the default naming context

Java client applications can connect to the Naming Service by using the
resolve_initial_references method in the ORB interface. To use this feature, the
SVCnameroot parameters must be specified when the client is started.

For example, to start a Java application named ClientApplication that intends to use
the naming context Inventory as its default naming context, you could enter the
following command:

prompt> vbj -DSVCnameroot=NorthAmerica/ShippingDepartment/Inventory \
ClientApplication

In the example, NorthAmerica is the server name and ShippingDepartment/Inventory is
the stringified name from the root context.

Note When using the vbj command, all -D properties must appear before the Java class
name.

U s i n g t h e N a m i n g S e r v i c e 18-13

N a m i n g S e r v i c e P r o p e r t i e s

Naming Service Properties
The naming service properties are:

Table 18.1 Naming service properties

Property Default Description

vbroker.naming.adminPwd inprise Password required by administrative
Visibroker naming service operations.

vbroker.naming.enableClusterFailOver true When set to true, specifies that an
interceptor be installed that handles fail-
over for objects that were retrieved from
the Naming Service. In case of an object
failure, an attempt is made to transparently
reconnect to another object from the same
cluster as the original.

vbroker.naming.enableSlave 0 If true, enables master/slave naming
services configuration. See “Failover” on
page 18-23 for information about
configuring master/slave naming services.

vbroker.naming.iorFile ns.ior Specifies the full path name for storing the
naming service IOR. If you do not set this
property, the naming service will try to
output its IOR into a file named ns.ior in
the current directory. The naming service
silently ignores file access permission
exceptions when it tries to output its IOR.

vbroker.naming.LogLevel emerg Specifies the level of log messages to be
output from naming service.

vbroker.naming.propBindOn 0 If true, the implicit clustering feature is
turned on.

vbroker.naming.smrr.pruneStaleRef 1 This property is relevant when the name
service cluster uses the smart round robin
criterion. When this property is set to 1 , a
stale object reference that was previously
bound to a cluster with the smart round
robin criterion will be removed from the
bindings when the name service discovers
it. If this property is set to 0 , stale object
reference bindings under the cluster are not
eliminated. However, a cluster with smart
round robin criterion will always return an
active object reference upon a resolve() or
select() call if such an object binding exists,
regardless of the value of the
vbroker.naming.smrr.pruneStaleRef property.
By default, the implicit clustering in the 4.5
name service uses the smart round robin
criterion with the property value set to 1.

18-14 P r o g r a m m e r ’ s G u i d e

P l u g g a b l e b a c k i n g s t o r e

Pluggable backing store
The previous version of the Naming Service kept its namespace (that is, the set of
naming contexts and object-name bindings) in memory. However, it logged all
modifiable operations from its namespace into a logging file. This flat file could then
be used when starting up the naming service to recreate the previous namespace.

The current Naming Service maintains its namespace by using a pluggable backing
store. Whether or not the namespace is persistent, depends on how you configure the
backing store: to use JDBC adaptor, the Java Naming and Directory Interface (JNDI,
which is certified for LDAP), or the default, in-memory adaptor.

Types of backing stores

The types of backing store adaptors supported are:

• In-memory adaptor
• JDBC adaptor for relational databases
• DataExpress adaptor
• JNDI (for LDAP only)

Note For an example using pluggable adaptors, see the code in the
examples/ins/pluggable_adaptors directory.

In-memory adaptor
The in-memory adaptor keeps the namespace information in memory and is not
persistent. This is the adaptor used by the Naming Service by default.

JDBC adaptor
Relational databases are supported via JDBC. The following databases have been
certified to work with the Naming Service JDBC adaptor:

• JDataStore
• Oracle
• Sybase
• Microsoft SQLServer
• DB2
• Interbase

DataExpress adaptor
In addition to the JDBC adaptor, there is also a DataExpress adaptor which allows
you to access JDataStore databases natively. It is much faster than accessing
JDataStore through JDBC, but the DataExpress adaptor has some limitations. It only
supports a local database running on the same machine as the Naming Server. To
access a remote JDataStore database, you must use the JDBC adaptor.

U s i n g t h e N a m i n g S e r v i c e 18-15

P l u g g a b l e b a c k i n g s t o r e

JNDI adaptor
A JNDI adaptor is also supported. Sun’s JNDI (Java naming and directory interface)
provides a standard interface to multiple naming and directory services throughout
the enterprise. JNDI has a Service Provider Interface (SPI) with which different
naming and service vendors must conform. There are different SPI modules available
for Netscape LDAP server, Novell NDS, WebLogic Tengah, etc. By supporting JNDI,
the VisiBroker Naming Service allows you to have portable access to these naming
and directory services and other future SPI providers. However, the JNDI adaptor is
only certified for the Netscape LDAP Server 4.0.

Configuration and use

Backing store adaptors are pluggable, which means that the type of adaptor used can
be specified by user-defined information stored in a configuration (properties) file
used when starting up the Naming Service. All adaptors, except the in-memory one,
provide persistence. The in-memory adaptor should be used when, you want to use a
lightweight Naming Service which keeps its namespace entirely in memory.

Note For the current version of the Naming Service, you cannot change settings while the
Naming Service is running. To change a setting, you must bring down the service,
make the change to the configuration file, and then restart the Naming Service.

Properties file
As with the Naming Service in general, which adaptor is to be used and any specific
configuration of it is handled in Naming Service properties file. The default
properties common to all adaptors are:

Table 18.2 Default properties common to all adaptors

Property Default Description

vbroker.naming.backingStoreType InMemory Specifies the naming service adaptor type
to use. This property specifies which type
of backing store you want the Naming
Service to use. The valid options are:
InMemory, JDBC, Dx, JNDI. The default is
InMemory.

vbroker.naming.cacheOn 0 Specifies whether to use the naming service
cache.

vbroker.naming.cacheSize 5 Specifies the size of the naming service
cache if it's turned on.

18-16 P r o g r a m m e r ’ s G u i d e

P l u g g a b l e b a c k i n g s t o r e

JDBC Adaptor properties
vbroker.naming.backingStoreType

This property should be set to JDBC. The poolSize , jdbcDriver , url , loginName, and
loginPwd properties must also be set for the JDBC adaptor.

vbroker.naming.jdbcDriver

This property specifies the JDBC driver that is needed to access the database used
as your backing store. The Naming Service loads the appropriate JDBC driver
specified. The default is the Java DataStore JDBC driver.

vbroker.naming.loginName

This property is the login name associated with the database. The default is
VisiNaming.

vbroker.naming.loginPwd

This property is the login password associated with the database. The default value
is VisiNaming.

vbroker.naming.poolSize

This property specifies the number of database connections in your connection
pool when using the JDBC Adaptor as our backing store. The default value is 5,
but it can be increased to whatever value the database can handle. If you expect
many requests will be made to the Naming Service, you should make this value
larger.

JDBC driver value Description

com.borland.datastore.jdbc.DataStoreDriver JDataStore driver
com.sybase.jdbc.SybDriver Sybase driver
oracle.jdbc.driver.OracleDriver Oracle driver
interbase.interclient.Driver Interbase driver
weblogic.jdbc.mssqlserver4.Driver WebLogic MS SQLServer driver
COM.ibm.db2.jdbc.app.DB2Driver IBM DB2 driver

U s i n g t h e N a m i n g S e r v i c e 18-17

P l u g g a b l e b a c k i n g s t o r e

vbroker.naming.url

This property specifies the location of the database which you want to access. The
setting is dependent on the database in use. The default is the JDataStore and the
database location is the current directory and is called rootDB.jds. You can use any
name you like not necessarily rootDB.jds. The configuration file needs to be
updated accordingly.

URL value Description

jdbc:borland:dslocal:<db_name> JDataStore URL

jdbc:sybase:Tds:<host>:<port>/<db_name> Sybase URL

jdbc:oracle:thin:@<host>:<port>:<sid> Oracle URL

jdbc:interbase://<server>/<full_db_path> Interbase1 URL

1. You should start InterServer before accessing InterBase via JDBC. If the InterBase server resides on
the local host, specify <server> as localhost; otherwise specify it as the host name. If the InterBase
database resides on Windows NT, specify the <full_db_path> as driver:\\dir1\dir2\\db.gdb (the first
backslash [\] is to escape the second backslash [\]). If the InterBase database resides on UNIX,
specify the <full_db_path> as \dir1\dir2\db.gdb. You can get more information from
http://www.interbase.com/.

jdbc:weblogic:mssqlserver4:<db_name>@<host>:<p
ort>

WebLogic MS SQLServer URL

jdbc:db2:<db_name> IBM DB22 URL

2. Before you access DB2 via JDBC, you must register the database by its alias <db_name> using the
Client Configuration Assistant. After the database has been registered, you do not have to specify
<host> and <port> for the vbroker.naming.url property.

<full_path_JDataStore_db> DataExpress3 URL for the native driver

3. If the JDataStore database resides on Windows NT, the <full path of the JDataStore database>
should be Driver:\\dir1\\dir2\\db.jds (the first backslash [\] is to escape the second backslash [\]). If
the JDataStore database resides on UNIX, the <full path of the JDataStore database> should be
/dir1/dir2/db.jds.

18-18 P r o g r a m m e r ’ s G u i d e

P l u g g a b l e b a c k i n g s t o r e

DataExpress Adaptor properties
vbroker.naming.backingStoreType

This property should be set to Dx.

vbroker.naming.loginName

This property is the login name associated with the database. The default is
VisiNaming.

vbroker.naming.loginPwd

This property is the login password associated with the database. The default
value is VisiNaming.

vbroker.naming.url

This property specifies the location of the database.

JNDI adaptor properties
The following is an example of settings that might appear in the configuration file for
a JNDI adaptor:

Note The user must have the necessary privilege to add schemas/attributes to the
Directory Server.

Caching facility
By turning on the caching facility, you can improve performance of the backing store.
For example, in the case of the JDBC adaptor, directly accessing the database every
time there is a resolve or bind operation is relatively slow. If you cache the results,
you can reduce the number of database accesses. There are a number of caveats to
keep in mind before turning on the caching facility. First, make sure that the Naming
Service using the cache is the only Naming Service accessing the underlying data,
otherwise, clients using the Naming Service may get the wrong data because the
cache may contain stale data. You will only see improvement in the performance of
the backing store if the same piece of data is accessed more than once.

Table 18.3 Example of a JNDI adaptor configuration file

Setting Description

vbroker.naming.backingStoreType=JNDI Specifies the backing store type which is JNDI for
the JNDI adaptor.

vbroker.naming.loginName=<user name> The user login name on the JNDI backing server.

vbroker.naming.loginPwd=<password> The password for the JNDI backing server user.

vbroker.naming.jndiInitialFactory=com.sun.
jndi.ldap.LdapCtxFactory

Specifies the JNDI initial factory.

vbroker.naming.jndiProviderURL=ldap://
<hostname>:389/<initial root context>

Specifies the JNDI provider URL

vbroker.naming.jndiAuthentication=simple Specifies the JNDI authentication type supported
by the JNDI backing server.

U s i n g t h e N a m i n g S e r v i c e 18-19

P l u g g a b l e b a c k i n g s t o r e

Note Do not set caching on unless you are absolutely sure it will improve performance in
your environment.

The caching facility implements a per-context cache. There will a cache installed in
every context, which is used to cache both contexts and objects. The size of this cache
is tunable. By default, the size of this cache is 5.

To use the caching facility add the following properties to your configuration file:

vbroker.naming.cacheOn=1
vbroker.naming.CacheSize=5

18-20 P r o g r a m m e r ’ s G u i d e

C l u s t e r s

Clusters
VisiBroker supports a clustering feature which allows a number of object bindings to
be associated with a single name. The Naming Service can then perform load
balancing among the different bindings in a cluster. You may decide on a
load-balancing criterion at the time a cluster is created. Clients, which subsequently
resolve name-object bindings against a cluster, would be load balanced amongst
different cluster server members.

A cluster is a multi-bind mechanism that associates a Name with a group of object
references. The creation of a cluster is done through a ClusterManager reference. At
creation time, the create_cluster method for the ClusterManager takes in a String
parameter which specifies the criterion to be used. This method returns a reference to
a cluster, with which you are able to add, remove and iterate through its members.
After deciding on the composition of a cluster, you can bind its reference with a
particular name to any context in a Naming Service. By doing so, subsequent resolve
operations against the Name will return a particular object reference in this cluster.

Clustering criteria

The Naming Service uses a RoundRobin criterion with clusters by default. After a
cluster has been created, its criterion cannot be changed. User-defined criteria are not
supported, but the list of supported criteria will grow as time goes on. Besides the
default RoundRobin criterion, the only other criterion currently available is
SmartRoundRobin. The difference between the SmartRoundRobin and RoundRobin
is that SmartRoundRobin performs some verifications to ensure that the CORBA
object reference is an active one; that the object reference is referring to a CORBA
server which is in a ready state.

Note We do not recommend that you use SmartRoundRobin as the current
implementation will activate any object that is verified to be active. Also, the cluster
failover feature is only available with RoundRobin criterion.

Cluster and ClusterManager interfaces

Although a cluster is very similar to a naming context, there are certain methods
found in a context that are not relevant to a cluster. For example, it would not make
sense to bind a naming context to a cluster, because a cluster should contain a set of
object references, not naming contexts. However, a cluster interface shares many of
the same methods with the NamingContext interface, such as bind, rebind, resolve, unbind
and list. This common set of operations mainly pertains to operations on a group.
The only cluster-specific operation is pick. Another crucial difference between the
two is that a cluster does not support compound names. It can only use a single
component name, because clusters do not have a hierarchical directory structure,
rather it stores its object references in a flat structure.

U s i n g t h e N a m i n g S e r v i c e 18-21

C l u s t e r s

IDL sample 18.4 IDL Specification for the Cluster interface

CosNamingExt module {
typedef sequence<Cluster> ClusterList;
enum ClusterNotFoundReason {

missing_node,
not_context,
not_cluster_context

};
exception ClusterNotFound {

ClusterNotFoundReason why;
CosNaming::Name rest_of_name;

};
exception Empty {};
interface Cluster {

Object select() raises(Empty);
void bind(in CosNaming::NameComponent n, in Object obj)

raises(CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName,
CosNaming::NamingContext::AlreadyBound);

void rebind(in CosNaming::NameComponent n, in Object obj)
raises(CosNaming::NamingContext::CannotProceed,

CosNaming::NamingContext::InvalidName);
Object resolve(in CosNaming::NameComponent n)

raises(CosNaming::NamingContext::NotFound,
CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

void unbind(in CosNaming::NameComponent n)
raises(CosNaming::NamingContext::NotFound,

CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);

void destroy()
raises(CosNaming::NamingContext::NotEmpty);

void list(in unsigned long how_many,
out CosNaming::BindingList bl,
out CosNaming::BindingIterator bi);

};

IDL sample 18.5 IDL Specification for the ClusterManager interface

CosNamingExt module {
interface ClusterManager

Cluster create_cluster(in string algo);
Cluster find_cluster(in CosNaming::NamingContext ctx, in CosNaming::Name n)

raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);
Cluster find_cluster_str(in CosNaming::NamingContext ctx, in string n)

raises(ClusterNotFound, CosNaming::NamingContext::CannotProceed,
CosNaming::NamingContext::InvalidName);
ClusterList clusters();

};
};

18-22 P r o g r a m m e r ’ s G u i d e

C l u s t e r s

Creating a cluster

To create a cluster you use the Cluster Manager interface. A single ClusterManager
object is automatically created when a Naming Server starts up. There is only one
ClusterManager per Naming Server. The role of a ClusterManager is to create, retrieve
and keep track of the clusters that are in the Naming Server.

1 Bind to the Naming Server with which you wish to create cluster objects.

2 Get a reference to the Cluster Manager by calling get_cluster_manager method on
the factory reference.

3 Create a cluster using a specified cluster criterion.

4 Bind objects to an Name using the cluster.

5 Bind the Cluster object itself to a Name.

6 Resolve through the Cluster reference for the specified cluster criterion.

Code sample 18.4 Creating and using a Cluster object

. . .
ExtendedNamingContextFactory myFactory =

ExtendedNamingContextFactoryHelper.bind(orb, "NamingService");
ClusterManager clusterMgr = myFactory.get_cluster_manager();
Cluster clusterObj = clusterMgr.create_cluster("RoundRobin");
clusterObj.bind(new NameComponent("member1", "aCluster"), obj1);
clusterObj.bind(new NameComponent("member2", "aCluster"), obj2);
clusterObj.bind(new NameComponent("member3", "aCluster"), obj3);
NameComponent myClusterName = new NameComponent("ClusterName", "");
root.bind(myClusterName, clusterObj);
root.resolve(myClusterName) // a member of the Cluster is returned.
root.resolve(myClusterName) // the next member of the Cluster is returned.
root.resolve(myClusterName) // the last member of the Cluster is returned.
. . .

Explicit and implicit clusters
The clustering feature can be turned on automatically for a Naming Service. The
caveat is that once this facility is on, a cluster will be created transparently to bind the
object. The criterion used is fixed to be round robin. The implication is that it is
possible to bind several objects to the same name in the Naming Server. Conversely,
resolving that name will return one of those objects, and an unbind operation would
destroy the cluster associated with that name. This would mean that the Naming
Service is no longer compliant to the CORBA specification. The Interoperable Naming
Specification explicitly forbids the ability to bind several objects to the same name. For
in a compliant Naming Service, an AlreadyBound exception would be thrown if a client
tries to use the same name to bind to a different object. The user has to decide, right
from the beginning, whether to use this feature for a particular server and should
stick with that decision.

Note Do not switch from an implicit cluster mode to an explicit cluster mode as this can
corrupt the backing store.

U s i n g t h e N a m i n g S e r v i c e 18-23

F a i l o v e r

Once a Naming Server is used with the implicit clustering feature, it should continue
to be activated with that feature turned on. To turn the feature on, you define the
following property value in the configuration file:

vbroker.naming.propBindOn=1

Note For an example of both explicit and implicit clustering, see the code in the
examples/ins/implicit_clustering and examples/ins/explicit_clustering directories.

Load balancing

Both the ClusterManager and the Smart Agent provide round robin load balancing
facilities, but they are of very different nature. You get load balancing from Smart
Agent for free. When a server startups, it registered itself automatically with the
Smart Agent, and this in turn allows VisiBroker to provide an easy but proprietary
way for the client to get a reference to the server. However, all these automation
comes at a price. You have no choice in determining what constitutes a group and the
members of a group. The Smart Agent makes all the decisions for you. This is where
a Cluster comes in to provide an alternative. It provides a programmatic way to
define and create the properties of a Cluster. You are allowed to define the criterion
to impose on a Cluster and full flexibility in choosing the members of a Cluster.
Though the criterion is fixed at creation time, the client can add or remove members
from the Cluster throughout its lifetime.

Failover
The Naming Service implements a failover feature using a Master/Slave model. Two
naming servers must be running at the same time, the master in active mode and the
slave in standby mode. Both the master and slave naming servers must support the
same underlying data in a persistent backing store, and the caching facility for both
servers must be off, which forces each server to deal directly with its backing store
ensuring that its data remains constant.

If both naming servers are active, the master is always preferred by clients that are
using Naming Service. In the event that the master terminates unexpectedly, the
slave naming server will take over. This changeover from master to slave is seamless
and transparent to clients. However, the slave naming server does not become the
master server. Instead, it provides temporary backup when the master server is
unavailable. Meantime, the user should take whatever remedial actions are necessary
to revive the crashed master server. After the master comes back up again, only
requests from the new clients are sent to the master server. Clients that are already
bound to a slave naming server will not automatically switch back to the master

When failover occurs, it is transparent to the client, but there may be a slight delay
because server objects on the slave naming server may have to be activated on
demand by the requests that are coming in. Also, of the kinds of object references
which a client may be holding, transient ones like iterator references are no longer
valid. This is normal because clients using transient iterator references must be
prepared for those references becoming invalid. In general, a naming server never

18-24 P r o g r a m m e r ’ s G u i d e

I m p o r t s t a t e m e n t s f o r J a v a

keeps too many resource-intensive iterator objects, and it may invalidate a client’s
iterator reference at any time. Other than these transient references, any other client
request using persistent references will be re-routed to the slave naming server.

Note Clients that are already bound to a slave naming server will not automatically switch
back to the master, providing only one level of failover support. Therefore, if the
slave naming server also dies, the Naming Service becomes unavailable.

Configuring the Naming Service for fault tolerance

Two naming servers must be running. You must designate one of them as the master
and the other as the slave. The same property file can be used for both the servers.
The relevant property values in the property file are illustrated in Code sample 18.5.

Code sample 18.5 Configuration for using fault tolerance

vbroker.naming.enableSlave=1
vbroker.naming.masterServerName=<Master Naming Server Name>
vbroker.naming.masterHost=<host ip address for Master>
vbroker.naming.masterPort=<port number that Master is listening on>
vbroker.naming.slaveServerName=<Slave Naming Server Name>
vbroker.naming.slaveHost=<host ip address for Slave>
vbroker.naming.slavePort=<Slave Naming Server Name>

In order to force the Naming Server to start on a particular port, the Naming Server
should be started with the following command line option

prompt> nameserv -J-Dvbroker.se.iiop_tp.scm.iiop_tp.listener.port=<port number> \
com.inprise.vbroker.naming.ExtFactory <Naming_Server_Name>

Note There is no restriction on the order in which the master and the slave servers should
be started.

Import statements for Java
The following import statement should be used by any Java class that wishes to use
the VisiBroker extensions to the Naming Service:

import com.inprise.vbroker.CosNamingExt.*;
. . .

The following packages are needed if you are interested in accessing the OMG
compliant features of the Naming Service.

import org.omg.CosNaming.*
import org.omg.CosNaming.NamingContextPackage.*
import org.omg.CosNaming.NamingContextExtPackage.*

U s i n g t h e N a m i n g S e r v i c e 18-25

S a m p l e p r o g r a m s

Sample programs
Several example programs that illustrate the use of the Naming Service are provided
with VisiBroker. They illustrate all of the new features that are now available with
the Naming Service and they can be found in the examples/ins directory. In addition, a
Bank Naming example that illustrates basic usage of the Naming Service can be
found in the examples/basic/bank_naming directory.

Before running the example programs, you must first start the naming service, as
described in “Running the Naming Service” on page 18-6. Furthermore, you must
ensure that at least one naming context has been created by doing one of the
following:

• Start the Naming Service, as described in “Running the Naming Service” on
page 18-6, which will automatically create an initial context.

• Use the VisiBroker Console, described in “What is the VisiBroker Console?” on
page 11-1.

• Have your client bind to the NamingContextFactory and use the create_context
method.

• Have your client use the ExtendedNamingContextFactory.

Warning If no naming context has been created, a CORBA.NO_IMPLEMENT exception will be raised
when the client attempts to issue a bind.

Binding a name in Java

The Bank Naming example uses the AccountManager interface to open an Account
and to query the balance in that account. The Server class below illustrates the usage
of the Naming Service for binding a name to an object reference. The server publishes
its IOR into the root context of the Naming Server, which is then retrieved by the
client.

From this example, you learn how to:

1 Use the resolve_initial_references method on an ORB instance to get a reference to
the root context of the Naming Service. (In the example, you need to start the
Naming Service with the default name of NameService.)

2 Cast the reference for the root context by using the narrow method of the
NamingContextExtHelper class.

3 Create a POA and servant for your AccountManagerImpl object.

4 Finally use the bind method of the NamingContext interface to bind the Name
“BankManager” to the object reference for the AccountManagerImpl object.

Code sample 18.6 Server.java

import org.omg.PortableServer.*;
import org.omg.CosNaming.*;

public class Server {

18-26 P r o g r a m m e r ’ s G u i d e

S a m p l e p r o g r a m s

public static void main(String[] args) {
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// get a reference to the Naming Service root context
org.omg.CORBA.Object rootObj = orb.resolve_initial_references("NameService");
NamingContextExt root = NamingContextExtHelper.narrow(rootObj);

// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(),

policies);
// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);

// Activate the POA manager
rootPOA.the_POAManager().activate();

// Associate the bank manager with the name at the root context
// Note that casting is needed as a workaround for a JDK 1.1.x bug.
((NamingContext)root).bind(root.to_name("BankManager"),

myPOA.servant_to_reference(managerServant));

System.out.println(myPOA.servant_to_reference(managerServant)
+ " is ready.");

// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

U s i n g t h e E v e n t S e r v i c e 19-1

C h a p t e r

19
Chapter19Using the Event Service

This chapter describes the VisiBroker Event Service.

Note The OMG (Object Management Group) Event Service has been superseded by the
OMG Notification Service. We strongly recommend the separately available
OpenFusion Notification Service to VisiBroker customers needing such functionality.

Overview
The Event Service package provides a facility that de-couples the communication
between objects. It provides a supplier-consumer communication model that allows
multiple supplier objects to send data asynchronously to multiple consumer objects
through an event channel. The supplier-consumer communication model allows an
object to communicate an important change in state, such as a disk running out of
free space, to any other objects that might be interested in such an event.

19-2 P r o g r a m m e r ’ s G u i d e

O v e r v i e w

Figure 19.1 Supplier-Consumer communication model

Figure 19.1 shows three supplier objects communicating through an event channel
with two consumer objects. The flow of data into the event channel is handled by the
supplier objects, while the flow of data out of the event channel is handled by the
consumer objects. If each of the three suppliers shown in Figure 19.1 sends one
message every second, then each consumer will receive three messages every second
and the event channel will forward a total of six messages per second.

The event channel is both a consumer of events and a supplier of events. The data
communicated between suppliers and consumers is represented by the Any class,
allowing any CORBA type to be passed in a type safe manner. Supplier and
consumer objects communicate through the event channel using standard CORBA
requests.

Proxy consumers and suppliers

Consumers and suppliers are completely de-coupled from one another through the
use of proxy objects. Instead of interacting with each other directly, they obtain a
proxy object from the EventChannel and communicate with it. Supplier objects obtain a
consumer proxy and consumer objects obtain a supplier proxy. The EventChannel
facilitates the data transfer between consumer and supplier proxy objects. Figure 19.2
shows how one supplier can distribute data to multiple consumers.

Supplier
Object
#1

Supplier
Object
#2

Supplier
Object
#3

Consumer
Object
#1

Consumer
Object
#2

Ev
en

tC
ha

nn
el

data

data

data

data

data

U s i n g t h e E v e n t S e r v i c e 19-3

O v e r v i e w

Figure 19.2 Consumer and supplier proxy objects

Note The event channel is shown in Figure 19.2 as a separate process, but it may also be
implemented as part of the supplier object’s process. See “Starting the Event Service”
on page 19-14 for more information.

OMG common object services specification

The VisiBroker Event Service implementation conforms to the OMG Common Object
Services Specification, with the following exceptions:

• The VisiBroker Event Service only supports generic events. There is currently no
support for typed events in the VisiBroker Event Service.

• The VisiBroker Event Service offers no confirmation of the delivery of data to
either the event channel or to consumer applications. TCP/IP is used to
implement the communication between consumers, suppliers and the event
channel and this provides reliable delivery of data to both the channel and the
consumer. However, this does not guarantee that all of the data that is sent is
actually processed by the receiver.

Consumer
#3

Consumer
Proxy

Supplier
Proxy #3

Event Channel

Supplier
Object

Supplier
Proxy #2

Supplier
Proxy #1

Consumer
#2

Consumer
#1

data

data

data

data

19-4 P r o g r a m m e r ’ s G u i d e

C o m m u n i c a t i o n m o d e l s

Communication models
The event service provides both a pull and push communication model for suppliers
and consumers. In the push model, supplier objects control the flow of data by pushing
it to consumers. In the pull model, consumer objects control the flow of data by pulling
data from the supplier.

The EventChannel insulates suppliers and consumers from having to know which
model is being used by other objects on the channel. This means that a pull supplier
can provide data to a push consumer and a push supplier can provide data to a pull
consumer.

Figure 19.3 Push model

Push
Consumer
#3

Proxy
Push
Consumer

Proxy
Push
Supplier #3

Event Channel

Push model

Proxy
Push
Supplier #2

Proxy Push
Supplier#1

Push
Consumer
#2

Push
Consumer
#1

data

data

data

data

U s i n g t h e E v e n t S e r v i c e 19-5

C o m m u n i c a t i o n m o d e l s

Note The event channel is shown in Figure 19.3 as a separate process, but it may also be
implemented as part of the supplier object’s process. See “Starting the Event Service”
on page 19-14 for more information.

Push model

The push model is the more common of the two communication models. An example
use of the push model is a supplier that monitors available free space on a disk and
notifies interested consumers when the disk is filling up. The push supplier sends
data to its ProxyPushConsumer in response to events that it is monitoring.

The push consumer spends most of its time in an event loop, waiting for data to
arrive from the ProxyPushSupplier. The EventChannel facilitates the transfer of data from
the ProxyPushSupplier to the ProxyPushConsumer.

Figure 19.3 shows a push supplier and its corresponding ProxyPushConsumer object. It
also shows three push consumers and their respective ProxyPushSupplier objects.

Pull model

In the pull model, the event channel regularly pulls data from a supplier object, puts
the data in a queue, and makes it available to be pulled by a consumer object. An
example of a pull consumer would be one or more network monitors that
periodically poll a network router for statistics.

The pull supplier spends most of its time in an event loop waiting for data requests to
be received from the ProxyPullConsumer. The pull consumer requests data from the
ProxyPullSupplier when it is ready for more data. The EventChannel pulls data from the
supplier to a queue and makes it available to the ProxyPullSupplier.

Figure 19.4 shows a pull supplier and its corresponding ProxyPullConsumer object. It
also shows three pull consumers and their respective ProxyPullSupplier objects.

19-6 P r o g r a m m e r ’ s G u i d e

U s i n g e v e n t c h a n n e l s

Figure 19.4 Pull model

Note The event channel is shown in Figure 19.4 as a separate process, but it may also be
implemented as part of the supplier object’s process. See “In-process event channel”
on page 19-15 for more information.

Using event channels
To create an EventChannel, connect a supplier or consumer to it and use it:

1 Create and start the EventChannel.

To create and start the event channel,

Windows prompt> start vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename>
<channelName>

UNIX prompt> vbj com.inprise.vbroker.CosEvent.EventServer -ior <iorFilename> <channelName> &

Pull
Consumer
#3

Proxy
Pull
Consumer

Proxy
Pull
Supplier #3

Event Channel

Pull Supplier

Proxy
Pull
Supplier #2

Proxy
Pull
Supplier#1

Pull
Consumer
#2

Pull
Consumer
#1

data

data

data

data

U s i n g t h e E v e n t S e r v i c e 19-7

U s i n g e v e n t c h a n n e l s

where <channelName> is the user-specified object name of the event channel and
<iorFilename> is a user-specified filename of the file to which the ior of the object is
to be written.

Another way to create the EventChannel is to run PushModelChannel:

prompt> vbj PushModelChannel

PushModelChannel first creates an EventChannel and publishes its ior to the file
<iorFilename> given by the user. Other clients (for example, PushModel) can then
bind to the EventChannel by using initial reference.

To run this:

prompt> vbj -DORBInitRef=EventService=file:<fullpath + iorFilename> PushModel

Regardless of how the event channel is created, make sure that the name specified
in <iorFilename> is created in the specified directory.

Note: Only one instance of the EventChannel is supported. All binding to the
EventChannel is done through the call to
orb.resolve_initial_references("EventService"), where "EventService" is the
hardcoded EventChannel name.

2 Connect to the EventChannel.

3 Obtain an administrative object from the channel and use it to obtain a proxy
object.

4 Connect to the proxy object.

5 Begin transferring or receiving data.

The methods used for these steps vary, depending on whether the object being
connected is a supplier or a consumer, and on the communication model being used.
Table 19.1 shows the appropriate methods for suppliers and Table 19.2 shows the
methods for consumers.

Table 19.1 Connecting Suppliers to an EventChannel

Steps Push supplier Pull supplier

Bind to the
EventChannel

EventChannelHelper.narrow(orb.
resolve_initial_references(“EventService”))

EventChannelHelper.narrow(orb.
resolve_initial_references(“EventService”))

Get a
SupplierAdmin

EventChannel::for_suppliers() EventChannel::for_suppliers()

Get a consumer
proxy

SupplierAdmin::obtain_push_consumer() SupplierAdmin::obtain_pull_consumer()

Add the supplier to
the EventChannel

ProxyPushConsumer::connect_push_supplier() ProxyPullConsumer::connect_pull_supplier()

Data transfer ProxyPushConsumer::push() Implements pull() and try_pull()

19-8 P r o g r a m m e r ’ s G u i d e

E x a m p l e p u s h s u p p l i e r a n d c o n s u m e r

Example push supplier and consumer

Running the Push model example

To run the PushModel example, at the prompt, enter:

prompt> vbj -DORBInitRef=EventService=file:<fullpath of iorFilename> PushModel

Select e to bind to an event channel, p to get a proxy to a push consumer from the
event channel, m to instantiate a PushModel, and c to connect the event channel.

Continuous sentences indicating the content of the message being pushed to the
EventChannel will be displayed. You can continue to make selections regardless of
what is displayed on the screen. You can specify the number of seconds between
events using the s option. Lastly, select d to disconnect and q to quit.

To run the PushView, at the prompt, enter:

prompt> vbj -DORBInitRef=EventService=file:<fullpath of iorFilename> PushView

Select e to bind to an event channel, p to get a proxy to a push supplier from the event
channel, v to instantiate a PushView, c to connect the event channel, d to disconnect
and q to quit. To run this example, a supplier of type Push or Pull must be running on
another terminal, continuously sending data to the same event channel in order for
PushView to receive the data. The supplier and consumer can be started in any order.

Running the Pull model example

To run the PullModel example, at the prompt, enter:

prompt> vbj -DORBInitRef=EventService=file:<fullpath of iorFilename> PullModel

Select e to bind to an event channel, p to get a proxy to a push consumer from the
event channel, m to instantiate a PullModel, c to connect the event channel, d to
disconnect and q to quit.

Table 19.2 Connecting Consumers to an EventChannel

Steps Push consumer Pull consumer

Bind to the
EventChannel

EventChannelHelper.narrow(orb.
resolve_initial_references(“EventService”))

EventChannelHelper.narrow(orb.
resolve_initial_references(“EventService”))

Get a
ConsumerAdmin

EventChannel::for_consumers() EventChannel::for_consumers()

Obtain a supplier
proxy

ConsumerAdmin::obtain_push_supplier() ConsumerAdmin::obtain_pull_supplier()

Add the consumer
to the
EventChannel

ProxyPushSupplier::connect_push_consumer() ProxyPushSupplier::connect_pull_consumer()

Data transfer Implements push() ProxyPushSupplier::pull() and try_pull()

U s i n g t h e E v e n t S e r v i c e 19-9

E x a m p l e p u s h s u p p l i e r a n d c o n s u m e r

To run the PullView, at the prompt, enter:

prompt> vbj -DORBInitRef=EventService=file:<fullpath of iorFilename> PullView

Select e to bind to an event channel, p to get a proxy to a push supplier from the event
channel, v to instantiate a PushView, c to connect the event channel. Then select a to
pull asynchronously or s to pull synchronously. To exit, select d to disconnect and q to
quit.

To run this example, a supplier of type Push or Pull must be running on another
terminal, continuously sending data to the same event channel in order for PullView
to receive the data. The supplier and consumer can be started in any order.

This section describes the example push supplier and consumer applications. The
files PullSupply.java and PullConsume.java implement the supplier and consumer.
These files can be found in the java_examples/events directory, under the directory
where the VisiBroker for Java distribution was installed on your system.

To run these examples, you need a supplier-consumer pair. You can pair a consumer
of type Push or Pull can be paired with any supplier of type Push or Pull. The order
in which you invoke the supplier and consumer does not matter. However, the event
channel must be the same object instance.

PullSupply

The PullSupply class is derived from the PullSupplierPOA class and provides
implementations for the main, pull and try_pull methods. The pull method, shown in
Code sample 19.1, returns a numbered “hello” message. The try_pull method always
sets the hasEvent flag to true and calls the pull method to provide the message. Once a
PullSupply object is connected to an EventChannel, these methods are used by the
channel to pull data from the supplier.

The main method, shown in Code sample 19.2, performs the usual ORB and POA
creation, connects to the specified EventChannel, obtains a ProxyPullConsumer from the
EventChannel, instantiates a PullSupply object, activates the PullSupply object on the
POA, then connects this pull supplier to proxy pull consumers.

19-10 P r o g r a m m e r ’ s G u i d e

E x a m p l e p u s h s u p p l i e r a n d c o n s u m e r

Executing PullSupply

After compiling PullSupply.java and starting the event service, described in
“In-process event channel” on page 19-15, you can execute the supplier with the
following command:

vbj -DORBInitRef = <channel_name> = file:<fullpath of iOrFilename> PullSupply

Code sample 19.1 Implementation of the pull and try_pull methods

// PullSupply.java
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.PortableServer.*;

public class PullSupply extends PullSupplierPOA {
private POA _myPOA;
private PullConsumer _pullConsumer;
private int _counter;
PullSupply(PullConsumer pullConsumer, POA myPOA) {

_pullConsumer = pullConsumer;
_myPOA = myPOA;

}
public void disconnect_pull_supplier() {

System.out.println("Model::disconnect_pull_supplier()");
try {

_myPOA.deactivate_object("PullSupply".getBytes());
} catch(Exception e) {

e.printStackTrace();
}

}
public org.omg.CORBA.Any pull() throws Disconnected {

if(_pullConsumer == null) {
throw new Disconnected();

}
try {

Thread.currentThread().sleep(1000);
} catch(Exception e) {
}
//org.omg.CORBA.Any message =

new org.omg.CORBA.Any().from_string("Hello #" + ++_counter);
org.omg.CORBA.Any message = _orb().create_any();
message.insert_string("Hello #" + ++_counter);
System.out.println("Supplier being pulled: " + message);
return message;

}
public org.omg.CORBA.Any try_pull(org.omg.CORBA.BooleanHolder hasEvent) throws

org.omg.CORBA.SystemException, Disconnected {
hasEvent.value = true;
return pull();

}
. . .

U s i n g t h e E v e n t S e r v i c e 19-11

E x a m p l e p u s h s u p p l i e r a n d c o n s u m e r

Code sample 19.2 main method of PullSupply

// PullSupply.java
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.PortableServer.*;

public class PullSupply extends PullSupplierPOA {
. . .
public static void main(String[] args) {

try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("event_service_poa",

rootPOA.the_POAManager(), policies);
EventChannel channel = null;
PullSupply model = null;ProxyPullConsumer pullConsumer = null;
channel =

EventChannelHelper.narrow(orb.resolve_initial_references("EventService"));
System.out.println("Located event channel: " + channel);
pullConsumer = channel.for_suppliers().obtain_pull_consumer();
System.out.println("Obtained pull consumer: " + pullConsumer);
model = new PullSupply(pullConsumer, myPOA);
myPOA.activate_object_with_id("PullSupply".getBytes(), model);
myPOA.the_POAManager().activate();
System.out.println("Created model: " + model);
System.out.println("Connecting ...");
pullConsumer.connect_pull_supplier(model._this());

} catch(Exception e) {
e.printStackTrace();

}
}

}

19-12 P r o g r a m m e r ’ s G u i d e

E x a m p l e p u s h s u p p l i e r a n d c o n s u m e r

PullConsume

The PullConsume class is derived from PullConsumerPOA class and provides a command
line interface for pulling data from the PullSupply class. Code sample 19.3 shows how
the application connects to any available EventChannel, obtains a ProxyPullSupplier,
connects to the channel and displays a command prompt. Table 19.3 summarizes the
commands that may be entered.

Executing PullConsume

After compiling PullConsume.java and starting the event service, described in
“In-process event channel” on page 19-15, you can execute the consumer with the
following command:

vbj -DORBInitRef = <channel_name> = file:<fullpath of iOr_filename> PullConsume

Code sample 19.3 Example pull consumer

// PullConsume.java
import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
import org.omg.PortableServer.*;
import java.io.*;
public class PullConsume extends PullConsumerPOA {

public void disconnect_pull_consumer() {
System.out.println("View.disconnect_pull_consumer");

}
public static void main(String[] args) {

try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
// get a reference to the root POA
POA rootPOA =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create policies for our persistent POA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT)
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("event_service_poa",

rootPOA.the_POAManager(), policies);
EventChannel channel = null;
PullConsume view = null;
ProxyPullSupplier pullSupplier = null;

Table 19.3 PullConsume commands

Command Description

a Asynchronously pulls data from the event channel, using the try_pull method. If
no data is currently available, the command will return with a “no data” message.

s Synchronously pulls data from the event channel, using the pull method. If there is
no data currently available, the command will block until data is available.

q Disconnects from the channel and exits the tool.

U s i n g t h e E v e n t S e r v i c e 19-13

E x a m p l e p u s h s u p p l i e r a n d c o n s u m e r

BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
channel =

EventChannelHelper.narrow(orb.resolve_initial_references("EventService"));
System.out.println("Located event channel: " + channel);
view = new PullConsume();
myPOA.activate_object_with_id("PullConsume".getBytes(), view);
myPOA.the_POAManager().activate();
System.out.println("Created view: " + view);
pullSupplier = channel.for_consumers().obtain_pull_supplier();
System.out.println("Obtained pull supplier: " + pullSupplier);
System.out.println("Connecting...");
System.out.flush();
pullSupplier.connect_pull_consumer(view._this());
while(true) {

System.out.print("-> ");
System.out.flush();
if (System.getProperty("VM_THREAD_BUG") != null) {

while(!in.ready()) {
try {

Thread.currentThread().sleep(100);
} catch(InterruptedException e) {
}

}
}
String line = in.readLine();
if(line.startsWith("a")) {

org.omg.CORBA.BooleanHolder hasEvent = new org.omg.CORBA.BooleanHolder();
org.omg.CORBA.Any result = pullSupplier.try_pull(hasEvent);
System.out.println("try_pull: " +

(hasEvent.value ? result.toString() : "NO DATA"));
continue;

} else if(line.startsWith("s")) {
org.omg.CORBA.Any result = pullSupplier.pull();
System.out.println("pull: " + result);
continue;

} else if(line.startsWith("q")) {
System.out.println("Disconnecting...");
pullSupplier.disconnect_pull_supplier();
System.out.println("Quitting...");
break;

}
System.out.println("Commands: a [a]synchronous pull\n" +

" s [s]ynchronous pull\n" +
" q [q]uit\n");

}
} catch(Exception e) {

e.printStackTrace();
}

}
}

19-14 P r o g r a m m e r ’ s G u i d e

S t a r t i n g t h e E v e n t S e r v i c e

Starting the Event Service
When using VisiBroker for Java, the event service can be started by using the
following command.

vbj [-Dvbroker.events.debug] [-Dvbroker.events.interactive]
[-Dvbroker.events.max_queue_length=<number>] [-Dvbroker.events.debug.factory] \
[-Dvbroker.events.vm_thread_bug] com.inprise.vbroker.CosEvent.EventServer
-ior <ior filename> <channel name>

Note There is a known bug in some implementations of the Java Virtual Machine,
including Solaris, that may cause this command to hang. If you experience
difficulties, try specifying the -Dvbroker.events.vm_thread_bug parameter when you
start the event service.

Setting the queue length

In some environments, consumer applications may run slower than supplier
applications. The maxQueueLength parameter prevents out-of-memory conditions by
limiting the number of outstanding messages that will be held for each consumer that
cannot keep up with the rate of messages from the supplier.

If a supplier generates 10 messages per second and a consumer can only process one
message per second, the queue will quickly fill up. Messages in the queue have a
fixed maximum length and if an attempt is made to add a message to a queue that is
full, the channel will remove the oldest message in the queue to make room for the
new message.

Each consumer has a separate queue, so a slow consumer may miss messages while
another, faster consumer may not lose any. Code sample 19.4 shows how to limit
each consumer to 15 outstanding messages.

Code sample 19.4 Setting the message queue length

vbj -Dvbroker.events.maxQueueLength=15 CosEvent.EventServer -ior myChannel.ior MyChannel

Note If maxQueueLength is not specified or if an invalid number is specified, a default queue
length of 100 is used.

Option Description

-Dvbroker.events.debug Optional parameter that enables the output of debugging
messages to stdout.

-Dvbroker.events.interactive Specifies that the event channel is to execute in a
console-driven, interactive mode.

-
Dvbroker.events.maxQueueLength

Specifies the number of messages to be queued for slow
consumers. The default maximum queue length is 100
messages for each consumer.

-Dvbroker.events.factory Specifies that an event channel factory is to be instantiated
instead of an event channel.

channel_name The name of the channel or channel factory.

U s i n g t h e E v e n t S e r v i c e 19-15

I n - p r o c e s s e v e n t c h a n n e l

In-process event channel
In addition to running an EventChannel as a separate, stand-alone server, the Event
Service also allows you to create an EventChannel within your server or client
application. This frees you from having to start a separate process to provide the
EventChannel for your supplier or consumer applications.

For Java applications, an EventLibrary class is provided that provides methods for
creating an EventChannel which, in turn, handles the loading of the necessary
classes.To create an in-process EventChannel object within a supplier/consumer
application, make the following call:

EventLibrary.create_Channel("MyChannel",whetherToDebug,maxQueueLength);

So, to create a channel named MyChannel with debugging off and a maximum queue
length of 100, you would write:

EventLibrary.create_Channel("MyChannel",false,100);

After this call completes, the resulting client application can bind to the EventChannel
as it would bind to any other CORBA object.

For example, you might have a supplier application creating the channel in-process
and want the consumer application to connect to the same channel. To accomplish
this, you need to pass the channel object from the supplier application to the
consumer application. To do this, convert the EventChannel object to an ior string and
write the string to a file:

try {
EventChannel channel = EventLibrary.create_Channel("MyChannel",false,100);
PrintWriter pw = new PrintWriter(new FileWriter(ior_filename));
pw.println(orb.object_to_string(channel));
pw.close();

}
catch(IOException e) {

System.out.println("Error writing the IOR to file " ior_filename);
}

The ior_filename specifies the name of the file to which the ior string of the channel
will be written.

To run PushModelChannel:

vbj PushModelChannel <ior_filename>

PushModelChannel is a push supplier. You can connect either a push consumer or
pull consumer to the event channel created in PushModelChannel:

vbj -DORBInitRef=EventService=file:<fullpath of ior_filename> PushView

where <fullpath of ior_filename> is the full path of the ior_filename passed into
PushModelChannel and EventService is the name (or identifier) bound to the ior
contained in ior_filename. From within PushView, you can bind to the event channel
as follows:

EventChannel channel =
EventChannelHelper.narrow(orb.resolve_initial_references(“EventService”));

19-16 P r o g r a m m e r ’ s G u i d e

I m p o r t s t a t e m e n t s f o r J a v a

Java usage

If your application uses the in-process event channel feature, you must add the
following import statement:

import com.inprise.vbroker.CosEvent.*;

Java EventLibrary class
The EventLibrary class provides several methods for creating an EventChannel within
an application’s process. See “EventLibrary (Java)” on page 19-17 for a complete
description of these methods.

Java example
The file PushModelChannel.java implements a push supplier that uses an in-process
event channel. This application presents a command prompt and allows you to enter
one of the commands shown below.

Code sample 19.5 contains an excerpt from PushModelChannel.java that shows how you
can use the ChannelLib.create_channel method.

Code sample 19.5 Portion of PushModelChannel.java that shows the use of the create_channel method

public static void main(String[] args) {
. . .
channel = EventLibrary.create_channel("channel_server", false, 100);
. . .

Import statements for Java
The following import statements should be used by Java applications that wish to use
the event service:

import org.omg.CosEventComm.*;
import org.omg.CosEventChannelAdmin.*;
. . .

Command Description

e Creates an event channel.

s <number_of_seconds> Sets the delay for the event channel to the number of seconds
specified, which must be a non-negative number.

p Obtains a push consumer proxy object.

m Creates a PushModelChannel and activates it on the POA.

c Connects the push supplier.

d Disconnects the push consumer.

q Quits the application.

U s i n g t h e E v e n t S e r v i c e 19-17

I n t e r f a c e r e f e r e n c e

Interface reference
The remainder of this chapter provides reference information on all of the Event
Service interfaces.

EventChannel

The EventChannel provides the administrative operations for adding suppliers and
consumers to the channel and for destroying the channel.

ConsumerAdmin for_consumers();

This method returns a ConsumerAdmin object that can be used to obtain proxy
suppliers.

SupplierAdmin for_suppliers();

This method returns a SupplierAdmin object that can be used to obtain proxy
suppliers.

void destroy();

This method destroys this EventChannel.

EventLibrary (Java)

The EventLibrary class provides several methods creating an EventChannel within an
application’s process. Using an in-process event channel frees you from having to
start a separate event channel or event channel factory process.

EventLibrary methods
static org.omg.CosEventChannelAdmin.EventChannel create_channel

(String name, boolean debug, int maxQueueLength);

This method creates an EventChannel with the specified name, debug, and queue
length settings.

Parameter Description

name The name to be used for this channel.

debug If set to true, debugging output is enabled. If set to false, debugging output is
disabled.

maxQueueLength The maximum number of messages that may be queued for each consumer.

19-18 P r o g r a m m e r ’ s G u i d e

I n t e r f a c e r e f e r e n c e

static org.omg.CosEventChannelAdmin.EventChannel create_channel
(String name, boolean debug);

This method creates an EventChannel with the specified name and debug settings. The
queue length for each consumer is set to 100.

static org.omg.CosEventChannelAdmin.EventChannel create_channel
(String name);

This method creates an EventChannel with the specified name. The EventChannel
object’s debug flag is set to false and the queue length is set to 100.

static org.omg.CosEventChannelAdmin.EventChannel create_channel();

This method creates an EventChannel. The EventChannel object is given no name,
the debug flag is set to false, and the queue length is set to 100.

ConsumerAdmin

This interface is used by consumer applications to obtain a reference to a proxy
supplier object. This is the second step in connecting a consumer application to an
EventChannel.

Code sample 19.6 ConsumerAdmin interface

module CosEventChannelAdmin {
interface ConsumerAdmin {

ProxyPushSupplier obtain_push_supplier();
ProxyPullSupplier obtain_pull_supplier();

};
};

The obtain_push_supplier method is invoked if the calling consumer application is
implemented using the push model. If the application is implemented using the pull
model, the obtain_pull_supplier method should be invoked.

The returned reference is used to invoke either the connect_push_consumer, described in
“ProxyPushConsumer” on page 19-20, or the connect_pull_consumer method,
described in “EventLibrary (Java)” on page 19-17.

Parameter Description

name The name to be used for this channel.

debug If set to true, debugging output is enabled. If set to false, debugging output is
disabled.

Parameter Description

name The name to be used for this channel.

U s i n g t h e E v e n t S e r v i c e 19-19

I n t e r f a c e r e f e r e n c e

SupplierAdmin

This interface is used by supplier applications to obtain a reference to the proxy
consumer object. This is the second step in connecting a supplier application to an
EventChannel.

Code sample 19.7 SupplierAdmin interface

module CosEventChannelAdmin {
interface SupplierAdmin {

ProxyPushConsumer obtain_push_consumer();
ProxyPullConsumer obtain_pull_consumer();

};
};

Invoke the obtain_push_consumer method if the supplier application is implemented
using the push model. If the application is implemented using the pull model, the
obtain_pull_consumer method should be invoked.

The returned reference is used to invoke the either the connect_push_supplier,
described in “ProxyPushSupplier” on page 19-20, or the connect_pull_supplier
method, described in “ProxyPullSupplier” below.

ProxyPullConsumer

This interface is used by a pull supplier application and provides the
connect_pull_supplier method for connecting the supplier‘s PullSupplier-derived
object to the EventChannel. An AlreadyConnected exception is raised if ProxyConsumer is
already connected to a PullSupplier.

Code sample 19.8 ProxyPullConsumer interface

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPullConsumer : CosEventComm::PullConsumer {

void connect_pull_supplier(
in CosEventComm::PullSupplier pull_supplier)

raises(AlreadyConnected);
};

};

19-20 P r o g r a m m e r ’ s G u i d e

I n t e r f a c e r e f e r e n c e

ProxyPushConsumer

This interface is used by a push supplier application and provides the
connect_push_supplier method, used for connecting the supplier‘s PushSupplier-derived
object to the EventChannel. An AlreadyConnected exception is raised if ProxyConsumer is
already connected to a PullSupplier.

Code sample 19.9 ProxyPushConsumer interface

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPushConsumer : CosEventComm::PushConsumer {

void connect_push_supplier(
in CosEventComm::PushSupplier push_supplier)

raises(AlreadyConnected);
};

};

ProxyPullSupplier

This interface is used by a pull consumer application and provides the
connect_pull_consumer method, used for connecting the consumer‘s
PullConsumer-derived object to the EventChannel. An AlreadyConnected exception is raised
if ProxyConsumer is already connected to a PullConsumer.

Code sample 19.10 ProxyPullSupplier interface

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPullSupplier : CosEventComm::PullSupplier {

void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)

raises(AlreadyConnected);
};

};

ProxyPushSupplier

This interface is used by a push consumer application and provides the
connect_push_consumer method, used for connecting the consumer‘s
PushConsumer-derived object to the EventChannel. An AlreadyConnected exception is raised
if ProxyConsumer is already connected to a PullSupplier.

Code sample 19.11 ProxyPushSupplier interface

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPushSupplier : CosEventComm::PushSupplier {

void connect_push_consumer(
in CosEventComm::PushConsumer push_consumer)

raises(AlreadyConnected);
};

};

U s i n g t h e E v e n t S e r v i c e 19-21

I n t e r f a c e r e f e r e n c e

PullConsumer

This interface is used to derive consumer objects that use the pull model of
communication. The pull method is called by a consumer whenever it wants data
from the supplier. A Disconnected exception is raised if the supplier is already
disconnected.

The disconnect_push_consumer method is used to deactivate this consumer if the
channel is destroyed.

module CosEventComm {
exception Disconnected {};
interface PullConsumer {

void disconnect_pull_consumer();
};

};

The only method that must be implemented in the derived classes of PullConsumer
is disconnect_pull_consumer, which is used to disconnect the PullConsumer from the
EventChannel. For instance, in the PullModel example, the PullSupplier uses it to
disconnect the pull consumer.

PushConsumer

This interface is used to derive consumer objects that use the push model of
communication. The push method is used by a supplier whenever it has data for the
consumer. It raises a Disconnected exception if the consumer has already been
disconnected.

Code sample 19.12 PushConsumer interface

module CosEventComm {
exception Disconnected();
interface PushConsumer {

void push(in any data) raises(Disconnected);
void disconnect_push_consumer();

};
};

The PushConsumer implements the push(in any data) method. This method is called
by the PushSupplier continuously to receive data until the PushSupplier is explicitly
disconnected from the PushConsumer by a call to disconnect_push_supplier on the
ProxyPushSupplier object.

19-22 P r o g r a m m e r ’ s G u i d e

I n t e r f a c e r e f e r e n c e

PullSupplier

This interface is used to derive supplier objects that use the pull model of
communication.

Code sample 19.13 PullSupplier interface

module CosEventComm {
exception Disconnected{};
interface PullSupplier {

any pull() raises(Disconnected);
any try_pull() raises(Disconnected);
void disconnect_pull_supplier();

};
};

The PullConsumer pulls data from a PullSupplier. Once connected to a
ProxyPullSupplier, PullConsumer can pull()or try_pull() on the ProxyPullSupplier
object. try_pull() is for asynchronous pull (returns immediately, even if the data is
not yet available) and pull() is for synchronous pull (returns when the data is
available).

PullConsumer calls disconnect_pull_supplier() on ProxyPullServer when the
consumer wants to disconnect from the ProxyPullSupplier. The pull() and try_pull()
methods return CORBA::Any objects. In the example, the returned Any object contains a
numbered string that contains the value “Hello.”

PullSupplier methods
any pull();

This method blocks until there is data available from the supplier. The data is
returned an Any type. If the consumer has disconnected, this method raises a
Disconnected exception.

any try_pull(out boolean has_event);

This non-blocking method attempts to retrieve data from the supplier. When this
method returns, has_event is set to CORBA::TRUE and the data is returned as an Any
type if there was data available. If has_event is set to CORBA::FALSE, then no data
was available and the return value will be NULL.

void disconnect_pull_supplier();

This method deactivates this pull server if the channel is destroyed.

U s i n g t h e E v e n t S e r v i c e 19-23

I n t e r f a c e r e f e r e n c e

PushSupplier

This interface is used to derive supplier objects that use the push model of
communication. The disconnect_push_supplier method is used by the EventChannel to
disconnect supplier when it is destroyed.

Code sample 19.14 PushSupplier interface

module CosEventComm {
exception Disconnected();
interface PushSupplier {

void disconnect_push_supplier();
};

};

PushSupplier should be implemented so that it constantly “pushes” data to the
consumer. In the PushModel example, once a PushModel object (a
PushSupplier-derived object) is created, it starts a new Thread that keeps calling
push(CORBA.Any) on the ProxyPushConsumer at intervals. The pushed data is an Any
with a message string (numbered Hello string) inserted.

The only method that must be implemented in the derived classes of PushSupplier is
disconnect_pull_consumer, which is used to disconnect the PullConsumer from the
EventChannel. for instance, in the PushView example, the PushConsumer uses it to
disconnect the ProxyPushSupplier.

19-24 P r o g r a m m e r ’ s G u i d e

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-1

C h a p t e r

20
Chapter20Using the Object Activation Daemon

This chapter discusses how to use the Object Activation Daemon.

Automatic activation of objects and servers
The Object Activation Daemon (OAD) is VisiBroker’s implementation of the
Implementation Repository. The Implementation Repository provides a runtime
repository of information about the classes a server supports, the objects that are
instantiated, and their IDs. In addition to the services provided by a typical
Implementation Repository, the OAD is used to automatically activate an
implementation when a client references the object. You can register an object
implementation with the OAD to provide this automatic activation behavior for your
objects.

Object implementations can be registered using a command-line interface (oadutil).
There is also an ORB interface to the OAD, described in “IDL interface to the OAD”
on page 20-14. In each case, the repository id, object name, the activation policy, and
the executable program representing the implementation must be specified.

Note You can use the VisiBroker for Java OAD to instantiate servers generated with
VisiBroker for Java (any release) and VisiBroker for C++ release 3.0.

The OAD is a separate process that only needs to be started on those hosts where
object servers are to be activated on demand.

20-2 P r o g r a m m e r ’ s G u i d e

S t a r t i n g t h e O b j e c t A c t i v a t i o n D a e m o n

Locating the implementation repository data

Activation information for all object implementations registered with the OAD are
stored in the implementation repository. By default, the implementation repository
data is stored in a file named impl_rep. This file’s path name is dependent on the value
of the VBROKER_ADM variable. If VisiBroker was installed in /usr/local/vbroker/, the path
to this file would be /usr/local/vbroker/adm/impl_dir/impl_rep. These defaults can be
overridden using the OAD environment variables, described in Chapter 3, “Setting
up your environment.”

Activating servers

The OAD activates servers in response to client requests. The following types of
clients can activate servers through the OAD:

• VisiBroker for Java 4.x clients.

• VisiBroker for Java 3.x clients.

• Non-VisiBroker IIOP-compliant clients. Any client that follows the IIOP can
activate a VisiBroker server when that server’s reference is used. The server’s
exported Object Reference points to the OAD and the client can be forwarded to
the spawned server in accordance with the rules of IIOP. To allow true
persistification of the server’s object references (such as through a Name Service),
the OAD must always be started on the same port. In the following example, the
OAD is started on port 16050.

prompt> oad -VBJprop vbroker.se.iiop_tp.scm.iiop_tp.listener.port=16050

Note Port 16000 is the default port, but it can be changed by setting the listener.port
property.

Starting the Object Activation Daemon
The object activation daemon is an optional feature that allows you to register objects
that are to be started automatically when clients attempt to access them. Before
starting the OAD, you should first start the Smart Agent.

Starting the Object Activation Daemon on a Windows platform

To start the OAD under Windows, select its icon from the VisiBroker Program Group
or enter the following command at the DOS prompt:

prompt> oad

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-3

S t a r t i n g t h e O b j e c t A c t i v a t i o n D a e m o n

The oad command accepts the following command line arguments:

The OAD is installed as an NT service under Windows NT, allowing you to control it
with the Service Manager provided with Windows NT. You may also start the OAD
in console mode from the DOS prompt entering the following command:

prompt> oad -C

Starting the Object Activation Daemon on a UNIX platform

To start the OAD on a UNIX system, enter the following command.

prompt> oad &

Option Description

-verbose Turns on verbose mode.

-version Prints the version of this tool.

-path <path> Specifies the platform-specific directory for storing the
implementation repository. This overrides any setting provided
through the use of environment variables.

-filename <repository filename> Specifies the name of the implementation repository. If you do
not specify it, the default is impl_rep. This overrides any user
environment variable settings.

-t <# of seconds> Specifies the amount of time the OAD will wait for a spawned
server process to activate the requested ORB object. The default
time-out is 20 seconds. Set this value to 0 if you wish to wait
indefinitely.
If a spawned server process does not activate the requested
object within the time-out interval, the OAD will kill the
spawned process and the client will see a CORBA::NO IMPLEMENT
exception. Turn on the verbose option to see more detailed
information.

-ior <IOR filename> Specifies the filename to store the OAD’s stringified IOR.

-kill Stipulates that an object’s child process should be killed once all
of its object are unregistered with the OAD.

-no_verify Turns off check for validity of registrations.

-? Displays command usage.

-readonly When the OAD is started with the -readonly option, no changes
can be made to the registered objects. Attempts to register or
unregister objects will return an error.
The -readonly option is usually used after you’ve made changes
to the implementation repository, and have restarted the OAD
in readonly mode to the prevent any additional changes.

20-4 P r o g r a m m e r ’ s G u i d e

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

Using the Object Activation Daemon utilities
The oadutil commands provides a way for you to manually register, unregister, and
list the object implementations available on your VisiBroker system. The oadutil
commands are implemented in Java and use a command line interface. Each
command is accessed by invoking the oadutil command, passing the type of
operation to be performed as the first argument.

Note An object activation daemon process (oad) must be started on at least one host in your
network before you can use the oadutil commands.

The oadutil command has the following syntax:

Syntax oadutil {list|reg|unreg} [options]

The options for this tool vary, depending on whether you specify list, reg or unreg.

Converting interface names to repository IDs
Interface names and repository IDs are both ways of representing the type of
interface the activated object should implement. All interfaces defined in IDL are
assigned a unique repository identifier. This string is used to identify a type when
communicating with the Interface Repository, the OAD, and most calls to the ORB
itself.

When registering or unregistering an object with the OAD, the oadutil commands
allow you to specify either an object’s IDL interface name or its repository id.

An interface name is converted to a repository ID as follows:

1 Prepend “IDL:” to the interface name.

2 Replace all non-leading instances of the scope resolution operator (::) with a
slash (/) character.

3 Append “:1.0” to the interface name.

For example, the IDL interface name

::Module1::Module2::IntfName

would be converted to the following repository ID

IDL:Module1/Module2/IntfName:1.0

The #pragma id and #pragma prefix mechanisms can be used to override the default
generation of repository id’s from interface names. If the #pragma id mechanism is
used in user-defined IDL files to specify non-standard repository IDs, the conversion
process outlined above will not work. In these cases, you must use -r repository id
argument and specify the object’s repository ID.

To obtain the repository id of the object implementation’s most derived interface, use
the method java: <interfaceName>Helper.id() defined for all CORBA objects.

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-5

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

Listing objects with oadutil list

The oadutil list command returns all ORB object implementations registered with
the Object Activation Daemon. Each OAD has its own implementation repository
database where the registration information is stored.

Note An object activation daemon process (oad) must be started on at least one host in your
network before you can use the oadutil list command.

The oadutil list command has the following syntax:

Syntax oadutil list [options]

The oadutil list command accepts the following command line arguments:

Option Description

-i <interface name> Lists the implementation information for objects of a particular IDL
interface name. Only one of the following options may be specified at a
particular time: -i, -r, -s, or -poa.
Note: All communications with the ORB reference an object’s repository id
instead of the interface name. For more information about the conversion
performed when specifying an interface name, see “Converting interface
names to repository IDs” on page 20-4.

-r <repository id> Lists the implementation information of a specific repository id. See
“Converting interface names to repository IDs” on page 20-4 for details on
specifying repository IDs. Only one of the following options may be
specified at a particular time: -i, -r, -s, or -poa.

-s <service name> Lists the implementation information for a specific service name. Only one
of the following options may be specified at a particular time: -i, -r, -s, or -
poa.

-poa <poa_name> Lists the implementation information for a specific POA name. Only one of
the following options may be specified at a particular time: -i, -r, -s, or -poa.

-o <object name> Lists the implementation information for a specific object name. You can
use this only if the interface or repository id is specified in the command
statement. This option is not applicable when an -s or -poa arguments is
used.

-h <OAD host name> Lists the implementation information for objects registered with an OAD
running on a specific remote host.

-verbose Turns verbose mode on, causing messages to be output to stdout.

-version Prints the version of this tool.

-full Lists the status of all implementations registered with the OAD.

20-6 P r o g r a m m e r ’ s G u i d e

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

Description
The oadutil list utility allows you to list all ORB object implementations registered
with the Object Activation Daemon. The information for each object includes:

• Interface names of the ORB objects.
• Instance names of the object offered by that implementation.
• Full path name of the server implementation’s executable.
• Activation policy of the ORB object (shared or unshared).
• Reference data specified when the implementation was registered with the OAD.
• List of arguments to be passed to the server at activation time.
• List of environment variables to be passed to the server at activation time.

The following is an example of a local list request, specifying an interface name and
object name:

Example oadutil list -i Bank::AccountManager -o InpriseBank

The following is an example of a remote list request, specifying a host IP address:

Example oadutil list -h 206.64.15.198

Registering objects with oadutil

The oadutil command can be used to register an object implementation from the
command line or from within a script. The parameters are either the interface name
and object name, the service name, or the POA name, and path name to the
executable that starts the implementation. If the activation policy is not specified, the
shared server policy will be used by default. You may write an implementation and
start it manually during the development and testing phases. When your
implementation is ready to be deployed, you can simply use oadutil to register your
implementation with the OAD.

Note When registering an object implementation, use the same object name that is used
when the implementation object is constructed. Only named objects (those with a
global scope) may be registered with the OAD.

The oadutil reg command has the following syntax:

Syntax oadutil reg [options]

Note An oad process must be started on at least one host in your network before you can
use the oadutil reg command.

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-7

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

The options for the oadutil reg command accepts the following command-line
arguments:

Option Description

Required
-i <interface name> Specifies a particular IDL interface name. Only one of the following

options may be specified at a particular time: -i, -r, -s, or -poa.
See “Converting interface names to repository IDs” on page 20-4 for
details on specifying repository IDs.

-r <repository id> Specifies a particular repository id. Only one of the following
options may be specified at a particular time: -i, -r, -s, or -poa.

-s <service name> Specifies a particular service name. Only one of the following
options may be specified at a particular time: -i, -r, -s, or -poa.

-poa <poa_name> Use this option to register the POA instead of an object
implementation. Only one of the following options may be specified
at a particular time: -i, -r, -s, or -poa.

-o <object name> Specifies a particular object. You can use this only if the interface
name or repository id is specified in the command statement. This
option is not applicable when an -s or -poa argument is used.

-cpp <file name to execute> Specifies the full path of an executable file that must create and
register an object that matches the -o/-r/-s/-poa arguments.
Applications registered with the -cpp argument must be stand-alone
executables.

-java <full class name> Specifies the full name of a Java class containing a main routine. This
application must create and register an Object that matches the
-o/-r/-s/-poa argument. Classes registered with the -java argument
will be executed with the command vbj <full_classname>.

Optional
-host <OAD host name> Specifies a specific remote host where the OAD is running.

-verbose Turns verbose mode on, causing messages to be output to stdout.

-version Prints the version of this tool.

-d <referenceData> Specifies reference data to be passed to the server upon activation.

-a arg1
-a arg2

Specifies the arguments to be passed to the spawned executable as
command-line arguments. Arguments can be passed with multiple
-a (arg) parameters. They will be propagated in order to create the
spawned executable.

-e env1
-e env2

Specifies environment variables to be passed to the spawned
executable. Arguments can be passed with multiple -e (env)
parameters. They will be propagated in order to create the spawned
executable.

-p {shared|unshared} Specifies the activation policy of the spawned objects. The default
policy is SHARED_SERVER.
Shared: Multiple clients of a given object share the same
implementation. Only one server is activated by an OAD at a
particular time.
Unshared: Only one client of a given implementation will bind to
the activated server. If multiple clients wish to bind to the same
object implementation, a separate server is activated for each client
application. A server exits when its client application disconnects or
exits.

20-8 P r o g r a m m e r ’ s G u i d e

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

Example 1: Specifying repository ID
The following command will register with the OAD the VisiBroker program factory.
It will be activated upon request for objects of repository ID IDL:ehTest/Factory:1.0
(which corresponds to the interface name ehTest::Factory). The instance name of the
object to be activated is ReentrantServer, and that name is also passed to the spawned
executable as a command-line argument. This server has the unshared policy, by
which it will be terminated when the requesting client breaks its connection to the
spawned server.

Example prompt> oadutil reg -r IDL:ehTest/Factory:1.0 -o ReentrantServer \
-java factory_r -a ReentrantServer -p unshared

Note In the example above, the specified Java class must be found in the CLASSPATH.

Example 2: Specifying IDL interface name
The following command will register with the OAD, the VisiBroker class Server. In
this example, the specified class must activate an object of repository ID
IDL:Bank/AccountManager:1.0 (corresponding to the interface name IDL name
Bank::AccountManager) and instance name CreditUnion. The sever will be started with
unshared policy, ensuring that it will terminate when the requesting client breaks its
connection.

Example prompt> oadutil reg -i Bank::AccountManager -o CreditUnion \
-java Server -a CreditUnion -p unshared -e DEBUG=1

Note In the previous example, the specified Java class must be found in the CLASSPATH.

The previous registration tells the OAD to execute the following command when
spawning the requested server:

vbj -DDEBUG=1 Server CreditUnion

Remote registration to an OAD
To register an implementation with an OAD on a remote host, use the -h argument to
oadutil reg.

The following is an example of how to perform a remote registration to an OAD on
Windows NT from a UNIX shell. The double backslashes are necessary to avoid
having the shell interpret the backslashes before passing them to oadutil.

Example prompt> oadutil reg -r IDL:Library:1.0 Harvard \
-cpp c:\\vbroker\\examples\\library\\libsrv.exe -p shared -h 100.64.15.198

Accessing a server without using the Smart Agent
When a client needs to access a server via the OAD and is not using the Smart Agent,
use oadutil to set the property vbroker.orb.activationIOR to an IOR, or to the location of
an .ior file. For example, if the server.ior file is located in the /home/username directory,
the command would be

oadutil -VBJprop vbroker.orb.activationIOR = file:///home/username/server.ior

For additional information, see Chapter 18, “Using the Naming Service.”

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-9

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

Distinguishing between multiple instances of an object

Your implementation can use ReferenceData to distinguish between multiple instances
of the same object. The value of the reference data is chosen by the implementation at
object creation time and remains constant during the lifetime of the object. The
ReferenceData typedef is portable across platforms and ORBs.

Setting activation properties using the CreationImplDef class

The CreationImplDef class contains the properties the OAD requires to activate an ORB
object—path_name, activation_policy, args, and env. IDL sample 20.1 shows the
CreationImplDef struct.

The path_name property specifies the exact path name of the executable program that
implements the object. The activation_policy property represents the server’s
activation policy, discussed in “CreationImplDef interface” on page 20-11. The args
and env properties represent command line arguments and environment settings for
the server.

IDL sample 20.1 CreationImplDef IDL

module extension {
...

enum Policy {
SHARED_SERVER,
UNSHARED_SERVER

};

struct CreationImplDef {
CORBA::RepositoryId repository_id;
string object_name;
CORBA::ReferenceData id;
string path_name;
Policy activation_policy;
CORBA::StringSequence args;
CORBA::StringSequence env;

};
...
};

20-10 P r o g r a m m e r ’ s G u i d e

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

Dynamically changing an ORB implementation

IDL sample 20.2 shows the change_implementation() member function which can be
used to dynamically change an object’s registration. You can use this member
function to change the object’s activation policy, path name, arguments, and
environment variables.

IDL sample 20.2 change_implementation

module Activation
{
...

void change_implementation(in extension::CreationImplDef old_info,
in extension::CreationImplDef new_info)

raises (NotRegistered, InvalidPath, IsActive);
...
};

Caution Although you can change an object’s implementation name and object name with the
change_implementation() member function, you should exercise caution. Doing so will
prevent client programs from locating the object with the old name.

OAD Registration using OAD::reg_implementation

Instead of using the oadutil reg command manually or in a script, VisiBroker allows
client applications to use the OAD::reg_implementation operation to register one or more
objects with the activation daemon. Using this operation results in an object
implementation being registered with the OAD and the osagent. The OAD will store
the information in the implementation repository, allowing the object
implementation to be located and activated when a client attempts to bind to the
object.

IDL sample 20.3 OAD::reg_implementation operation

module Activation {
...

typedef sequence<ObjectStatus> ObjectStatus List;
...

typedef sequence<InplementationStatus> ImplStatusList;
...

interface OAD {
// Register an implemenation.
Object reg_implementation(in extension::CreationImplDef impl)

raises (DuplicateEntry, InvalidPath);
}

}

The CreationImplDef struct contains the properties the OAD requires. The properties
are repository_id, object_name, id, path_name, activation_policy, args, and env.
Operations for setting and querying their values are also provided. These additional
properties are used by the OAD to activate an ORB object.

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-11

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n u t i l i t i e s

IDL sample 20.4 CreationImplDef interface

struct CreationImplDef {
CORBA::RepositoryId repository_id;
string object_name;
CORBA::ReferenceData id;
string path_name;
Policy activation_policy;
CORBA::StringSequence args;
CORBA::StringSequence env;

};

The path_name property specifies the exact path name of the executable program that
implements the object. The activation_policy property represents the server’s
activation policy. The args and env properties represent optional arguments and
environment settings to be passed to the server.

Example of object creation and registration

Code sample 20.1 shows how to use the CreationImplDef class and the
OAD.reg_implementation() member function to register a server with the OAD. This
mechanism may be used in a separate, administrative program, not necessarily in the
object implementation itself. If used in the object implementation, these tasks must be
performed prior to activating the object implementation.

Code sample 20.1 Creating an ORB object and registering with the OAD

// Register.java
import com.inprise.vbroker.Activation.*;
import com.inprise.vbroker.extension.*;

public class {

public static void main(String[] args) {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Locate an OAD

try {
OAD anOAD =

OADHelper.bind(orb);

// Create an ImplDef
CreationImplDef _implDef = new com.inprise.vbroker.extension.CreationImplDef();
_implDef.repository_id = "IDL:Bank/AccountManager:1.0";
implDef.object_name = "BankManager";
_implDef.path_name = "vbj";
_implDef.id = new byte[0];
_implDef.activation_policy = com.inprise.vbroker.extension.Policy.SHARED_SERVER;
_implDef.env = new String[0];

String[] str = new String[1];
str[0] = "Server";
_implDef.args = str;

20-12 P r o g r a m m e r ’ s G u i d e

U n - r e g i s t e r i n g o b j e c t s

try {
anOAD.reg_implementation(_implDef);

} catch (Exception e) {
System.out.println("Caught " + e);

}

}
catch (org.omg.CORBA.NO_IMPLEMENT e) {
}

}
}

Arguments passed by the OAD

When the OAD starts an object implementation it passes all of the arguments that
were specified when the implementation was registered with the OAD.

Un-registering objects
When the services offered by an object are no longer available or temporarily
suspended, the object should be unregistered with the OAD. When an ORB object is
unregistered, it is removed from the implementation repository. The object is also
removed from the Smart Agent’s dictionary. Once an object is unregistered, client
programs will no longer be able to locate or use it. In addition, you will be unable to
use the OAD.change_implementation() member function to change the object’s
implementation. As with the registration process, un-registering may be done either
at the command line or programmatically. There is also an ORB object interface to the
OAD, described in “Un-registering objects” on page 20-12.

Un-registering objects using the oadutil tool

The oadutil unreg command allows you to unregister one or more object
implementations registered with the Object Activation Daemon. Once an object is
unregistered, it can no longer be automatically activated by the OAD if a client
requests the object. Only objects that have been previously registered via the
oadutil reg command may be unregistered with oadutil unreg.

If you specify only an interface name, all ORB objects associated with that interface
will be unregistered. Alternatively, you may identify a specific ORB object by its
interface name and object name. When you unregister an object, all processes
associated with that object will be terminated.

Note An oad process must be started on at least one host in your network before you can
use the oadutil reg command.

The oadutil unreg command has the following syntax:

Syntax oadutil unreg [options]

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-13

U n - r e g i s t e r i n g o b j e c t s

The options for the oadutil unreg command accepts the following command line
arguments:

Unregistration example
The oadutil unreg utility unregisters one or more ORB objects from these three
locations:

• Object Activation Daemon
• Implementation repository
• Smart Agent

The following is an example of how to use the oadutil unreg command. It unregisters
the implementation of the Bank::AccountManager named InpriseBank from the local
OAD.

Example oadutil unreg -i Bank::AccountManager -o InpriseBank

Un-registering with the OAD operations

An object’s implementation can use any one of the operations or attributes in the
OAD interface to un-register an ORB object.

• unreg_implementation(in CORBA::RepositoryId repId, in string object_name)
• unreg_interface(in CORBA::RepositoryId repId)
• unregister_all()

Option Description

Required
-i <interface name> Specifies a particular IDL interface name. Only one of the following options

may be specified at a particular time: -i, -r, -s, or -poa.
See “Converting interface names to repository IDs” on page 20-4 for details
on specifying repository IDs.

-r <repository id> Specifies a particular repository id. Only one of the following options may
be specified at a particular time: -i, -r, -s, or -poa.

-s <service name> Specifies a particular service name. Only one of the following options may
be specified at a particular time: -i, -r, -s, or -poa.

-o <object name> Specifies a particular object name. You can use this only if the interface
name or repository id is included in the command statement. This option is
not applicable when a -s or -poa argument is used.

-poa <POA_name> Unregisters the POA registered using oadutil reg -poa <POA_name>.

Optional
-host <host name> Specifies the host name where the OAD is running.

-verbose Enables verbose mode, causing messages to be output to stdout.

-version Prints the version of this tool.

20-14 P r o g r a m m e r ’ s G u i d e

I D L i n t e r f a c e t o t h e O A D

• attribute boolean destroy_on_unregister

IDL sample 20.5 OAD un-registered operation

module Activation {
...

interface OAD {
...
void unreg_implementation(in CORBA::RepositoryId repId, in string

object_name)
raises(NotRegistered);

...
}

}

Displaying the contents of the implementation repository

You can use the oadutil tool to list the contents of a particular implementation
repository. For each implementation in the repository the oadutil tool lists all the
object instance names, the path name of the executable program, the activation mode
and the reference data. Any arguments or environment variables that are to be
passed to the executable program are also listed.

IDL interface to the OAD
The OAD is implemented as an ORB object, allowing you to create a client program
that binds to the OAD and uses its interface to query the status of objects that have
been registered. IDL sample 20.6 shows the IDL interface specification for the OAD.

unreg_implementation() Use this operation when you want to un-registered
implementations using a specific repository id and object
name. This operation terminates all processes currently
implementing the specified repository id and object
name.

unreg_interface() Use this operation when you want to un-registered
implementations by using a specific repository id only.
This operation terminates all processes currently
implementing the specified repository id.

unregister_all() Use this operation to un-registered all implementations.
Unless destroyActive is set to true, all active
implementations continue to execute. For backward
compatibility, unregister_all() is not destructive; it is
equivalent to invoking unregister_all_destroy(false).

destroy_on_unregister Use this attribute to destroy any spawned processes on
unregistration of the relevant implementation. The
default value is false.

U s i n g t h e O b j e c t A c t i v a t i o n D a e m o n 20-15

I D L i n t e r f a c e t o t h e O A D

IDL sample 20.6 OAD interface specification

module Activation
{

enum state {
ACTIVE,
INACTIVE,
WAITING_FOR_ACTIVATION

};
struct ObjectStatus {

long unique_id;
State activation_state;
Object objRef;

};
typedef sequence<ObjectStatus> ObjectStatusList;
struct ImplementationStatus {

extension::CreationImplDef impl;
ObjectStatusList status;

};
typedef sequence<ImplementationStatus> ImplStatusList;

20-16 P r o g r a m m e r ’ s G u i d e

I D L i n t e r f a c e t o t h e O A D

exception DuplicateEntry {};
exception InvalidPath {};
exception NotRegistered {};
exception FailedToExecute {};
exception NotResponding {};
exception IsActive {};
exception Busy {};

interface OAD {
Object reg_implementation(in extension::CreationImplDef impl)

raises (DuplicateEntry, InvalidPath);
extension::CreationImplDef get_implementation(

in CORBA::RepositoryId repId,
in string object_name)
raises (NotRegistered);

void change_implementation(in extension::CreationImplDef old_info,
in extension::CreationImplDef new_info)
raises (NotRegistered,InvalidPath,IsActive);

attribute boolean destroy_on_unregister;
void unreg_implementation(in CORBA::RepositoryId repId,

in string object_name)
raises (NotRegistered);

void unreg_interface(in CORBA::RepositoryId repId)
raises (NotRegistered);

void unregister_all();
ImplementationStatus get_status(in CORBA::RepositoryId repId,

in string object_name)
raises (NotRegistered);

ImplStatusList get_status_interface(in CORBA::RepositoryId repId)
raises (NotRegistered);

ImplStatusList get_status_all();
};

U s i n g i n t e r f a c e r e p o s i t o r i e s 21-1

C h a p t e r

21
Chapter21Using interface repositories

An interface repository (IR) contains descriptions of CORBA object interfaces. The
data in an IR is the same as in IDL files—descriptions of modules, interfaces,
operations, and parameters—but it is organized for runtime access by clients. A
client can browse an interface repository (perhaps serving as an online reference tool
for developers) or can look up the interface of any object for which it has a reference
(perhaps in preparation for invoking the object with the Dynamic Invocation
Interface).

Reading this chapter will enable you to create an interface repository and access it
with VisiBroker utilities or with your own code.

What is an interface repository?
An interface repository (IR) is like a database of CORBA object interface information
that enables clients to learn about or update interface descriptions at runtime. In
contrast to the VisiBroker Location Service, described in Chapter 17, “Using the
Location Service,” which holds data describing object instances, an IR’s data describes
interfaces (types). There may or may not be available instances that satisfy the
interfaces stored in an IR. The information in an IR is equivalent to the information in
an IDL file (or files), but it is represented in a way that is easier for clients to use at
runtime.

Clients that use interface repositories may also use the Dynamic Invocation Interface
(DII) described in Chapter 22, “Using the Dynamic Invocation Interface.” Such clients
use an interface repository to learn about an unknown object’s interface, and they use
the DII to invoke methods on the object. However, there is no necessary connection
between an IR and the DII. For example, someone could use the IR to write an “IDL
browser” tool for developers—in such a tool, dragging a method description from
the browser to an editor would insert a template method invocation into the
developer’s source code. In this example, the IR is used without the DII.

21-2 P r o g r a m m e r ’ s G u i d e

W h a t i s a n i n t e r f a c e r e p o s i t o r y ?

You create an interface repository with the VisiBroker irep program, which is the IR
server (implementation). You can update or populate an interface repository with the
VisiBroker idl2ir program, or you can write your own IR client that inspects an
interface repository, updates it, or does both.

What does an interface repository contain?

An interface repository contains hierarchies of objects whose methods divulge
information about interfaces. Although interfaces are usually thought of as
describing objects, using a collection of objects to describe interfaces makes sense in a
CORBA environment because it requires no new mechanism such as a database.

As an example of the kinds of objects an IR can contain, consider that IDL files can
contain IDL module definitions, and modules can contain interface definitions, and
interfaces can contain operation (method) definitions. Correspondingly, an interface
repository can contain ModuleDef objects which can contain InterfaceDef objects, which
can contain OperationDef objects. Thus, from an IR ModuleDef, you can learn what
InterfaceDefs it contains. The reverse is also true—given an InterfaceDef you can learn
what ModuleDef it is contained in. All other IDL constructs—including exceptions,
attributes, and valuetypes—can be represented in an interface repository.

An interface repository also contains typecodes. Typecodes are not explicitly listed in
IDL files, but are automatically derived from the types (long, string, struct, and so on)
that are defined or mentioned in IDL files. Typecodes are used to encode and decode
instances of the CORBA any type—a generic type that stands for any type and is used
with the dynamic invocation interface.

How many interface repositories can you have?

Interface repositories are like other objects—you can create as many as you like.
There is no VisiBroker-mandated policy governing the creation or use of IRs. You
determine how interface repositories are deployed and named at your site. You may,
for example, adopt the convention that a central interface repository contains the
interfaces of all “production” objects, and developers create their own IRs for testing.

Note Interface repositories are writable and are not protected by access controls. An
erroneous or malicious client can corrupt an IR or obtain sensitive information
from it.

If you want to use the _get_interface_def method defined for all objects, you must
have at least one interface repository server running so the ORB can look up the
interface in the IR. If no interface repository is available, or if the IR that the ORB
binds to has not been loaded with an interface definition for the object,
_get_interface_def raises a NO_IMPLEMENT exception.

U s i n g i n t e r f a c e r e p o s i t o r i e s 21-3

C r e a t i n g a n d v i e w i n g a n i n t e r f a c e r e p o s i t o r y w i t h i r e p

Creating and viewing an interface repository with irep
The VisiBroker interface repository server is called irep, and is located in the bin
directory. The irep program runs as a daemon. You can register irep with the Object
Activation Daemon as you would any object implementation. The oadutil tool
requires the object ID—for example, IDL:org.omg/CORBA/Repository:2.3 (as opposed to
an interface name such as CORBA::Repository).

Creating an interface repository with irep

Use the irep program to create an interface repository and view its contents. The
usage syntax for the irep program is as follows:

Syntax irep <driverOptions> <otherOptions> IRepName [file.idl]

The syntax for creating an interface repository in the irep is described in the
following table:

The irep arguments are defined in the following table.

Syntax Description

IRepName Specifies the instance name of the interface repository. Clients can bind to this
interface repository instance by specifying this name.

file.idl Specifies the IDL file whose contents irep will load into the interface repository it
creates and will store the IR contents into when it exits. If no file is specified, irep
creates an empty interface repository.

Argument Description

Driver options
-J<java option> Pass the option to JVM directly.

-VBJversion Print VBJ version

-VBJdebug Print VBJ debug information.

-VBJclasspath Specify classpath, precedes CLASSPATH env variable.

-VBJprop <name>[=<value> Pass name/value pair to JVM.

-VBJjavavm <jvmpath> Specify JVM path.

-VBJaddJar <jarfile> Append jarfile to the CLASSPATH before execing the JVM.

21-4 P r o g r a m m e r ’ s G u i d e

C r e a t i n g a n d v i e w i n g a n i n t e r f a c e r e p o s i t o r y w i t h i r e p

The following example shows how an interface repository named TestIR can be
created from a file called Bank.idl.

Example irep TestIR Bank.idl

Viewing the contents of the interface repository

You can view the contents of the interface repository with either the VisiBroker ir2idl
utility, or the VisiBroker Console application. The syntax for the ir2idl utility is:

Syntax ir2idl [-irep IRname]

The syntax for viewing the contents of an interface repository in the irep is described
in the following table:

For more details on the ir2idl utility arguments see Chapter 2, “Programmer tools,”
of the VisiBroker for Java Reference.

Other options
-D, -define foo[=bar] Define a preprocessor macro, optionally with value.

-I, -include <dir> Specify additional directory for #include searching.

-P, -no_line_directives Do not emit #line directives from preprocessor. The default is
off.

-H, -list_includes Display #included file names as they are encountered. The
default is off.

-C, -retain_comments Retain comments in preprocessed output. The default is off.

-U, -undefine foo Undefine a preprocessor macro.

-[no_]idl_strict Strict OMG-standard interpretation of IDL source. The default
is off.

-[no_]warn_unrecognized_pragmas Warn if a #pragma is not recognized. The default is on.

-[no_]back_compat_mapping Use mapping that is compatible with VisiBroker 3.x.

-h, -help, -usage, -? Print this usage information.

-version Display software version numbers.

-install <service name> Install as a NT service.

-remove <service name> Deinstall this NT service.

Argument Description

Syntax Description

-irep IRname Directs the program to bind to the interface repository instance named IRname. If
the option is not specified, it binds to any interface repository returned by the
Smart Agent.

U s i n g i n t e r f a c e r e p o s i t o r i e s 21-5

U p d a t i n g a n i n t e r f a c e r e p o s i t o r y w i t h i d l 2 i r

Updating an interface repository with idl2ir
You can update an interface repository with the VisiBroker idl2ir utility, which is an
IR client. The syntax for the idl2ir utility is:

Syntax idl2ir [arguments] idl_file_list

For more details on the idl2ir utility arguments see Chapter 2, “Programmer tools,”
of the VisiBroker for Java Reference.

The following example shows how the TestIR interface repository would be updated
with definitions from the Bank.idl file.

Example idl2ir -irep TestIR -replace Bank.idl

Entries in an interface repository cannot be removed using the idl2ir or irep utilities.
To remove an item,

• Exit or quit the irep program.
• Edit the IDL file named in the irep command line.
• Start irep again with the updated file.

Interface repositories have a simple transaction service. If the specified IDL file fails
to load, the interface repository rolls back its content to its previous state. After
loading the IDL, the interface repository commits its state to be used in subsequent
transactions. For any repository, there is a file IRname.rollback in the home directory
that contains the state of the last uncommitted transaction.

Note If you wish to remove all entries in the Interface Repository, you can replace the
contents with a new empty IDL file. For example, using an IDL file named Empty.idl,
you could run the following command:

idl2ir -irep TestIR -replace Empty.idl

Understanding the structure of the interface repository
An interface repository organizes the objects it contains into a hierarchy that
corresponds to the way interfaces are defined in an IDL specification. Some objects in
the interface repository contain other objects, just as an IDL module definition might
contain several interface definitions. Consider how the example IDL file shown in
IDL sample 21.1 would translate to a hierarchy of objects in an interface repository.

IDL sample 21.1 Bank.idl file

// Bank.idl
module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

21-6 P r o g r a m m e r ’ s G u i d e

U n d e r s t a n d i n g t h e s t r u c t u r e o f t h e i n t e r f a c e r e p o s i t o r y

Figure 21.1 Interface repository object hierarchy for Bank.idl

OperationDef object contains references to additional data structures (not interfaces)
that hold the parameters and return type.

Identifying objects in the interface repository

The following table shows the objects that are provided to identify and classify
interface repository objects.

Table 21.1 Objects used to identify and classify interface repository objects

Item Description

name A character string that corresponds to the identifier assigned in an IDL specification
to a module, interface, operation, and so forth. An identifier is not necessarily unique.

id A character string that uniquely identifies an IRObject. A RepositoryID contains three
components, separated by colon (:) delimiters. The first component is “IDL:” and the
last is a version number such as “:1.0”. The second component is a sequence of
identifiers separated by slash (/) characters. The first identifier is typically a unique
prefix.

def_kind An enumeration that defines values which represent all the possible types of
interface repository objects.

Interface Repository

ModuleDef
name=”Bank”

InterfaceDef
name=”Account”

InterfaceDef
name=”AccountManager”

OperationDef
name=”balance”

OperationDef
name=”open”

U s i n g i n t e r f a c e r e p o s i t o r i e s 21-7

U n d e r s t a n d i n g t h e s t r u c t u r e o f t h e i n t e r f a c e r e p o s i t o r y

Types of objects that can be stored in the interface repository

Table 21.2 summarizes the objects that can be contained in an interface repository.
Most of these objects correspond to IDL syntax elements. A StructDef, for example,
contains the same information as an IDL struct declaration, an InterfaceDef contains
the same information as an IDL interface declaration, all the way down to a
PrimitiveDef which contains the same information as an IDL primitive (boolean, long,
and so forth.) declaration.

Table 21.2 Objects that can be stored in the interface repository

Object type Description

Repository Represents the top-level module that contains all other objects.

ModuleDef Represents an IDL module declaration that can contain ModuleDefs, InterfaceDefs,
ConstantDefs, AliasDefs, ExceptionDefs, and the IR equivalents of other IDL
constructs that can be defined in IDL modules.

InterfaceDef Represents an IDL interface declaration and contain OperationDefs, ExceptionDefs,
AliasDefs, ConstantDefs, and AttributeDefs.

AttributeDef Represents an IDL attribute declaration.

OperationDef Represents an IDL operation (method) declaration. Defines an operation on an
interface. It includes a list of parameters required for this operation, the return
value, a list of exceptions that may be raised by this operation, and a list of
contexts.

ConstantDef Represents an IDL constant declaration.

ExceptionDef Represents an IDL exception declaration.

ValueDef Represents a valuetype definition containing lists of constants, types,
valuemembers, exceptions, operations, and attributes.

ValueBoxDef Represents a simple boxed valuetype of another IDL type.

ValueMemberDef Represents a member of the valuetype.

NativeDef Represents a native definition. Users can not define their own natives.

StructDef Represents an IDL structure declaration.

UnionDef Represents an IDL union declaration.

EnumDef Represents an IDL enumeration declaration.

AliasDef Represents an IDL typedef declaration. Note that the IR TypedefDef interface is a
base interface that defines common operations for StructDefs, UnionDefs, and
others.

StringDef Represents an IDL bounded string declaration.

SequenceDef Represents an IDL sequence declaration.

ArrayDef Represents an IDL array declaration.

PrimitiveDef Represents an IDL primitive declaration: null, void, long, ushort, ulong, float,
double, boolean, char, octet, any, TypeCode, Principal, string, objref, longlong,
ulonglong, longdouble, wchar, wstring.

21-8 P r o g r a m m e r ’ s G u i d e

A c c e s s i n g a n i n t e r f a c e r e p o s i t o r y

Inherited interfaces

Three non-instantiatable (that is, abstract) IDL interfaces define common methods
that are inherited by many of the objects contained in an IR (see Table 21.2). Table
21.3 summarizes these widely inherited interfaces. For more information on the other
methods for these interfaces, see Chapter 7, “Interface repository
interfaces and classes,” in VisiBroker for Java Reference.

Accessing an interface repository
Your client program can use an interface repository’s IDL interface to obtain
information about the objects it contains. Your client program can bind to the
Repository and then invoke the methods shown in Code sample 21.1. A complete
description of this interface can be found in the VisiBroker for Java Reference.

Code sample 21.1 Repository interface

package org.omg.CORBA;
public interface Repository extends Container {

. . .
org.omg.CORBA.Contained lookup_id(string id);
org.omg.CORBA.PrimitiveDef get_primitive(org.omg.CORBA.PrimitiveKind kind);
org.omg.CORBA.StringDef create_string(long bound);
org.omg.CORBA.SequenceDef create_sequence(long bound,

org.omg.CORBA.IDLType element_type);
org.omg.CORBA.ArrayDef create_array(long length,

org.omg.CORBA.IDLType element_type);
. . .

}

Table 21.3 Interfaces inherited by many IR objects

Interface Inherited by Principal query methods

IRObject All IR objects including
Repository

def_kind()—Returns an IR object’s definition kind, for
example, module or interface
destroy()—Destroys an IR object

Container IR objects that can
contain other IR objects,
for example, module or
interface

lookup()—Looks up a contained object by name
contents()—Lists the objects in a Container
describe_contents()—Describes the objects in a Container

Contained IR objects that can be
contained in other
objects, that is, Containers

name()—Name of this object
defined_in()—Container that contains an object
describe()—Describe an object
move () —Moves an object into another contiainer.

U s i n g i n t e r f a c e r e p o s i t o r i e s 21-9

E x a m p l e p r o g r a m s

Example programs
This section describes a simple Interface Repository example which contains a simple
AccountManager interface to create an account and (re)open an account. The code is in
the examples\ir directory. At the initialization time the AccountManager implementation
bootstraps the Interface Repository definition for the managed Account interface.
This exposes the additional operation that has been already implemented by this
particular Account implementation to the clients. The clients now can access all known
operations (which are described in IDL) and, additionally, they can verify with the
Interface Repository support for other operations and invoke them. The example
illustrates how we can manage Interface Repository definition objects and how to
introspect remote objects using the Interface Repository.

Before this program can be tested, the following conditions should exist:

• OSAgent should be up and running.

• Interface repository should be started using irep.

• Interface Repository should be loaded with an IDL file either by the command line
when you start the Interface Repository, or by using idl2ir.

• Start the client program.

Code sample 21.2 Looking up an interface’s operations and attributes in an IR

//Client.java
import org.omg.CORBA.InterfaceDef;
import org.omg.CORBA.InterfaceDefHelper;
import org.omg.CORBA.Request;
import java.util.Random;

public class Client {
public static void main(String[] args) {

try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Get the manager Id
byte[] managerId = "BankManager".getBytes();
// Locate an account manager. Give the full POA name and the servant ID.
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "/bank_ir_poa", managerId);
// use args[0] as the account name, or a default.
String name = args.length > 0 ? args[0] : "Jack B. Quick";
// Request the account manager to open a named account.
Bank.Account account = manager.open(name);
// Get the balance of the account.
float balance = account.balance();
// Print out the balance.
System.out.println("The balance in " + name + "'s account is $" + balance);
// Calculate and set a new balance
balance = args.length > 1 ? Float.parseFloat(args[1]) :

Math.abs(new Random().nextInt()) % 100000 / 100f;
account.balance(balance);

21-10 P r o g r a m m e r ’ s G u i d e

E x a m p l e p r o g r a m s

// Get the balance description if it is possible and print it
String desc = getDescription(account);
System.out.println("Balance description:\n" + desc);

} catch (org.omg.CORBA.SystemException e) {
System.err.println("System exception caught:" + e);

} catch (Exception e) {
System.err.println("Unexpected exception caught:");
e.printStackTrace();

}
}

static String getDescription (Bank.Account account) {
// Get the interface repository definition for this interface
InterfaceDef accountDef = InterfaceDefHelper.narrow(account._get_interface_def());
// Check if this *particular* implementation supports "describe" operation
if (accountDef.lookup("describe") != null) {

// We cannot use the static skeleton's method here because at the
// time of its creation this method was not present in the IDL's
// version of the Account interface. Use DII instead.
Request request = account._request("describe");
request.result().value().insert_string("");
request.invoke();
return request.result().value().extract_string();

} else {
return "<no description>";

}
}

}

A d v a n c e d c o n c e p t s

P a r t

VI
PartVIAdvanced concepts

This part of the VisiBroker for Java Programmer’s Guide includes these chapters.

Chapter 22 “Using the Dynamic Invocation Interface”

Chapter 23 “Using the Dynamic Skeleton Interface”

Chapter 24 “Using interceptors”

Chapter 25 “Using object wrappers”

Chapter 26 “Using RMI over IIOP”

Chapter 27 “Using the dynamically managed types”

Chapter 28 “Using valuetypes”

Chapter 29 “Using URL naming”

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-1

C h a p t e r

22
Chapter22Using the Dynamic Invocation

Interface
The developers of most client programs know the types of the CORBA objects their
code will invoke, and they include the compiler-generated stubs for these types in
their code. By contrast, developers of generic clients cannot know what kinds of
objects their users will want to invoke. Such developers use the Dynamic Invocation
Interface (DII) to write clients that can invoke any method on any CORBA object
from knowledge obtained at runtime.

What is the Dynamic Invocation Interface?
The Dynamic Invocation Interface (DII) enables a client program to invoke a method
on a CORBA object whose type was unknown at the time the client was written. The
DII contrasts with the default static invocation, which requires that the client source
code include a compiler-generated stub for each type of CORBA object that the client
intends to invoke. In other words, a client that uses static invocation declares in
advance the types of objects it will invoke. A client that uses the DII makes no such
declaration because its programmer doesn’t know what kinds of objects will be
invoked. The advantage of the DII is flexibility—it can be used to write generic
clients that can invoke any object, including objects whose interfaces did not exist
when the client was compiled. The DII has two disadvantages:

• It is more difficult to program (in essence, your code must do the work of a stub).
• Invocations take longer because more work is done at runtime.

The DII is purely a client interface—static and dynamic invocations are identical from
an object implementation’s point of view.

22-2 P r o g r a m m e r ’ s G u i d e

W h a t i s t h e D y n a m i c I n v o c a t i o n I n t e r f a c e ?

You can use the DII to build clients like these:

• Bridges or adapters between script environments and CORBA objects. For
example, a script calls your bridge, passing object and method identifiers and
parameter values. Your bridge constructs and issues a dynamic request, receives
the result, and returns it to the scripting environment. Such a bridge could not use
static invocation because its developer could not know in advance what kinds of
objects the script environment would want to invoke.

• Generic object testers. For example, a client takes an arbitrary object identifier,
looks up its interface in the interface repository (see Chapter 21, “Using interface
repositories”), and then invokes each of its methods with artificial argument
values. Again, this style of generic tester could not be built with static invocation.

Note Clients must pass valid arguments in DII requests. Failure to do so can produce
unpredictable results, including server crashes. Although it is possible to
dynamically type-check parameter values with the interface repository, it is
expensive. For best performance, ensure that the code (for example, script) that
invokes a DII-using client can be trusted to pass valid arguments.

Introducing the main DII concepts

The dynamic invocation interface is actually distributed among a handful of CORBA
interfaces. Furthermore, the DII frequently offers more than one way to accomplish a
task—the trade-off being programming simplicity versus performance in special
situations. As a result, DII is one of the more difficult CORBA facilities to grasp. This
section is a starting point, a high-level description of the main ideas. Details,
including code examples, are provided later in the chapter.

To use the DII you need to understand these concepts, starting from the most
general:

• Request objects
• Any and Typecode objects
• Request sending options
• Reply receiving options

Using request objects
A Request object represents one invocation of one method on one CORBA object. If
you want to invoke two methods on the same CORBA object, or the same method on
two different objects, you need two Request objects. To invoke a method you first
need an object reference representing the CORBA object—the target reference. Using
the target reference, you create a Request, populate it with arguments, send the
Request, wait for the reply, and obtain the result from the Request.

There are two ways to create a Request. The simpler way is to invoke the target
object’s _request method, which all CORBA objects inherit. This does not, in fact,
invoke the target object. You pass _request the IDL name of the method you intend to
invoke in the Request, for example, “get_balance.” To add argument values to a Request
created with _request, you invoke the Request’s add_value method for each argument

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-3

W h a t i s t h e D y n a m i c I n v o c a t i o n I n t e r f a c e ?

required by the method you intend to invoke. To pass one or more Context objects to
the target, you must add them to the Request with its ctx method.

Although not intuitively obvious, you must also specify the type of the Request’s
result with its result method. For performance reasons, the messages exchanged
between ORBs do not contain type information. By specifying a place holder result
type in the Request, you give the ORB the information it needs to properly extract the
result from the reply message sent by the target object. Similarly, if the method you
are invoking can raise user exceptions, you must add place holder exceptions to the
Request before sending it.

The more complicated way to create a Request object is to invoke the target object’s
_create_request method, which, again, all CORBA objects inherit. This method takes
several arguments which populate the new Request with arguments and specify the
types of the result and user exceptions, if any, that it may return. To use the
_create_request method you must have already built the components that it takes as
arguments. The potential advantage of the _create_request method is performance.
You can reuse the argument components in multiple _create_request calls if you
invoke the same method on multiple target objects.

Note There are two overloaded forms of the _create_request method—one that includes
ContextList and ExceptionList parameters, and one that does not. If you want to pass
one or more Context objects in your invocation, and/or the method you intend to
invoke can raise one or more user exceptions, you must use the _create_request
method that has the extra parameters.

Encapsulating arguments with the Any type
The target method’s arguments, result, and exceptions are each specified in special
objects called Anys. An Any is a generic object that encapsulates an argument of any
type. An Any can hold any type that can be described in IDL. Specifying an argument
to a Request as an Any allows a Request to hold arbitrary argument types and values
without making the compiler complain of type mismatches. (The same is true of
results and exceptions.)

An Any consists of a TypeCode and a value. A value is just a value, and a TypeCode is an
object that describes how to interpret the bits in the value (that is, the value’s type).
Simple TypeCode constants for simple IDL types, such as long and Object, are built into
the header files produced by the idl2java compiler. TypeCodes for IDL constructed
types, such as structs, unions, and typedefs, have to be constructed. Such TypeCodes can
be recursive because the types they describe can be recursive. Consider a struct
consisting of a long and a string. The TypeCode for the struct contains a TypeCode for the
long and a TypeCode for the string. You can get a TypeCode at runtime from an interface
repository (see Chapter 21, “Using interface repositories”) or by asking the ORB to
create one by invoking ORB::create_struct_tc or ORB::create_exception_tc.

If you use the _create_request method, you need to put the Any-encapsulated target
method arguments in another special object called an NVList. No matter how you
create a Request, its result is encoded as an NVList. Everything said about arguments in
this paragraph applies to results as well. NV stands for named value, and an NVList
consists of a count and number of items, each of which has a name, a value, and a
flag. The name is the argument name, the value is the Any encapsulating the

22-4 P r o g r a m m e r ’ s G u i d e

W h a t i s t h e D y n a m i c I n v o c a t i o n I n t e r f a c e ?

argument, and the flag denotes the argument’s IDL mode (for example, in or out).
The result of Request is represented a single named value.

Options for sending requests
Once you’ve created and populated a Request with arguments, a result type, and
exception types, you send it to the target object. There are several ways to send a
Request,

• The simplest is to call the Request’s invoke method, which blocks until the reply
message is received.

• More complex, but not blocking, is the Request’s send_deferred method. This is an
alternative to using threads for parallelism. For many operating systems the
send_deferred method is more economical than spawning a thread.

• If your motivation for using the send_deferred method is to invoke multiple target
objects in parallel, you can use the ORB object’s send_multiple_requests_deferred
method instead. It takes a sequence of Request objects.

• Use the Request’s send_oneway method if, and only if, the target method has been
defined in IDL as oneway.

• You can invoke multiple oneway methods in parallel with the ORB’s
send_multiple_requests_oneway method.

Options for receiving replies
If you send a Request by calling its invoke method, there is only one way to get the
result—use the Request object’s env method to test for an exception, and if none,
extract the NamedValue from the Request with its result method. If you used the
send_oneway method then there is no result. If you used the send_deferred method, you
can periodically check for completion by calling the Request’s poll_response method
which returns a code indicating whether the reply has been received. If, after polling
for a while, you want to block waiting for completion of a deferred send, use the
Request’s get_response method.

If you have sent Requests with the send_multiple_requests_deferred method, you can
find out if a particular Request is complete by invoking that Request’s get_response
method. To learn when any outstanding Request is complete, use the ORB’s
get_next_response method. To do the same thing without risking blocking, use the
ORB’s poll_next_response method.

Steps for invoking object operations dynamically

To summarize, here are the steps that a client follows when using the DII,
1 Obtain a generic reference to the target object you wish to use.
2 Create a Request object for the target object.
3 Initialize the request parameters and the result to be returned.
4 Invoke the request and wait for the results.
5 Retrieve the results.

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-5

O b t a i n i n g a g e n e r i c o b j e c t r e f e r e n c e

Location of example programs for using the DII

Several example programs that illustrate the use of the DII are included in the
examples/bank_dynamic directory of the VisiBroker distribution. These example
programs will be used to illustrate DII concepts in this chapter.

Using the idl2java compiler

The idl2java compiler has a flag (-dynamic_marshal) which, when switched on,
generates stub code using DII. To understand how to do any type of DII: create an
IDL file, generate with -dynamic_marshal, and look at the stub code.

Obtaining a generic object reference
When using the DII, a client program does not have to use the traditional bind
mechanism to obtain a reference to the target object, because the class definition for
the target object may not have been known to the client at compile time.
Code sample 22.1 shows how your client program can use the bind method offered by
the ORB object to bind to any object by specifying its name. This method returns a
generic org.omg.CORBA.Object.

Code sample 22.1 Obtaining a generic object reference

. . .
org.omg.CORBA.Object account;
try {

// initialize the ORB.
org.omg.CORBA.ORB.init(args, null);

} catch(Exception e) {
System.err.println ("Failure during ORB_init");
e.printStackTrace();

}
. . .

try {
// Request ORB to bind to the object supporting the account interface.
account = orb.bind("IDL:Account:1.0");

} catch(const CORBA::Exception& excep) {
System.err.println ("Error binding to account");
excep.printStackTrace();

}
System.out.println ("Bound to account object");
. . .

22-6 P r o g r a m m e r ’ s G u i d e

C r e a t i n g a n d i n i t i a l i z i n g a r e q u e s t

Creating and initializing a request
When your client program invokes a method on an object, a Request object is created
to represent the method invocation. The Request object is written, or marshalled, to a
buffer and sent to the object implementation. When your client program uses client
stubs, this processing occurs transparently. Client programs that wish to use the DII
must create and send the Request object themselves.

Note There is no constructor for this class. The Object’s _request method or Object’s
_create_request method are used to create a Request object.

Request interface

The following code sample shows the Request interface. The target of the request is set
implicitly from the object reference used to create the Request. The name of the
operation must be specified when the Request is created.

Code sample 22.2 Request interface

package org.omg.CORBA;
public abstract class Request {

public abstract org.omg.CORBA.Object target();
public abstract java.lang.String operation();
public abstract org.omg.CORBA.NVList arguments();
public abstract org.omg.CORBA.NamedValue result();
public abstract org.omg.CORBA.Environment env();
public abstract org.omg.CORBA.ExceptionList exceptions();
public abstract org.omg.CORBA.ContextList contexts();
public abstract void ctx(org.omg.CORBA.Context ctx);
public abstract org.omg.CORBA.Context ctx();
public abstract org.omg.CORBA.Any add_in_arg();
public abstract org.omg.CORBA.Any add_named_in_arg(
public abstract org.omg.CORBA.Any add_inout_arg();
public abstract org.omg.CORBA.Any add_named_inout_arg(
public abstract org.omg.CORBA.Any add_out_arg();
public abstract org.omg.CORBA.Any add_named_out_arg(
public abstract void set_return_type(
public abstract org.omg.CORBA.Any return_value();
public abstract void invoke();
public abstract void send_oneway();
public abstract void send_deferred();
public abstract void get_response();
public abstract boolean poll_response();

}

Ways to create and initialize a DII request

Once you have issued a bind to an object and obtained an object reference, you can
use one of two methods for creating a Request object. The following code sample
shows the methods offered by the org.omg.CORBA.Object interface.

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-7

C r e a t i n g a n d i n i t i a l i z i n g a r e q u e s t

Code sample 22.3 Three methods for creating a Request object

package org.omg.CORBA;
public interface Object {
. . .

public org.omg.CORBA.Request _request(java.lang.String operation;

public org.omg.CORBA.Request _create_request(
org.omg.CORBA.Context ctx,
java.lang.String operation,
org.omg.CORBA.NVList arg_list,
org.omg.CORBA.NamedValue result

)

public org.omg.CORBA.Request _create_request(
org.omg.CORBA.Context ctx,
java.lang.String operation,
org.omg.CORBA.NVList arg_list,
org.omg.CORBA.NamedValue result,
org.omg.CORBA.ExceptionList exceptions,
org.omg.CORBA.ContextList contexts

)
. . .
}

Using the create_request method

You can use the _create_request method to create a Request object, initialize the
Context, the operation name, the argument list to be passed, and the result.
Optionally, you can set the ContextList for the request, which corresponds to the
attributes defined in the request’s IDL. The request parameter points to the Request
object that was created for this operation.

Using the _request method

Code sample 22.4 shows the use of the _request method to create a Request object,
specifying only the operation name. After creating a float request, calls to its
add_in_arg method add an input parameter Account name and its result type is
initialized to be of Object reference type via a call to set_return_type method. After a
call has been made, the return value is extracted with the result’s call to the method
result. The same steps are repeated to invoke another method on an Account
Manager instance with the only difference being in-parameters and return types.

The req, an Any object is initialized with the desired account name and added to the
request’s argument list as an input argument. The last step in initializing the request
is to set the result value to receive a float.

22-8 P r o g r a m m e r ’ s G u i d e

C r e a t i n g a n d i n i t i a l i z i n g a r e q u e s t

Example of creating a Request object

A Request object maintains ownership of all memory associated with the operation,
the arguments, and the result so you should never attempt to free these items.

Code sample 22.4 Creating a request object

// Client.java
public class Client {

public static void main(String[] args) {
if (args.length ! = 2) {

System.out.println("Usage: vbj Client <manager-name> <account-name>\n");
return;

}
String managerName = args[0];
String accountName = args[1];
org.omg.CORBA.Object accountManager, account;
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
accountManager = orb.bind("IDL:Bank/AccountManager:1.0",

managerName, null, null);
org.omg.CORBA.Request request = accountManager._request("open");
request.add_in_arg().insert_string(accountName);
request.set_return_type(orb.get_primitive_tc(

org.omg.CORBA.TCKind.tk_objref)
);
request.invoke();
account = request.result().value().extract_Object();
org.omg.CORBA.Request request = account._request("balance");
request.set_return_type(orb.get_primitive_tc(

org.omg.CORBA.TCKind.tk_float)
);
request.invoke();
float balance = request.result().value().extract_float();
System.out.println("The balance in " + accountName + "‘s account is $" + balance);

}
}

Setting arguments for the request

The arguments for a Request are represented with a NVList object, which stores
name-value pairs as NamedValue objects. You can use the arguments method to obtain a
pointer to this list. This pointer can then be used to set the names and values of each
of the arguments.

Note Always initialize the arguments before sending a Request. Failure to do so will result
in marshalling errors and may even cause the server to abort.

Implementing a list of arguments with the NVList
This class implements a list of NamedValue objects that represent the arguments for a
method invocation. Methods are provided for adding, removing, and querying the
objects in the list.

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-9

C r e a t i n g a n d i n i t i a l i z i n g a r e q u e s t

Code sample 22.5 NVList class

package org.omg.CORBA;

public abstract class NVList {
public int count();
public void add(int flags);
public void add_item(java.lang.String name, int flags);
public void add_value(

java.lang.String name,
org.omg.CORBA.Any value,
int flags

);
public org.omg.CORBA.NamedValue item(int index);
public void remove(int index);

}

Setting input and output arguments with the NamedValue Class
This class implements a name-value pair that represents both input and output
arguments for a method invocation request. The NamedValue class is also used to
represent the result of a request that is returned to the client program. The name
property is simply a character string and the value property is represented by an Any
class.

Note There is no constructor for this class. The ORB.create_named_value method is used to
obtain a reference to a NamedValue object.

Code sample 22.6 NamedValue interface

package org.omg.CORBA;
public abstract class NamedValue {

public java.lang.String name();
public org.omg.CORBA.Any value();
public int flags();

}

The following table describes the methods in the NamedValue class.

Table 22.1 NamedValue methods

Method Description

name Returns a pointer to the name of the item that you can then use to initialize the name.

value Returns a pointer to an Any object representing the item’s value that you can then use
to initialize the value. For more information, see “Passing type safely with the Any
class” on page 22-10.

flags Indicates if this item is an input argument, an output argument, or both an input and
output argument. If the item is both an input and output argument, you can specify a
flag indicating that the ORB should make a copy of the argument and leave the caller’s
memory intact. Flags are
ARG_IN
ARG_OUT
ARG_INOUT

22-10 P r o g r a m m e r ’ s G u i d e

C r e a t i n g a n d i n i t i a l i z i n g a r e q u e s t

Passing type safely with the Any class

This class is used to hold an IDL-specified type so that it may be passed in a type-safe
manner. Objects of this class have a reference to a TypeCode that defines the contained
object’s type and a reference to the contained object. Methods are provided to
construct, copy, and release an object as well as initialize and query the object’s value
and type. In addition, streaming methods are provided to read and write the object
from and to a stream.

Code sample 22.7 Any class

package org.omg.CORBA;
public abstract class Any {

public abstract TypeCode type();
public abstract void type(TypeCode type);
public abstract void read_value(InputStream input, TypeCode type);
public abstract void write_value(OutputStream output);
public abstract boolean equal(Any rhs);
. . .

}

Representing argument or attribute types with the TypeCode class

This class is used by the Interface Repository and the IDL compiler to represent the
type of arguments or attributes. TypeCode objects are also used in a Request object to
specify an argument’s type, in conjunction with the Any class. TypeCode objects have a
kind and parameter list property, represented by one of the values defined by the
TCKind class.

Note There is no constructor for this class. Use the ORB.get_primitive_tc method or one of
the ORB.create_*_tc methods to create a TypeCode object. For more details, see
Chapter 5, “Core interfaces and classes,” of the VisiBroker for Java Reference.

The following table shows the kinds and parameters for the TypeCode objects.

Table 22.2 TypeCode kinds and parameters

Kind Parameter list

tk_abstract_interface repository_id, interface_name

tk_alias repository_id, alias_name, TypeCode

tk_any None

tk_array length, TypeCode

tk_boolean None

tk_char None

tk_double None

tk_enum repository_id, enum-name, enum-id1, enum-id2, ... enum-idn

tk_except repository_id, exception_name, StructMembers

tk_fixed digits, scale

tk_float None

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-11

C r e a t i n g a n d i n i t i a l i z i n g a r e q u e s t

tk_long None

tk_longdouble None

tk_longlong None

tk_native id, name

tk_null None

tk_objref repository_id, interface_id

tk_octet None

tk_Principal None

tk_sequence TypeCode, maxlen

tk_short None

tk_string maxlen-integer

tk_struct repository_id, struct-name, {member1, TypeCode1}, {membern, TypeCoden}

tk_TypeCode None

tk_ulong None

tk_ulonglong None

tk_union repository_id, union-name, switch TypeCode,{label-value1, member-name1,
TypeCode1}, {labell-valuen, member-namen, TypeCoden}

tk_ushort None

tk_value repository_id, value_name, boxType

tk_value_box repository_id, value_name, typeModifier, concreteBase, members

tk_void None

tk_wchar None

tk_wstring None

Table 22.2 TypeCode kinds and parameters (continued)

Kind Parameter list

22-12 P r o g r a m m e r ’ s G u i d e

C r e a t i n g a n d i n i t i a l i z i n g a r e q u e s t

Code sample 22.8 TypeCode interface

public abstract class TypeCode extends java.lang.Object
implements org.omg.CORBA.portable.IDLEntity {

public abstract boolean equal(org.omg.CORBA.TypeCode tc);
public boolean equivalent(org.omg.CORBA.TypeCode tc);
public abstract org.omg.CORBA.TCKind kind();
public TypeCode get_compact_typecode()
public abstract java.lang.String id()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public abstract java.lang.String name()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public abstract int member_count()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public abstract java.lang.String member_name(int index)

throws org.omg.CORBA.TypeCodePackage.BadKind,
org.omg.CORBA.TypeCodePackage.Bounds;

public abstract org.omg.CORBA.TypeCode member_type(int index)
throws org.omg.CORBA.TypeCodePackage.BadKind,

org.omg.CORBA.TypeCodePackage.Bounds;

public abstract org.omg.CORBA.Any member_label(int index)
throws org.omg.CORBA.TypeCodePackage.BadKind,

org.omg.CORBA.TypeCodePackage.Bounds;
public abstract org.omg.CORBA.TypeCode discriminator_type()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public abstract int default_index()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public abstract int length()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public abstract org.omg.CORBA.TypeCode content_type()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public short fixed_digits()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public short fixed_scale()

throws org.omg.CORBA.TypeCodePackage.BadKind;
public short member_visibility(int index)

throws org.omg.CORBA.TypeCodePackage.BadKind,
org.omg.CORBA.Bounds;

public short type_modifier()
throws org.omg.CORBA.TypeCodePackage.BadKind;

public TypeCode concrete_base_type()
throws org.omg.CORBA.TypeCodePackage.BadKind;

}

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-13

S e n d i n g D I I r e q u e s t s a n d r e c e i v i n g r e s u l t s

Sending DII requests and receiving results
The Request class, shown in Code sample 22.2 on page 22-6, provides several methods
for sending a request, once it has been properly initialized.

Invoking a request

The simplest way to send a request is to call its invoke method, which sends the
request and waits for a response before returning to your client program. The
return_value method returns a reference to an Any object that represents the return
value.

Code sample 22.9 Sending a request with invoke

try {
. . .
// Create request that will be sent to the account object
request = account._request("balance");
// Set the result type
request.set_return_type(orb.get_primitive_tc

(org.omg.CORBA.TCKind.tk_float));
// Execute the request to the account object
request.invoke();
// Get the return balance
float balance;
org.omg.CORBA.Any balance_result = request.return_value();
balance = balance_result.extract_float();
// Print out the balance
System.out.println("The balance in " + name + "'s account is $" +

balance);
} catch(Exception e) {

e.printStackTrace();
}

22-14 P r o g r a m m e r ’ s G u i d e

S e n d i n g D I I r e q u e s t s a n d r e c e i v i n g r e s u l t s

Sending a deferred DII request with the send_deferred method

A non-blocking method, send_deferred, is also provided for sending operation
requests. It allows your client to send the request and then use the poll_response
method to determine when the response is available. The get_response method blocks
until a response is received. The following code shows how these methods are used.

Code sample 22.10 Using the send_deferred and poll_response methods to send a deferred DII request

try {
. . .

// Create request that will be sent to the manager object
org.omg.CORBA.Request request = manager._request("open");
// Create argument to request
org.omg.CORBA.Any customer = orb.create_any();
customer.insert_string(name);
org.omg.CORBA.NVList arguments = request.arguments();
arguments.add_value("name" , customer, org.omg.CORBA.ARG_IN.value);
// Set result type
request.set_return_type(orb.get_primitive_tc

(org.omg.CORBA.TCKind.tk_objref));
// Creation of a new account can take some time
// Execute the deffered request to the manager object-plist
request.send_deferred();
Thread.currentThread().sleep(1000);
while (!request.poll_response()) {

System.out.println(" Waiting for response...");
Thread.currentThread().sleep(1000); // Wait one second between polls

}
request.get_response();
// Get the return value
org.omg.CORBA.Object account;
org.omg.CORBA.Any open_result = request.return_value();
account = open_result.extract_Object();
. . .

} catch(Exception e) {
e.printStackTrace();

}

Sending an asynchronous DII request with the send_oneway method

The send_oneway method can be used to send an asynchronous request. Oneway
requests do not involve a response being returned to the client from the object
implementation.

U s i n g t h e D y n a m i c I n v o c a t i o n I n t e r f a c e 22-15

S e n d i n g D I I r e q u e s t s a n d r e c e i v i n g r e s u l t s

Sending multiple requests

A sequence of DII Request objects can be created using array of Request objects. A
sequence of requests can be sent using the ORB methods
send_multiple_requests_oneway or send_multiple_requests_deferred. If the sequence of
requests is sent as oneway requests, no response is expected from the server to any of
the requests.

Receiving multiple requests

When a sequence of requests is sent using send_multiple_requests_deferred, the
poll_next_response and get_next_response methods are used to receive the response the
server sends for each request.

The ORB method poll_next_response can be used to determine if a response has been
received from the server. This method returns true if there is at least one response
available. This method returns false if there are no responses available.

The ORB method get_next_response can be used to receive a response. If no response
is available, this method will block until a response is received. If you do not wish
your client program to block, use the poll_next_response method to first determine
when a response is available and then use the get_next_response method to receive the
result.

Code sample 22.11 ORB methods for sending multiple requests and receiving the results

package org.omg.CORBA;
public abstract class ORB {

public abstract org.omg.CORBA.Environment create_environment();
public abstract void send_multiple_requests_oneway(org.omg.CORBA.Request[] reqs);
public abstract void send_multiple_requests_deferred(org.omg.CORBA.Request[] reqs);
public abstract boolean poll_next_response();
public abstract org.omg.CORBA.Request get_next_response();
. . .

}

22-16 P r o g r a m m e r ’ s G u i d e

U s i n g t h e i n t e r f a c e r e p o s i t o r y w i t h t h e D I I

Using the interface repository with the DII
One source of the information needed to populate a DII Request object is an interface
repository (IR) (see Chapter 21, “Using interface repositories”). The following
example uses an interface repository to get obtain the parameters of an operation.
Note that the example, atypical of real DII applications, has built-in knowledge of a
remote object’s type (Account) and the name of one of its methods (balance). An actual
DII application would get that information from an outside source—for example, a
user.

The example

• Binds to any Account object.

• Looks up the Account’s balance method in the IR and builds an operation list from
the IR OperationDef.

• Creates argument and result components and passes these to the _create_request
method. Note that the balance method does not return an exception.

• Invokes the Request, extracts and prints the result.

// Java TBD (no example)

U s i n g t h e D y n a m i c S k e l e t o n I n t e r f a c e 23-1

C h a p t e r

23
Chapter23Using the Dynamic Skeleton

Interface
This chapter describes how object servers can dynamically create object
implementations at run time to service client requests.

What is the Dynamic Skeleton Interface?
The Dynamic Skeleton Interface (DSI) provides a mechanism for creating an object
implementation that does not inherit from a generated skeleton interface. Normally,
an object implementation is derived from a skeleton class generated by the idl2java
compiler. The DSI allows an object to register itself with the ORB, receive operation
requests from a client, process the requests, and return the results to the client
without inheriting from a skeleton class generated by the idl2java compiler.

Note From the perspective of a client program, an object implemented with the DSI
behaves just like any other ORB object. Clients do not need to provide any special
handling to communicate with an object implementation that uses the DSI.

The ORB presents client operation requests to a DSI object implementation by calling
the object’s invoke method and passing it a ServerRequest object. The object
implementation is responsible for determining the operation being requested,
interpreting the arguments associated with the request, invoking the appropriate
internal method or methods to fulfill the request, and returning the appropriate
values.

Implementing objects with the DSI requires more manual programming activity than
using the normal language mapping provided by object skeletons. Nevertheless, an
object implemented with the DSI can be very useful in providing inter-protocol
bridging.

23-2 P r o g r a m m e r ’ s G u i d e

S t e p s f o r c r e a t i n g o b j e c t i m p l e m e n t a t i o n s d y n a m i c a l l y

Using the idl2java compiler

The idl2java compiler has a flag (-dynamic_marshal) which, when switched on,
generates skeleton code using DSI. To understand how to do any type of DSI: create
an IDL file, generate with -dynamic_marshal, and look at the skeleton code.

Steps for creating object implementations dynamically
To create object implementations dynamically using the DSI, follow these steps:

1 Use the -dynamic_marshal flag when compiling your IDL.

2 Design your object implementation so that it is derived from the
org.omg.PortableServer.DynamicImplementation interface instead of deriving your
object implementation from a skeleton class.

3 Declare and implement the invoke method, which the ORB will use to dispatch
client requests to your object.

4 Register your object implementation (POA servant) with the POA manager as the
default servant.

Location of an example program for using the DSI

An example program that illustrates the use of the DSI is included in the
examples/basic/bank_dynamic directory of the VisiBroker distribution. This example is
used to illustrate DSI concepts in this chapter. The Bank.idl file, shown in
IDL sample 23.1, illustrates the interfaces implemented in this example.

IDL sample 23.1 Bank.idl file used in the DSI example

// Bank.idl
module Bank {

interface Account {
float balance();

};
interface AccountManager {

Account open(in string name);
};

};

U s i n g t h e D y n a m i c S k e l e t o n I n t e r f a c e 23-3

E x t e n d i n g t h e D y n a m i c I m p l e m e n t a t i o n c l a s s

Extending the DynamicImplementation class
To use the DSI, object implementations should be derived from the
DynamicImplementation base class shown below. This class offers several constructors
and the invoke method, which you must implement.

Code sample 23.1 DynamicImplementation abstract class

package org.omg.CORBA;
public abstract class DynamicImplementation extends Servant {

public abstract void invoke(ServerRequest request);
. . .
}

Example of designing objects for dynamic requests

Code sample 23.2 shows the declaration of the AccountImpl class that is to be
implemented with the DSI. It is derived from the DynamicImplementation class, which
declares the invoke method. The ORB will call the invoke method to pass client
operation requests to the implementation in the form of ServerRequest objects.

Also note the Account class constructor as shown in Code sample 23.2.

Code sample 23.2 AccountImpl class from the dynamic example

import java.util.*;
import org.omg.PortableServer.*;
public class AccountImpl extends DynamicImplementation {

public AccountImpl(org.omg.CORBA.ORB orb, POA poa) {
_orb = orb;
_poa = poa;

}

public synchronized org.omg.CORBA.Object get(String name) {
org.omg.CORBA.Object obj;
// Check if account exists
Float balance = (Float)_registry.get(name);
if (balance == null) {

// simulate delay while creating new account
try {

Thread.currentThread().sleep(3000);
} catch (Exception e) {

e.printStackTrace();
}
// Make up the account's balance, between 0 and 1000 dollars
balance = new Float(Math.abs(_random.nextInt()) % 100000 / 100f);
// Print out the new account
System.out.println("Created " + name + "'s account: " +

balance.floatValue());
_registry.put(name, balance);

}
// Return object reference
byte[] accountId = name.getBytes();
try {

23-4 P r o g r a m m e r ’ s G u i d e

E x t e n d i n g t h e D y n a m i c I m p l e m e n t a t i o n c l a s s

obj = _poa.create_reference_with_id(accountId, "IDL:Bank/Account:1.0");
} catch (org.omg.PortableServer.POAPackage.WrongPolicy e) {

throw new org.omg.CORBA.INTERNAL(e.toString());
}
return obj;

}

public String[] _all_interfaces(POA poa, byte[] objectId) { return null; }

public void invoke(org.omg.CORBA.ServerRequest request) {
Float balance;
// Get the account name from the object id
String name = new String(_object_id());
// Ensure that the operation name is correct
if (!request.operation().equals("balance")) {

throw new org.omg.CORBA.BAD_OPERATION();
}
// Find out balance and fill out the result
org.omg.CORBA.NVList params = _orb.create_list(0);
request.arguments(params);
balance = (Float)_registry.get(name);
if (balance == null) {

throw new org.omg.CORBA.OBJECT_NOT_EXIST();
}
org.omg.CORBA.Any result = _orb.create_any();
result.insert_float(balance.floatValue());
request.set_result(result);
System.out.println("Checked " + name + "'s balance: " +

balance.floatValue());
}
private Random _random = new Random();
static private Hashtable _registry = new Hashtable();
private POA _poa;
private org.omg.CORBA.ORB _orb;

}

The code in Code sample 23.3 shows the implementation of the AccountManagerImpl
class that needs to be implemented with the DSI. It is also derived from the
DynamicImplementation class, which declares the invoke method. The ORB will call the
invoke method to pass client operation requests to the implementation in the form of
ServerRequest objects.

Code sample 23.3 AccountManagerImpl class from the dynamic example

import org.omg.PortableServer.*;
public class AccountManagerImpl extends DynamicImplementation {

public AccountManagerImpl(org.omg.CORBA.ORB orb, AccountImpl accounts) {
_orb = orb;
_accounts = accounts;

}

public synchronized org.omg.CORBA.Object open(String name) {
return _accounts.get(name);

}

U s i n g t h e D y n a m i c S k e l e t o n I n t e r f a c e 23-5

E x t e n d i n g t h e D y n a m i c I m p l e m e n t a t i o n c l a s s

public String[] _all_interfaces(POA poa, byte[] objectId) { return null; }

public void invoke(org.omg.CORBA.ServerRequest request) {
// Ensure that the operation name is correct
if (!request.operation().equals("open")) {

throw new org.omg.CORBA.BAD_OPERATION();
}

// Fetch the input parameter
String name = null;
try {

org.omg.CORBA.NVList params = _orb.create_list(1);
org.omg.CORBA.Any any = _orb.create_any();
any.insert_string(new String(""));
params.add_value("name", any, org.omg.CORBA.ARG_IN.value);
request.arguments(params);
name = params.item(0).value().extract_string();

} catch (Exception e) {
throw new org.omg.CORBA.BAD_PARAM();

}
// Invoke the actual implementation and fill out the result
org.omg.CORBA.Object account = open(name);
org.omg.CORBA.Any result = _orb.create_any();
result.insert_Object(account);
request.set_result(result);

}

private AccountImpl _accounts;
private org.omg.CORBA.ORB _orb;

}

Specifying repository ids

The _primary_interface method should be implemented to return supported
repository identifiers. To determine the correct repository identifier to specify, start
with the IDL interface name of an object and use the following steps:

1 Replace all non-leading instances of the delimiter scope resolution operator (::)
with a slash (/).

2 Add “IDL:” to the beginning of the string.

3 Add “:1.0” to the end of the string.

For example, Code sample 23.4 shows an IDL interface name and Code sample 23.5
shows the resulting repository identifier string.

Code sample 23.4 IDL interface name

Bank::AccountManager

Code sample 23.5 Resulting repository identifier

IDL:Bank/AccountManager:1.0

23-6 P r o g r a m m e r ’ s G u i d e

L o o k i n g a t t h e S e r v e r R e q u e s t c l a s s

Looking at the ServerRequest class
A ServerRequest object is passed as a parameter to an object implementation’s invoke
method. The ServerRequest object represents the operation request and provides
methods for obtaining the name of the requested operation, the parameter list, and
the context. It also provides methods for setting the result to be returned to the caller
and for reflecting exceptions.

Code sample 23.6 ServerRequest abstract class

package org.omg.CORBA;
public abstract class ServerRequest {

public java.lang.String operation();
public void arguments(org.omg.CORBA.NVList args);
public void set_result(org.omg.CORBA.Any result);
public void set_exception(org.omg.CORBA.Any except);
public abstract org.omg.CORBA.Context ctx();
// the following methods are deprecated
public java.lang.String op_name(); // use operation()
public void params(org.omg.CORBA.NVList params); // use arguments()
public void result(org.omg.CORBA.Any result); // use set_result()
public abstract void except(org.omg.CORBA.Any except); // use set_exception()

}

All arguments passed into the arguments, set_result, or set_exception methods are
thereafter owned by the ORB. The memory for these arguments will be released by
the ORB—you should not release them.

Note The following methods have been deprecated:

• op_name
• params
• result
• exception

Implementing the Account object
The Account interface declares only one method, so the processing done by the
AccountImpl class’ invoke method is fairly straightforward.

The invoke method first checks to see if the requested operation has the name
“balance.” If the name does not match, a BAD_OPERATION exception is raised. If the
Account object were to offer more than one method, the invoke method would need to
check for all possible operation names and use the appropriate internal methods to
process the operation request.

Since the balance method does not accept any parameters, there is no parameter list
associated with its operation request. The balance method is simply invoked and the
result is packaged in an Any object that is returned to the caller, using the ServerRequest
object’s set_result method.

U s i n g t h e D y n a m i c S k e l e t o n I n t e r f a c e 23-7

I m p l e m e n t i n g t h e A c c o u n t M a n a g e r o b j e c t

Implementing the AccountManager object
Like the Account object, the AccountManager interface also declares one method.
However, the AccountManagerImpl object’s open method does accept an account name
parameter. This makes the processing done by the invoke method a little more
complicated. Code sample 23.2 on page 23-3 shows the implementation of the
AccountManagerImpl object’s invoke method.

The method first checks to see that the requested operation has the name “open.” If
the name does not match, a BAD_OPERATION exception is raised. If the AccountManager
object were to offer more than one method, its invoke method would need to check for
all possible operation names and use the appropriate internal methods to process the
operation request.

Processing input parameters
Here are the steps the AccountManagerImpl object’s invoke method uses to process the
operation request’s input parameters.

1 Create an NVList to hold the parameter list for the operation.

2 Create Any objects for each expected parameter and add them to the NVList, setting
their TypeCode and parameter type (ARG_IN, ARG_OUT, or ARG_INOUT).

3 Invoke the ServerRequest object’s arguments method, passing the NVList, to update
the values for all the parameters in the list.

The open method expects an account name parameter; therefore, an NVList object is
created to hold the parameters contained in the ServerRequest. The NVList class
implements a parameter list containing one or more NamedValue objects. The NVList and
NamedValue classes are described in Chapter 22, “Using the Dynamic Invocation
Interface.”

An Any object is created to hold the account name. This Any is then added to NVList
with the argument’s name set to “name” and the parameter type set to ARG_IN.

Once the NVList has been initialized, the ServerRequest object’s arguments method is
invoked to obtain the values of all of the parameters in the list.

Note After invoking the arguments method, the NVList will be owned by the ORB. This
means that if an object implementation modifies an ARG_INOUT parameter in the NVList,
the change will automatically be apparent to the ORB. This NVList should not be
released by the caller.

An alternative to constructing the NVList for the input arguments is to use the ORB
object’s create_operation_list method. This method accepts an OperationDef and
returns an NVList object, completely initialized with all the necessary Any objects. The
appropriate OperationDef object may be obtained from the interface repository,
described in Chapter 21, “Using interface repositories.”

Setting the return value
After invoking the ServerRequest object’s arguments method, the value of the name
parameter can be extracted and used to create a new Account object. An Any object is

23-8 P r o g r a m m e r ’ s G u i d e

S e r v e r i m p l e m e n t a t i o n

created to hold the newly created Account object, which is returned to the caller by
invoking the ServerRequest object’s set_result method.

Server implementation
The implementation of the main routine, shown in Code sample 23.7, is almost
identical to the original example introduced in Chapter 4, “Developing an example
application with VisiBroker.”

Code sample 23.7 Server implementation

import org.omg.PortableServer.*;
public class Server {

public static void main(String[] args) {
try {

// Initialize the ORB
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
// Get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Get the POA Manager
POAManager poaManager = rootPOA.the_POAManager();
// Create the account POA with the right policies
org.omg.CORBA.Policy[] accountPolicies = {

rootPOA.create_servant_retention_policy(
ServantRetentionPolicyValue.NON_RETAIN),

rootPOA.create_request_processing_policy(
RequestProcessingPolicyValue.USE_DEFAULT_SERVANT)

};
POA accountPOA = rootPOA.create_POA("bank_account_poa",

poaManager, accountPolicies);
// Create the account default servant
AccountImpl accountServant = new AccountImpl(orb, accountPOA);
accountPOA.set_servant(accountServant);
// Create the manager POA with the right policies
org.omg.CORBA.Policy[] managerPolicies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
rootPOA.create_request_processing_policy(

RequestProcessingPolicyValue.USE_DEFAULT_SERVANT)
};
POA managerPOA = rootPOA.create_POA("bank_agent_poa",

poaManager, managerPolicies);
// Create the manager default servant
AccountManagerImpl managerServant = new AccountManagerImpl(orb, accountServant);
managerPOA.set_servant(managerServant);
// Activate the POA Manager
poaManager.activate();
System.out.println("AccountManager is ready");
// Wait for incoming requests
orb.run();

} catch(Exception e) {
e.printStackTrace();

}
}

}

U s i n g t h e D y n a m i c S k e l e t o n I n t e r f a c e 23-9

S e r v e r i m p l e m e n t a t i o n

DSI implementation is instantiated as a default servant and the POA should be
created with the support of corresponding policies. For more information see
Chapter 7, “Using POAs.”

23-10 P r o g r a m m e r ’ s G u i d e

U s i n g i n t e r c e p t o r s 24-1

C h a p t e r

24
Chapter24Using interceptors

This chapter provides an overview of the new interceptors framework, walks
through an interceptor example, and describes some advanced features such as
interceptor factories and chaining interceptors.

Overview
The VisiBroker ORB provides a set of interfaces known as interceptors which provide
a framework for plugging in additional ORB behavior such as security, transactions,
or logging. These interceptor interfaces are based on a callback mechanism. For
example, using interceptors, you can be notified of communications between clients
and servers, and modify these communications if you wish, effectively altering the
behavior of the VisiBroker ORB.

At its simplest usage, the interceptor is useful for tracing through code. Because you
can see the messages being sent between clients and servers, you can determine
exactly how the ORB is processing requests.

Figure 24.1 How interceptors work

If you are building a more sophisticated application such as a monitoring tool or
security layer, interceptors give you the information and control you need to enable
these lower level applications. For example, you could develop an application that
monitors the activity of various servers and performs load balancing.

Interceptors

Client Server

ORB messages

24-2 P r o g r a m m e r ’ s G u i d e

I n t e r c e p t o r i n t e r f a c e s a n d m a n a g e r s

There are two kinds of interceptors:

• Client interceptors are system-level interceptors which are called when a method
is invoked on a client object.

• Server interceptors are system-level interceptors which are called when a method
is invoked on a server object.

To use interceptors you declare a class which implements one of the interceptor
interfaces. Once you have instantiated an interceptor object, you register it with its
corresponding interceptor manager. Your interceptor object will then be notified by
its manager whenever, for example, an object has had one of its methods invoked or
its parameters marshalled or demarshalled.

Note Use object wrappers, described in Chapter 25, “Using object wrappers,” if you want
to intercept an operation request before it is marshalled on the client-side or if you
want to intercept an operation request before it is process on the server-side.

Interceptor interfaces and managers
Interceptor developers derive classes from one or more of the following base
interceptor API classes which are defined and implemented by the VisiBroker ORB.

• Client interceptors

• BindInterceptor
• ClientRequestInterceptor

• Server interceptors

• POALifeCycleInterceptor
• ActiveObjectLifeCycleInterceptor
• ServerRequestInterceptor
• IORCreationInterceptor

• ServiceResolver interceptor

Client interceptors

There are currently two kinds of client interceptor and their respective managers:

• BindInterceptor and BindInterceptorManager
• ClientRequestInterceptor and ClientRequestInterceptorManager

For more details about client interceptors see Chapter 12, “Interceptor and object
wrapper interfaces and classes,” in the VisiBroker for Java Reference.

BindInterceptor
A BindInterceptor object is a global interceptor which is called on the client side before
and after binds.

U s i n g i n t e r c e p t o r s 24-3

I n t e r c e p t o r i n t e r f a c e s a n d m a n a g e r s

Code sample 24.1 BindInterceptor interface

package com.inprise.vbroker.InterceptorExt;
public interface BindInterceptor {

public IORValue bind(IORValue ior,
org.omg.CORBA.Object target,
boolean rebind,
Closure closure);

public IORValue bind_failed(IORValue ior,
org.omg.CORBA.Object target,
Closure closure);

public void bind_succeeded(IORValue ior,
org.omg.CORBA.Object target,
int Index,
InterceptorManagerControl control,
Closure closure);

public void exception_occurred(IORValue ior,
org.omg.CORBA.Object target,
org.omg.CORBA.Environment env,
Closure closure);

}

ClientRequestInterceptor
A ClientRequestInterceptor object may be registered during a bind_succeeded call of a
BindInterceptor object, and it remains active for the duration of the connection. Two
of its methods are called before the invocation on the client object, one
(preinvoke_premarshal) before the parameters are marshalled and the other
(preinvoke_postmarshal) after they are. The third method (postinvoke) is called after the
request has completed.

Code sample 24.2 ClientRequestInterceptor interface

package com.inprise.vbroker.InterceptorExt;
public interface ClientRequestInterceptor {

public void preinvoke_premarshal(org.omg.CORBA.Object target,
String operation,
ServiceContextListHolder service_contexts_holder,
Closure closure);

public void preinvoke_postmarshal(org.omg.CORBA.Object target,
OutputStream payload,
Closure closure);

public void postinvoke(org.omg.CORBA.Object target,
ServiceContext[] service_contexts,
InputStream payload,
org.omg.CORBA.Environment env,
Closure closure);

public void exception_occurred(org.omg.CORBA.Object target,
org.omg.CORBA.Environment env,
Closure closure);

}

24-4 P r o g r a m m e r ’ s G u i d e

I n t e r c e p t o r i n t e r f a c e s a n d m a n a g e r s

Server interceptors

There are currently four kinds of server interceptors:

• POALifeCycleInterceptor and POALifeCycleInterceptorManager
• ActiveObjectLifeCycleInterceptor and ActiveObjectLifeCycleInterceptorManager
• ServerRequestInterceptor and ServerRequestInterceptorManager
• IORCreationInterceptor and IORCreationInterceptorManager

For more details about server interceptors see Chapter 12, “Interceptor and object
wrapper interfaces and classes,” in the VisiBroker for Java Reference.

POALifeCycleInterceptor
A POALifeCycleInterceptor object is a global interceptor which is called every time a
POA is created (via the create method) or destroyed (via the destroy method).

Code sample 24.3 POALifeCycleInterceptor interface

package com.inprise.vbroker.InterceptorExt;
public interface POALifeCycleInterceptor {

public void create(org.omg.PortableServer.POA poa,
org.omg.CORBA.PolicyListHolder policies_holder,
IORValueHolder iorTemplate,
InterceptorManagerControl control) ;

public void destroy(org.omg.PortableServer.POA poa);
}

ActiveObjectLifeCycleInterceptor
An ActiveObjectLifeCycleInterceptor object is called whenever an object is added to
the Active Object Map (via the create method) or after an object has been deactivated
and etherealized (via the destroy method). The interceptor may be registered by a
POALifeCycleInterceptor on a per-POA basis at POA creation time. This interceptor
may only be registered if the POA has the RETAIN policy.

Code sample 24.4 ActiveObjectLifeCycleInterceptor interface

package com.inprise.vbroker.InterceptorExt;
public interface ActiveObjectLifeCycleInterceptor {

public void create(byte[] oid,
org.omg.PortableServer.Servant servant,
org.omg.PortableServer.POA adapter);

public void destroy (byte[] oid,
org.omg.PortableServer.Servant servant,
org.omg.PortableServer.POA adapter);

}

ServerRequestInterceptor
A ServerRequestInterceptor object is called at various stages in the invocation of a
server implementation of a remote object: before the invocation (via the preinvoke
method) and after the invocation both before and after the marshalling of the reply
(via the postinvoke_premarshal and postinvoke_premarshal methods respectively). This

U s i n g i n t e r c e p t o r s 24-5

I n t e r c e p t o r i n t e r f a c e s a n d m a n a g e r s

interceptor may be registered by a POALifeCycleInterceptor object at POA creation
time on a per-POA basis.

Code sample 24.5 ServerRequestInterceptor interface

package com.inprise.vbroker.InterceptorExt;
public interface ServerRequestInterceptor {

public void preinvoke(org.omg.CORBA.Object target,
String operation,
ServiceContext[] service_contexts,
InputStream payload,
Closure closure);

public void postinvoke_premarshal(org.omg.CORBA.Object target,
ServiceContextListHolder service_contexts_holder,
org.omg.CORBA.Environment env,
Closure closure);

public void postinvoke_postmarshal(org.omg.CORBA.Object target,
OutputStream payload,
Closure closure);

public void exception_occurred(org.omg.CORBA.Object target,
org.omg.CORBA.Environment env,
Closure closure);

}

IORCreationInterceptor
An IORCreationInterceptor object is called whenever a POA creates an object reference
(via the create method). This interceptor may be registered by a
POALifeCycleInterceptor at POA creation time on a per-POA basis.

IDL sample 24.1 IORCreationInterceptor interface

package com.inprise.vbroker.InterceptorExt;
public interface IORCreationInterceptor {

public void create(org.omg.PortableServer.POA poa,
IORValueHolder ior);

}

Service Resolver interceptor

This interceptor is used to install a user service that you can then dynamically load.

Code sample 24.6 ServiceResolverInterceptor

public interface ServiceResolverInterceptor {
public org.omg.CORBA.Object resolve (java.lang.Strng name):

}
public interface ServiceResolverInterceptorManager extends
com.inprise.vbroker.interceptor.InterceptorManager {

public void add (java.lang.String name,

com.inprise.vbroker.interceptor.ServiceResolverInterceptor \interceeptor) ;
pubic void remove (java.lang.String name):

}

24-6 P r o g r a m m e r ’ s G u i d e

I n t e r c e p t o r i n t e r f a c e s a n d m a n a g e r s

When you do a resolve_initial_references(), the resolve on all user’s installed
services gets called. The resolve then can return the appropriate object.

To write service initializers, you must obtain a ServiceResolver after getting an
InterceptorManagerControl to be able to add your services.

Default interceptor classes

VisiBroker provides default interceptor Java classes that you can extend rather than
implement. These default interceptor classes offer the same methods as the
interceptor interfaces; however, when you extend the default interceptor class, you
can choose which methods to implement or override. When you use these classes,
you can accept the default behavior that they provide or change it.

• DefaultBindInterceptor class
• DefaultClientInterceptor class
• DefaultServerInterceptor class

Registering interceptors with the VisiBroker ORB

Each interceptor interface has a corresponding interceptor manager interface which
is used to register your interceptor objects with the ORB. The following steps are
those necessary to register an interceptor:

1 Get a reference to an InterceptorManagerControl object by calling the
resolve_initial_references method on an ORB object with the parameter
“VisiBrokerInterceptorControl.”

2 Call the get_manager method on the InterceptorManagerControl object with one of the
String values in Table 24.1. (Be sure to cast the object reference to its corresponding
interceptor manager interface.)

3 Create an instance of your interceptor.

4 Register your interceptor object with the manager object by calling the add method.

5 Load your interceptor objects when running your client and server programs.

Table 24.1 String values to pass to the get_manager method of the InterceptorManagerControl object

Value Corresponding interceptor interface

ClientRequest ClientRequestInterceptor

Bind BindInterceptor

POALifeCycle POALifeCycleInterceptor

ActiveObjectLifeCycle ActiveObjectLifeCycleInterceptor

ServerRequest ServerRequestInterceptor

IORCreation IORCreationInterceptor

ServiceResolver ServiceResolverInterceptor

U s i n g i n t e r c e p t o r s 24-7

E x a m p l e i n t e r c e p t o r s

Creating interceptor objects

Finally, you need to implement a factory class which creates instances of your
interceptor and registers them with the ORB. Your factory class must implement the
ServiceLoader interface.

Code sample 24.7 ServiceLoader interface

package com.inprise.vbroker.interceptor;
public interface ServiceLoader {

// This method is called by the ORB when ORB.init() is called.
public abstract void init(org.omg.CORBA.ORB orb);

// Called after ORB.init() is done but control hasn't been returned to
// the user. Can be used to disable certain resources that were only
// made available to other service inits.
public abstract void init_complete(org.omg.CORBA.ORB orb);

// Called when the orb is being shutdown.
public abstract void shutdown(org.omg.CORBA.ORB orb);

}

Note You may also create new instances of your interceptors and register them with the
ORB from within other interceptors as in the example below.

Loading interceptors

To load your interceptor, you must set the vbroker.orb.dynamicLibs property. This
property can be set either in the properties file (see Chapter 14, “Setting properties”)
or be passed into the ORB using the -D option.

Example interceptors
The example interceptor below uses all of the interceptor API methods (listed in
Chapter 12, “Interceptor and object wrapper interfaces and classes,” in the VisiBroker
for Java Reference) so that you can see how these methods are used, and when they
are invoked.

24-8 P r o g r a m m e r ’ s G u i d e

E x a m p l e i n t e r c e p t o r s

Example code

In “Code listings” on page 24-10, each of the interceptor API methods is simply
implemented to print informational messages to the standard output.

There are four example applications in the examples/interceptors directory in your
VisiBroker installation:

• active_object_lifecycle
• client_server
• ior_creation
• encryption

Client-server interceptors example
To run the example, compile the files as you normally would. Then start up the
Server and the Client as follows:

prompt>vbj -Dvbroker.orb.dynamicLibs=SampleServerLoader Server
prompt>vbj -Dvbroker.orb.dynamicLibs=SampleClientLoader Client Kate

You specify as ORB services the two classes which implement the ServiceLoader
interface.

Note The ServiceInit class used in VisiBroker 3.x is replaced by implementing two
interfaces: ServiceLoader and ServiceResolverInterceptor. For more information about
the ServiceResolverInterceptor interface, see “Service Resolver interceptor” on
page 24-5. For an example of how to do this, see “ServiceResolverInterceptor
example” on page 24-9.

The results of executing the example interceptor are shown in Table 24.2. The
execution by the client and server is listed in sequence.

Table 24.2 Results of executing the example interceptor

Client Server

============>SampleServerLoader:Interceptors
loaded
============>In POA /. Nothing to do.
============>In POA bank_agent_poa, 1
ServerRequest interceptor installed
Stub[repository_id=IDL:Bank/
AccountManager:1.0,key=ServiceId[service=/
bank_agent
_poa,id={11 bytes:
[B][a][n][k][M][a][n][a][g][e][r]}]] is ready.

Bind Interceptors loaded
============> SampleBindInterceptor bind
============> SampleBindInterceptor
bind_succeeded
============> SampleClientInterceptor id
MyClientInterceptor preinvoke_premarshal
=> open
============> SampleClientInterceptor id
MyClientInterceptor preinvoke_postmarshal

U s i n g i n t e r c e p t o r s 24-9

E x a m p l e i n t e r c e p t o r s

Since the OAD is not running, the bind() call fails and the server proceeds. The client
binds to the account object, and then calls the balance() method. This request is
received by the server, processed, and results are returned to the client. The client
prints the results.

As demonstrated by the example code and results, the interceptors for both the client
and server are installed when the respective process starts. Information about
registering an interceptor is covered in “Registering interceptors with the VisiBroker
ORB” on page 24-6.

ServiceResolverInterceptor example
The code below provides an example of how to implement a ServiceLoader interface:

import com.inprise.vbroker.properties.*;
import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.InterceptorExt.*;

public final class UtilityServiceLoader implements ServiceLoader,
ServiceResolverInterceptor {
private com.inprise.vbroker.orb.ORB _orb = null;
private String[] _serviceNames = { "TimeService", "WeatherService"};

public void init(org.omg.CORBA.ORB orb) {
// Just in case they are needed by resolve()

============> SampleServerInterceptor id
MyServerInterceptor preinvoke => open
Created john's account:
Stub[repository_id=IDL:Bank/
Account:1.0,key=TransientId[
poaName=/,id={4 bytes:
(0)(0)(0)(0)},sec=0,usec=0]]

============> SampleClientInterceptor id
MyClientInterceptor postinvoke
============> SampleBindInterceptor bind
============> SampleBindInterceptor
bind_succeeded
============> SampleClientInterceptor id
MyClientInterceptor preinvoke_premarshal =>
balance

============> SampleClientInterceptor id
MyClientInterceptor preinvoke_postmarshal

============> SampleServerInterceptor id
MyServerInterceptor postinvoke_premarshal
============> SampleServerInterceptor id
MyServerInterceptor postinvoke_postmarshal

============> SampleClientInterceptor id
MyClientInterceptor postinvoke
The balance in john's account is $245.64

Table 24.2 Results of executing the example interceptor (continued)

Client Server

24-10 P r o g r a m m e r ’ s G u i d e

E x a m p l e i n t e r c e p t o r s

_orb = (com.inprise.vbroker.orb.ORB) orb;

PropertyManager pm = _orb.getPropertyManager();
// use the PropertyManager to query propety settings
// if needed (not used in this example)

/**** Installing the Initial Reference *****/
InterceptorManagerControl control = _orb.interceptorManager();
ServiceResolverInterceptorManager manager =

(ServiceResolverInterceptorManager)control.get_manager("ServiceResolver");
for (int i = 0; i < _serviceNames.length; i++) {

manager.add(_serviceNames[i], this);
}
/**** end of installation ***/

if (_orb.debug)
_orb.println("UtilityServices package has been initialized");

}

public void init_complete(org.omg.CORBA.ORB orb) {
// can be used for post-initialization processing if desired

}

public void shutdown(org.omg.CORBA.ORB orb) {
_orb = null;
_serviceNames = null;

}

public org.omg.CORBA.Object resolve(java.lang.String service) {
org.omg.CORBA.Object srv = null;
byte[] serviceId = service.getBytes();

try {
if (service == "TimeService") {

srv = UtilityServices.TimeServiceHelper.bind(_orb, "/time_service_poa", serviceId);
}
else if (service == "WeatherService") {

srv = UtilityServices.WeatherServiceHelper.bind(_orb,"/weather_service_poa",
serviceId);

}
} catch (org.omg.CORBA.SystemException e) {

if (_orb.debug)
_orb.println("UtilityServices package resolve error: " + e);

srv = null;
}

return srv;
}

}

Code listings

The SampleServerLoader object is responsible for loading POALifeCycleInterceptor class
and instantiating an object. This class is linked to the ORB dynamically by

U s i n g i n t e r c e p t o r s 24-11

E x a m p l e i n t e r c e p t o r s

vbroker.orb.dynamicLibs. The SampleServerLoader class contains the init() method
which is called by the ORB during initialization. Its sole purpose is to install a
POALifeCycleInterceptor object by creating it and registering it with the
InterceptorManager.

24-12 P r o g r a m m e r ’ s G u i d e

E x a m p l e i n t e r c e p t o r s

Code sample 24.8 SampleServerLoader.java

import java.util.*;
import com.inprise.vbroker.orb.*;
import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.PortableServerExt.*;

public class SampleServerLoader implements ServiceLoader {
public void init(org.omg.CORBA.ORB orb) {

try {
InterceptorManagerControl control =

InterceptorManagerControlHelper.narrow(
orb.resolve_initial_references("VisiBrokerInterceptorControl"));

// Install a POA interceptor
POALifeCycleInterceptorManager poa_manager =

(POALifeCycleInterceptorManager) control.get_manager("POALifeCycle");
poa_manager.add(new SamplePOALifeCycleInterceptor());

} catch(Exception e) {
e.printStackTrace();
throw new org.omg.CORBA.INITIALIZE(e.toString());

}
System.out.println("============>SampleServerLoader:Interceptors loaded");

}
public void init_complete(org.omg.CORBA.ORB orb) {
}
public void shutdown(org.omg.CORBA.ORB orb) {
}

}

The SamplePOALifeCycleInterceptor object is invoked every time a POA is created or
destroyed. Because we have two POAs in the client_server example, this interceptor
is invoked twice, first during rootPOA creation and then at the creation of myPOA. We
install the SampleServerInterceptor only at the creation of myPOA.

Code sample 24.9 SamplePOALifeCycleInterceptor.java

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.PortableServerExt.*;
import com.inprise.vbroker.IOP.*;

public class SamplePOALifeCycleInterceptor implements POALifeCycleInterceptor {
public void create(org.omg.PortableServer.POA poa,

org.omg.CORBA.PolicyListHolder policies_holder,
IORValueHolder iorTemplate,
InterceptorManagerControl control) {

if(poa.the_name().equals("bank_agent_poa")) {
// Add the Request-level interceptor
SampleServerInterceptor interceptor =

new SampleServerInterceptor("MyServerInterceptor");
// Get the IORCreation interceptor manager
ServerRequestInterceptorManager manager =

(ServerRequestInterceptorManager)control.get_manager("ServerRequest");
// Add the interceptor
manager.add(interceptor);
System.out.println("============>In POA " + poa.the_name() +

", 1 ServerRequest interceptor installed");

U s i n g i n t e r c e p t o r s 24-13

E x a m p l e i n t e r c e p t o r s

} else
System.out.println("============>In POA " + poa.the_name() + ". Nothing to do.");

}
public void destroy(org.omg.PortableServer.POA poa) {

// To be a trace!
System.out.println("============> SamplePOALifeCycleInterceptor destroy");

}
}

The SampleServerInterceptor object is invoked every time a request is received at or a
reply is made by the server.

Code sample 24.10 SampleServerInterceptor.java

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.IOP.*;
import com.inprise.vbroker.CORBA.portable.*;

public class SampleServerInterceptor implements ServerRequestInterceptor {
private String _id;
public SampleServerInterceptor(String id) {

_id = id;
}
public void preinvoke(org.omg.CORBA.Object target,

String operation,
ServiceContext[] service_contexts,
InputStream payload,
Closure closure) {

// Put the _id of this ServerRequestInterceptor into the closure object
closure.object = new String(_id);
System.out.println("============> SampleServerInterceptor id " +

closure.object + " preinvoke => " + operation);
}

public void postinvoke_premarshal(org.omg.CORBA.Object target,
ServiceContextListHolder service_contexts_holder,
org.omg.CORBA.Environment env,
Closure closure) {

System.out.println("============> SampleServerInterceptor id " +
closure.object + " postinvoke_premarshal");

}
public void postinvoke_postmarshal(org.omg.CORBA.Object target,

OutputStream payload,
Closure closure) {

System.out.println("============> SampleServerInterceptor id " +
closure.object + " postinvoke_postmarshal");

}
public void exception_occurred(org.omg.CORBA.Object target,

org.omg.CORBA.Environment env,
Closure closure) {

System.out.println("============> SampleServerInterceptor id " +
closure.object + " exception_occurred");

}
}

24-14 P r o g r a m m e r ’ s G u i d e

E x a m p l e i n t e r c e p t o r s

The SampleClientInterceptor is invoked every time a request is made by or a reply is
received at the client.

Code sample 24.11 SampleClientInterceptor.java

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.IOP.*;
import com.inprise.vbroker.CORBA.portable.*;

public class SampleClientInterceptor implements ClientRequestInterceptor {
private String _id;
public SampleClientInterceptor(String id) {

_id = id;
}
public void preinvoke_premarshal(org.omg.CORBA.Object target,

String operation,
ServiceContextListHolder service_contexts_holder,
Closure closure) {

// Put the _id of this ClientRequestInterceptor into the closure object
closure.object = new String(_id);
System.out.println("============> SampleClientInterceptor id " +

closure.object +
" preinvoke_premarshal => " + operation);

}
public void preinvoke_postmarshal(org.omg.CORBA.Object target,

OutputStream payload,
Closure closure) {

System.out.println("============> SampleClientInterceptor id " +
closure.object + " preinvoke_postmarshal");

}

public void postinvoke(org.omg.CORBA.Object target,
ServiceContext[] service_contexts,
InputStream payload,
org.omg.CORBA.Environment env,
Closure closure) {

System.out.println("============> SampleClientInterceptor id " +
closure.object + " postinvoke");

}
public void exception_occurred(org.omg.CORBA.Object target,

org.omg.CORBA.Environment env,
Closure closure) {

System.out.println("============> SampleClientInterceptor id " +
closure.object + " exception_occured");

}
}

The loader responsible for loading BindInterceptor objects. This class is linked to the
ORB dynamically by vbroker.orb.dynamicLibs. The SampleClientLoader class contains
the bind() and bind_succeeded() methods. These methods are called by the ORB
during object binding. When the bind succeeds, bind_succeeded() will be called by the
ORB and a BindInterceptor object is installed by creating it and registering it the
InterceptorManager.

U s i n g i n t e r c e p t o r s 24-15

E x a m p l e i n t e r c e p t o r s

Code sample 24.12 SampleClientLoader.java

import java.util.*;
import com.inprise.vbroker.orb.*;
import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.PortableServerExt.*;

public class SampleClientLoader implements ServiceLoader {
public void init(org.omg.CORBA.ORB orb) {

try {
InterceptorManagerControl control =

InterceptorManagerControlHelper.narrow(
orb.resolve_initial_references("VisiBrokerInterceptorControl"));

BindInterceptorManager bind_manager =
(BindInterceptorManager) control.get_manager("Bind");

bind_manager.add(new SampleBindInterceptor());
} catch(Exception e) {

e.printStackTrace();
throw new org.omg.CORBA.INITIALIZE(e.toString());

}
System.out.println("Bind Interceptors loaded");

}
public void init_complete(org.omg.CORBA.ORB orb) {
}
public void shutdown(org.omg.CORBA.ORB orb) {
}

}

The SampleBindInterceptor is invoked when the client attempts to bind to an object.
The first step on the client side after ORB initialization is to bind to an AccountManager
object. This bind invokes the SampleBindInterceptor and a SampleClientInterceptor is
installed when the bind succeeds.

Code sample 24.13 SampleBindInterceptor.java

import com.inprise.vbroker.interceptor.*;
import com.inprise.vbroker.IOP.*;

public class SampleBindInterceptor implements BindInterceptor {
public IORValue bind(IORValue ior, org.omg.CORBA.Object target,

boolean rebind, Closure closure) {
// To be a trace!
System.out.println("============> SampleBindInterceptor bind");
return null;

}
public IORValue bind_failed(IORValue ior, org.omg.CORBA.Object target,

Closure closure) {
// To be a trace!
System.out.println("============> SampleBindInterceptor bind_failed");
return null;

}
public void bind_succeeded(IORValue ior, org.omg.CORBA.Object target,

int Index, InterceptorManagerControl control,
Closure closure) {

// To be a trace!
System.out.println("============> SampleBindInterceptor bind_succeeded");

24-16 P r o g r a m m e r ’ s G u i d e

P a s s i n g i n f o r m a t i o n b e t w e e n y o u r i n t e r c e p t o r s

// Create the Client Request interceptor:
SampleClientInterceptor interceptor =
new SampleClientInterceptor("MyClientInterceptor");
// Get the manager
ClientRequestInterceptorManager manager =

(ClientRequestInterceptorManager)control.get_manager("ClientRequest");
// Add CRQ to the list:
manager.add(interceptor);

}
public void exception_occurred(IORValue ior, org.omg.CORBA.Object target,

org.omg.CORBA.Environment env,
Closure closure) {

// To be a trace!
System.out.println("============> SampleBindInterceptor exception_occured");

}
}

Passing information between your interceptors
Closure objects are created by the ORB at the beginning of certain sequences of
interceptor calls. The same Closure object is used for all calls in that particular
sequence. The Closure object contains a single public data field, object, of type
java.lang.Object which may be set by the interceptor to keep state information. The
sequences for which Closure objects are created vary depending on the interceptor
type. In the ClientRequestInterceptor, a new Closure is created before calling
preinvoke_premarshal and the same Closure is used for that request until the request
completes, successfully or not. Likewise in the ServerInterceptor, a new Closure is
created before calling preinvoke, and that Closure is used for all interceptor calls
related to processing that particular request.

For an example of how Closure is used, see the interceptors/client_server directory in
the examples directory in your VisiBroker for Java installation.

The Closure object can be cast to ExtendedClosure to obtain response_expected and
request_id as follows:

int my response_expected = ((ExtendedClosure)closure) . reqInfo.response_expected;
int my request_id = ((ExtendedClosure)closure) .reqInfo.request_id;

U s i n g o b j e c t w r a p p e r s 25-1

C h a p t e r

25
Chapter25Using object wrappers

This chapter describes the object wrapper feature of VisiBroker, which allows your
applications to be notified or to trap an operation request for an object.

Overview
VisiBroker’s object wrapper feature allows you to define methods that are called
when a client application invokes a method on a bound object or when a server
application receives an operation request. Unlike the interceptor feature described in
Chapter 24 which is invoked at the ORB level, object wrappers are invoked before an
operation request has been marshalled. In fact, you can design object wrappers to
return results without the operation request having ever been marshalled, sent across
the network, or actually presented to the object implementation.

Object wrappers may be installed on just the client-side, just the server-side, or they
may be installed in both the client and server portions of a single application.

Here are a few examples of how you might use object wrappers in your application,

• Log information about the operation requests issued by a client or received by a
server.

• Measure the time required for operation requests to complete.

• Cache the results of frequently issued operation requests so results can be
immediately returned, without actually contacting the object implementation each
time.

Note Externalizing a reference to an object for which object wrappers have been installed,
using the ORB Object’s object_to_string method, will not propagate those wrappers to
the recipient of the stringified reference if the recipient is a different process.

25-2 P r o g r a m m e r ’ s G u i d e

U n - t y p e d o b j e c t w r a p p e r s

Typed and un-typed object wrappers

VisiBroker offers two kinds of object wrappers; typed and un-typed. You can mix the
use of both of these types of wrappers within a single application. For information on
typed wrappers, see “Typed object wrappers” on page 25-8. Table 25.1 summarizes
the important distinctions between these two types of object wrappers.

Special idl2java requirements

Whenever you plan to use typed or un-typed object wrappers, you must ensure that
you use the -obj_wrapper option with the idl2java compiler when you generate the
code for your applications. This will result in the generation of

• Object wrapper base class for each of your interfaces
• Additional Helper class methods for adding or removing object wrappers.

Example applications

The examples/interceptors/objectWrappers directory contains three sample client and
server applications that will be used to illustrate both the typed and untyped object
wrapper concepts in this chapter.

Un-typed object wrappers
Un-typed object wrappers allow you to define methods that are to be invoked before
an operation request is processed, after an operation request is processed, or both.
Un-typed wrappers can be installed for client or server applications and you can also
install multiple versions.

You may also mix the use of both typed and un-typed object wrappers within the
same client or server application.

By default, un-typed object wrappers have a global scope and will be invoked for any
operation request. You can design un-typed wrappers so that they have no effect for
operation requests on object types in which you are not interested.

Note Unlike typed object wrappers, un-typed wrapper methods do not receive the
arguments that the stub or object implementation would receive nor can they prevent
the invocation of the stub or object implementation.

Table 25.1 Comparison of features for typed and un-typed object wrappers

Features Typed Un-typed

Receives all arguments that are to be passed to the stub. Yes No

Can return control to the caller without actually invoking the next
wrapper, the stub, or the object implementation.

Yes No

Will be invoked for all operation requests for all objects. No Yes

U s i n g o b j e c t w r a p p e r s 25-3

U n - t y p e d o b j e c t w r a p p e r s

Figure 25.1 shows how an un-typed object wrapper’s pre_method is invoked before the
client stub method and how the post_method is invoked afterward. It also shows the
calling sequence on the server-side with respect to the object implementation.

Figure 25.1 Single un-typed object wrapper

Using multiple, un-typed object wrappers

Figure 25.2 Multiple un-typed object wrappers

Object
implementation

Client wrapper
pre_method

Client wrapper
post_method

Client application

Host A

Servant

Server wrapper
post_method

Operation request and reply via TCP/IP

ORB

Stub

Server wrapper
pre_method

ORB

Host B

Object
implementationClient

application

Servant

Client
wrapper_1
pre_method

ORB

Host BHost A

Client
wrapper_2
pre_method

Client
wrapper_1
post_method

Client
wrapper_2
post_method

Server
wrapper_2
pre_method

Server
wrapper_1
pre_method

Server
wrapper_1
post_method

Server
wrapper_2
post_method

ORB

Operation request and reply via TCP/IP

Servant

25-4 P r o g r a m m e r ’ s G u i d e

U s i n g u n - t y p e d o b j e c t w r a p p e r s

Order of pre_method invocation

When a client invokes a method on a bound object, each un-typed object wrapper
pre_method will receive control before the client’s stub routine is invoked. When a
server receives an operation request, each un-typed object wrapper pre_method will be
invoked before the object implementation receives control. In both cases, the first
pre_method to receive control will be the one belonging to the object wrapper that was
registered first.

Order of post_method invocation

When a server’s object implementation completes its processing, each post_method will
be invoked before the reply is sent to the client. When a client receives a reply to an
operation request, each post_method will be invoked before control is returned to the
client. In both cases, the first post_method to receive control will be the one belonging
to the object wrapper that was registered last.

Note If you choose to use both typed and un-typed object wrappers, see “Combined use of
un-typed and typed object wrappers” on page 25-14 for information on the
invocation order.

Using un-typed object wrappers
You must use the following steps when using un-typed object wrappers. Each step is
discussed, in turn.

1 Identify the interface, or interfaces, for which you want to create a un-typed object
wrapper.

2 Generate the code from your IDL specification using the idl2java compiler using
the -obj_wrapper option.

3 Create an implementation for your un-typed object wrapper factory, derived from
the UntypedObjectWrapperFactory class.

4 Create an implementation for your un-typed object wrapper, derived from the
UntypedObjectWrapper class.

5 Modify your client or server application to access the appropriate type of
ChainUntypedObjectWrapperFactory.

6 Modify your application to create your un-typed object wrapper factory.

7 Use the ChainUntypedObjectWrapperFactory’s add method to add your factory to the
chain.

Implementing an un-typed object wrapper factory

The implementation of the TimingUnTypedObjectWrapperFactory, part of the
objectWrappers sample applications, shows how to define an un-typed object wrapper

U s i n g o b j e c t w r a p p e r s 25-5

U s i n g u n - t y p e d o b j e c t w r a p p e r s

factory, derived from the UntypedObjectWrapperFactory. Your factory’s create method
will be invoked to create an un-typed object wrapper whenever a client binds to an
object or a server invokes a method on an object implementation. The create method
receives the target object, which allows you to design your factory to not create an
un-typed object wrapper for those object types you wish to ignore. It also receives an
enum specifying whether the object wrapper created is for the server-side object
implementation or the client-side object.

Code sample 25.1 TimingUnTypedObjectWrapperFactory implementation

package UtilityObjectWrappers;
import com.inprise.vbroker.interceptor.*;

public class TimingUntypedObjectWrapperFactory implements
UntypedObjectWrapperFactory {

public UntypedObjectWrapper create(org.omg.CORBA.Object target,
com.inprise.vbroker.interceptor.Location loc) {

return new TimingUntypedObjectWrapper();
}

}

Implementing an un-typed object wrapper

The following code sample shows the implementation of the TimingObjectWrapper.
Your un-typed wrapper must be derived from the UntypedObjectWrapper class, and you
may provide an implementation for both the pre_method or post_method methods in
your un-typed object wrapper.

Once your factory has been installed, either automatically by the factory’s
constructor or manually by invoking the ChainUntypedObjectWrapper::add method, an
un-typed object wrapper object will be created automatically whenever your client
binds to an object or when your server invokes a method on an object
implementation.

The pre_method shown in the following code sample obtains the current time, saves it
in a private variable, and prints a message. The post_method also obtains the current
time, determines how much time that has elapsed since the pre_method was called, and
prints the elapsed time.

Code sample 25.2 TimingUnTypedObjectWrapper implementation

package UtilityObjectWrappers;
import com.inprise.vbroker.interceptor.*;

public class TimingUntypedObjectWrapper implements UntypedObjectWrapper {
private long time;
public void pre_method(String operation,

org.omg.CORBA.Object target,
Closure closure) {

System.out.println("Timing: " +
((com.inprise.vbroker.CORBA.Object) target)._object_name() + "->"
+ operation + "()");

time = System.currentTimeMillis();
}

25-6 P r o g r a m m e r ’ s G u i d e

U s i n g u n - t y p e d o b j e c t w r a p p e r s

public void post_method(String operation,
org.omg.CORBA.Object target,
org.omg.CORBA.Environment env,
Closure closure) {

long diff = System.currentTimeMillis() - time;
System.out.println("Timing: Time for call \t" + ((com.inprise.vbroker.CORBA.Object)

target)._object_name() + "->" + operation + "() = " + diff + " ms.");
}

}

pre_method and post_method parameters
Both the pre_method and post_method receive these parameters:

The post_method also receives an Environment parameter, which can be used to inform
the user of any exceptions that might have occurred during the previous steps of the
method invocation.

Creating and registering un-typed object wrapper factories

On the client side, objects will be wrapped only if untyped object wrapper factories
are created and registered before the objects are bound. On the server side, untyped
object wrappers factories which are created and registered before an object
implementation is called.

The following code shows a portion of the sample file UntypedClient.java, which
shows the creation and installation of two un-typed object wrapper factories for a
client. The factories are created after the ORB has been initialized, but before the
client binds to any objects.

Code sample 25.3 Installing two client-side, un-typed object wrapper factories

// UntypedClient.java
import com.inprise.vbroker.interceptor.*;

public class UntypedClient {
public static void main(String[] args) throws Exception {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
doMain (orb, args);

}

Table 25.2 Common arguments for the pre_method and post_method methods

Parameter Description

operation Name of the operation that was requested on the target object.

target Target object.

closure Area where data can be saved across method invocations for this wrapper.

U s i n g o b j e c t w r a p p e r s 25-7

U s i n g u n - t y p e d o b j e c t w r a p p e r s

public static void doMain(org.omg.CORBA.ORB orb, String[] args) throws Exception {
ChainUntypedObjectWrapperFactory Cfactory =

ChainUntypedObjectWrapperFactoryHelper.narrow(
orb.resolve_initial_references("ChainUntypedObjectWrapperFactory")

);
Cfactory.add(new UtilityObjectWrappers.TimingUntypedObjectWrapperFactory(),

Location.CLIENT);
Cfactory.add(new UtilityObjectWrappers.TracingUntypedObjectWrapperFactory(),

Location.CLIENT);
// Locate an account manager. . . .

}
}

The following code sample shows the sample file UntypedServer.Java, which shows the
creation and registration of un-typed object wrapper factories for a server. The
factories are created after the ORB is initialized, but before any object
implementations are created.

Code sample 25.4 Installing a server-side, un-typed object wrapper factory

// UntypedServer.java
import com.inprise.vbroker.interceptor.*;
import org.omg.PortableServer.*;
import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValue;
import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValueHelper;
import com.inprise.vbroker.PortableServerExt.BIND_SUPPORT_POLICY_TYPE;

public class UntypedServer {
public static void main(String[] args) throws Exception {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
ChainUntypedObjectWrapperFactory Sfactory =

ChainUntypedObjectWrapperFactoryHelper.narrow
(orb.resolve_initial_references("ChainUntypedObjectWrapperFactory"));

Sfactory.add(new UtilityObjectWrappers.TracingUntypedObjectWrapperFactory(),
Location.SERVER);

// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create a BindSupport Policy that makes POA register each servant
// with osagent
org.omg.CORBA.Any any = orb.create_any();
BindSupportPolicyValueHelper.insert(any, BindSupportPolicyValue.BY_INSTANCE);
org.omg.CORBA.Policy bsPolicy =

orb.create_policy(BIND_SUPPORT_POLICY_TYPE.value, any);
// Create policies for our testPOA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy
(LifespanPolicyValue.PERSISTENT), bsPolicy

};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa",

rootPOA.the_POAManager(),
policies);

25-8 P r o g r a m m e r ’ s G u i d e

T y p e d o b j e c t w r a p p e r s

// Create the account manager object.
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);
// Activate the POA manager
rootPOA.the_POAManager().activate();
System.out.println("AccountManager: BankManager is ready.");
for(int i = 0; i < args.length; i++) {

if(args[i].equalsIgnoreCase("-runCoLocated")) {
if(args[i+1].equalsIgnoreCase("Client")){

Client.doMain(orb, new String[0]);
} else if(args[i+1].equalsIgnoreCase("TypedClient")){

TypedClient.doMain(orb, new String[0]);
}
if(args[i+1].equalsIgnoreCase("UntypedClient")){

UntypedClient.doMain(orb, new String[0]);
}
System.exit(1);

}
}
// Wait for incoming requests
orb.run();

}
}

Removing un-typed object wrappers

The ChainUntypedObjectWrapperFactory class’ remove method can be used to remove an
un-typed object wrapper factory from a client or server application. You must specify
a location when removing a factory. This means that if you have added a factory with
a location of Both, you can selectively remove it from the Client location, the Server
location, or Both.

Note Removing one or more object wrapper factories from a client will not affect objects of
that class that are already bound by the client. Only subsequently bound objects will
be affected. Removing object wrapper factories from a server will not affect object
implementations that have already been created. Only subsequently created object
implementations will be affected.

Typed object wrappers
When you implement a typed object wrapper for a particular class, you define the
processing that is to take place when a method is invoked on a bound object. Figure
25.3 shows how an object wrapper method on the client is invoked before the client
stub class method and how an object wrapper on the server-side is invoked before
the server’s implementation method.

U s i n g o b j e c t w r a p p e r s 25-9

T y p e d o b j e c t w r a p p e r s

Note Your typed object wrapper implementation is not required to implement all methods
offered by the object it is wrapping.

You may also mix the use of both typed and un-typed object wrappers within the
same client or server application. For more information, see “Combined use of
un-typed and typed object wrappers” on page 25-14.

Figure 25.3 Single typed object wrapper registered

Using multiple, typed object wrappers

You may implement and register more than one typed object wrapper for a particular
class of object, as shown in Figure 25.4. On the client side, the first object wrapper
registered is client_wrapper_1, so its methods will be the first to receive control. After
performing its processing, the client_wrapper_1 method may pass control to the next
object’s method in the chain or it may return control to the client. On the server side,
the first object wrapper registered is server_wrapper_1, so its methods will be the first
to receive control. After performing its processing, the server_wrapper_1 method may
pass control to the next object’s method in the chain or it may return control to the
servant.

Host B

Stub

Client
application

Wrapper
method

Object
implementation

Wrapper
method

ORBORB

Servant

Host A

Operation request and reply via TCP/IP

25-10 P r o g r a m m e r ’ s G u i d e

T y p e d o b j e c t w r a p p e r s

Figure 25.4 Multiple, typed object wrappers registered

Order of invocation

The methods for a typed object wrapper that are register for a particular class will
receive all of the arguments that are normally passed to the stub method on the client
side or to skeleton on the server side. Each object wrapper method can pass control to
the next wrapper method in the chain by invoking the parent class’ method,
super.<method_name>. If an object wrapper wishes to return control without calling the
next wrapper method in the chain, it can return with the appropriate return value.

A typed object wrapper method’s ability to return control to the previous method in
the chain allows you to create a wrapper method that never invokes a client stub or
object implementation. For example, you can create an object wrapper method that
caches the results of a frequently requested operation. In this scenario, the first
invocation of a method on the bound object results in an operation request being sent
to the object implementation. As control flows back through the object wrapper
method, the result is stored. On subsequent invocations of the same method, the
object wrapper method can simply return the cached result without actually issuing
the operation request to the object implementation.

If you choose to use both typed and un-typed object wrappers, see “Combined use of
un-typed and typed object wrappers” on page 25-14 for information on the
invocation order.

Host A

Operation request and reply via TCP/IP

Client
wrapper_1
method

Client
application

Client
wrapper_2
method

Client
wrapper_3
method

Server
wrapper_1
method

Object
implementation

Server
wrapper_2
method

Servant

ORB

Stub

ORB

Host B

U s i n g o b j e c t w r a p p e r s 25-11

U s i n g t y p e d o b j e c t w r a p p e r s

Typed object wrappers with co-located client and servers

When the client and server are both packaged in the same process, the first object
wrapper method to receive control will belong to the first client-side object wrapper
that was installed. Figure 25.5 illustrates the invocation order.

Figure 25.5 Typed object wrapper invocation order

Using typed object wrappers
You must use the following steps when using typed object wrappers. Each step is
discussed in turn.

1 Identify the interface, or interfaces, for which you want to create a typed object
wrapper.

2 Generate the code from your IDL specification using the idl2java compiler using
the -obj_wrapper option.

3 Derive your typed object wrapper class from the <interface_name>ObjectWrapper
class generated by the idl2java compiler and provide an implementation of those
methods you wish to wrap.

4 Modify your application to register the typed object wrapper.

Implementing typed object wrappers

You derive typed object wrappers from the <interface_name>ObjectWrapper class that is
generated by the idl2java compiler. The following code shows the implementation of
a typed object wrapper for the Account interface. Notice that this class is derived from
the AccountObjectWrapper interface and provides a simple caching implementation of
the balance method, which provides these processing steps:

1 Check the _initialized flag to see if this method has been invoked before.

2 If this is the first invocation, the balance method on the next object in the chain is
invoked and the result is saved to _balance, _initialized is set to true, and the value
is returned.

3 If this method has been invoked before, simply return the cached value.

Client Server
wrapper_2
method

Object
implementation

Process address space

Server
wrapper_1
method

Client
wrapper_2
method

Client
wrapper_1
method

25-12 P r o g r a m m e r ’ s G u i d e

U s i n g t y p e d o b j e c t w r a p p e r s

Code sample 25.5 Portion of the cachingAccountObjectWrapper implementation

package BankWrappers;
public class CachingAccountObjectWrapper extends Bank.AccountObjectWrapper {

private boolean _initialized = false;
private float _balance;
public float balance() {

System.out.println("+ CachingAccountObjectWrapper: Before calling balance: ");
try {

if(!_initialized) {
_balance = super.balance();
_initialized = true;

} else {
System.out.println("+ CachingAccountObjectWrapper: Returning Cached value");

}
return _balance;

} finally {
System.out.println("+ CachingAccountObjectWrapper: After calling balance: ");

}
}

}

Registering typed object wrappers for a client

A typed object wrapper is registered on the client-side by invoking the
addClientObjectWrapperClass method that is generated for the class by the idl2java
compiler. Client-side object wrappers must be registered after the ORB.init method
has been called, but before any objects are bound. The following code shows a
portion of the TypedClient.java file that creates and registers a typed object wrapper.

Code sample 25.6 Installing a client-side, typed object wrapper

// TypedClient.java
import com.inprise.vbroker.interceptor.*;
public class TypedClient {

public static void main(String[] args) throws Exception {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
doMain (orb, args);

}
public static void doMain(org.omg.CORBA.ORB orb, String[] args) {

// Add a typed object wrapper for Account objects
Bank.AccountHelper.addClientObjectWrapperClass(orb,

BankWrappers.CachingAccountObjectWrapper.class);
// Locate an account manager.
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "BankManager");
. . .

}
}

The ORB keeps track of any object wrappers that have been registered for it on the
client-side. When a client invokes the _bind method to bind to an object of that type,
the necessary object wrappers will be created. If a client binds to more than one

U s i n g o b j e c t w r a p p e r s 25-13

U s i n g t y p e d o b j e c t w r a p p e r s

instance of a particular class of object, each instance will have its own set of
wrappers.

Registering typed object wrappers for a server

As with a client application, a typed object wrapper is registered on the server-side
by invoking the addServerObjectWrapperClass method offered by the Helper class.
Server-side, typed object wrappers must be registered after the ORB.init method has
been called, but before an object implementation services a request. The following
code shows a portion of the TypedServer.java file that installs a typed object wrapper.

Code sample 25.7 Installing a server-side, typed object wrapper

// TypedServer.java
import org.omg.PortableServer.*;
import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValue;
import com.inprise.vbroker.PortableServerExt.BindSupportPolicyValueHelper;
import com.inprise.vbroker.PortableServerExt.BIND_SUPPORT_POLICY_TYPE;

public class TypedServer {
public static void main(String[] args) throws Exception {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Add two typed object wrappers for AccountManager objects
Bank.AccountManagerHelper.addServerObjectWrapperClass(orb,
BankWrappers.SecureAccountManagerObjectWrapper.class);
Bank.AccountManagerHelper.addServerObjectWrapperClass(orb,

BankWrappers.CachingAccountManagerObjectWrapper.class);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create a BindSupport Policy that makes POA register each servant
// with osagent
org.omg.CORBA.Any any = orb.create_any();
BindSupportPolicyValueHelper.insert(any, BindSupportPolicyValue.BY_INSTANCE);
org.omg.CORBA.Policy bsPolicy =

orb.create_policy(BIND_SUPPORT_POLICY_TYPE.value, any);
// Create policies for our testPOA
org.omg.CORBA.Policy[] policies = {

rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT), bsPolicy
};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("lilo", rootPOA.the_POAManager(), policies);
// Create the account manager object.
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);
// Activate the POA manager
rootPOA.the_POAManager().activate();
System.out.println("AccountManager: BankManager is ready.");

25-14 P r o g r a m m e r ’ s G u i d e

C o m b i n e d u s e o f u n - t y p e d a n d t y p e d o b j e c t w r a p p e r s

for(int i = 0; i < args.length; i++) {
if (args[i].equalsIgnoreCase("-runCoLocated")) {

if(args[i+1].equalsIgnoreCase("Client")){
Client.doMain(orb, new String[0]);

} else if(args[i+1].equalsIgnoreCase("TypedClient")){
TypedClient.doMain(orb, new String[0]);

}
if(args[i+1].equalsIgnoreCase("UntypedClient")){

UntypedClient.doMain(orb, new String[0]);
}
System.exit(1);

}
}
// Wait for incoming requests
orb.run();

}
}

If a server creates more than one instance of a particular class of object, a set of
wrappers will be created for each instance.

Removing typed object wrappers

The Helper class also provides methods for removing a typed object wrapper from a
client or server application. See the VisiBroker for Java Reference for more
information.

Note Removing one or more object wrappers from a client will not affect objects of that
class that are already bound by the client. Only subsequently bound objects will be
affected. Removing object wrappers from a server will not affect object
implementations that have already serviced requests. Only subsequently created
object implementations will be affected.

Combined use of un-typed and typed object wrappers
If you choose to use both typed and un-typed object wrappers in your application, all
pre_method methods defined for the un-typed wrappers will be invoked prior to any
typed object wrapper methods defined for an object. Upon return, all typed object
wrapper methods defined for the object will be invoked prior to any post_method
methods defined for the un-typed wrappers.

The sample applications Client.java and Server.java make use of a sophisticated
design that allows you to use command-line properties to specify which, if any,
typed and un-typed object wrappers are to be used.

U s i n g o b j e c t w r a p p e r s 25-15

C o m b i n e d u s e o f u n - t y p e d a n d t y p e d o b j e c t w r a p p e r s

Command-line arguments for typed wrappers

The typed wrappers may are enabled by specifying the following on the
command-line:

1 -Dvbroker.orb.dynamicLibs=BankWrappers.Init
2 Using the one or more of the properties summarized Table 25.3.

Initializer for typed wrappers

The typed wrappers are defined in the BankWrappers package and include a service
initializer, BankWrappers/Init.java, shown in the following code. This initializer will be
invoked if you specify -Dvbroker.orb.dynamicLibs=BankWrappers.Init on the command-
line when starting the client or server with vbj. Various typed object wrappers can be
installed, based on the command-line properties you supply, which are summarized
in Table 25.3.

Code sample 25.8 Service initializer for BankWrappers

package BankWrappers;
import java.util.*;
import com.inprise.vbroker.orb.ORB;
import com.inprise.vbroker.properties.PropertyManager;
import com.inprise.vbroker.interceptor.*;
public class Init implements ServiceLoader {

com.inprise.vbroker.orb.ORB _orb;
public void init(final org.omg.CORBA.ORB orb) {

_orb = (ORB) orb;
PropertyManager pm = _orb.getPropertyManager();
// install my CachingAccountObjectWrapper
String val = pm.getString("CachingAccount", this.toString());
Class c = CachingAccountObjectWrapper.class;
if(!val.equals(this.toString())) {

Table 25.3 Command-line properties for enabling or disabling BankWrappers

BankWrappers properties Description

-DCachingAccount[=<client|server>] Installs a typed object wrapper that caches the results
of the balance method for a client or a server. If no
value for sub-property is specified, both the client and
server wrappers are installed.

-DCachingAccountManager[=<client|server>] Installs a typed object wrapper that caches the results
of the open method for a client or a server. If no value
for the sub-property is specified, both the client and
server wrappers are installed.

-DSecureAccountManager[=<client|server>] Installs a typed object wrapper that detects
unauthorized users passed on the open method for a
client or a server. If no value for sub-property is
specified, both the client and server wrappers are
installed.

25-16 P r o g r a m m e r ’ s G u i d e

C o m b i n e d u s e o f u n - t y p e d a n d t y p e d o b j e c t w r a p p e r s

if(val.equalsIgnoreCase("client")) {
Bank.AccountHelper.addClientObjectWrapperClass(orb, c);

} else if(val.equalsIgnoreCase("server")) {
Bank.AccountHelper.addServerObjectWrapperClass(orb, c);

} else {
Bank.AccountHelper.addClientObjectWrapperClass(orb, c);
Bank.AccountHelper.addServerObjectWrapperClass(orb, c);

}
}
// install my CachingAccountManagerObjectWrapper
val = pm.getString("CachingAccountManager", this.toString());
c = CachingAccountManagerObjectWrapper.class;
if(!val.equals(this.toString())) {

if(val.equalsIgnoreCase("client")){
Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);

} else if(val.equalsIgnoreCase("server")) {
Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);

} else {
Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);
Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);

}
}
// install my CachingAccountManagerObjectWrapper
val = pm.getString("SecureAccountManager",

this.toString());
c = SecureAccountManagerObjectWrapper.class;
if(!val.equals(this.toString())) {

if(val.equalsIgnoreCase("client")){
Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);

} else if(val.equalsIgnoreCase("server")) {
Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);

} else {
Bank.AccountManagerHelper.addClientObjectWrapperClass(orb, c);
Bank.AccountManagerHelper.addServerObjectWrapperClass(orb, c);

}
}

}
public void init_complete(org.omg.CORBA.ORB orb) {}
public void shutdown(org.omg.CORBA.ORB orb) {}

}

Command-line arguments for un-typed wrappers

The un-typed wrappers may are enabled by specifying the following on the
command-line:

1 -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init

U s i n g o b j e c t w r a p p e r s 25-17

C o m b i n e d u s e o f u n - t y p e d a n d t y p e d o b j e c t w r a p p e r s

2 Using the one or more of the properties summarized Table 25.4.

Initializers for un-typed wrappers

The un-typed wrappers are defined in the UtilityObjectWrappers package and include
a service initializer, UtilityObjectWrappers/Init.java, shown below. This initializer will
be invoked if you specify -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init on the
command-line when starting the client or server with vbj. Various un-typed object
wrappers can be installed, based on the command-line properties you supply, which
are summarized in Table 25.4.

Code sample 25.9 Service initializer for UtilityObjectWrappers

package UtilityObjectWrappers;
import java.util.*;
import com.inprise.vbroker.orb.ORB;
import com.inprise.vbroker.properties.PropertyManager;
import com.inprise.vbroker.interceptor.*;

public class Init implements ServiceLoader {
com.inprise.vbroker.orb.ORB _orb;
public void init(final org.omg.CORBA.ORB orb) {

_orb = (ORB) orb;
PropertyManager pm= _orb.getPropertyManager();
try {

ChainUntypedObjectWrapperFactory factory =
ChainUntypedObjectWrapperFactoryHelper.narrow(

orb.resolve_initial_references("ChainUntypedObjectWrapperFactory"));
// install my Timing ObjectWrapper
String val = pm.getString("Timing", this.toString());
if(!val.equals(this.toString())) {

UntypedObjectWrapperFactory f= new TimingUntypedObjectWrapperFactory();
if(val.equalsIgnoreCase("client")){

factory.add(f, Location.CLIENT);
} else if(val.equalsIgnoreCase("server")) {

factory.add(f, Location.SERVER);
} else {

factory.add(f, Location.BOTH);
}

}

Table 25.4 Command-line properties for enabling or disabling UtilityObjectWrappers

UtilityObjectWrappers properties Description

-DTiming[=<client|server>] Installs an un-typed object wrapper that timing information
for a client or a server. If no value for the sub-property is
specified, both the client and server wrappers are installed.

-DTracing[=<client|server>] Installs an un-typed object wrapper that tracing information
for a client or a server. If no value for the sub-property is
specified, both the client and server wrappers are installed.

25-18 P r o g r a m m e r ’ s G u i d e

C o m b i n e d u s e o f u n - t y p e d a n d t y p e d o b j e c t w r a p p e r s

// install my Tracing ObjectWrapper
val = pm.getString("Tracing", this.toString());
if(!val.equals(this.toString())) {

UntypedObjectWrapperFactory f= new TracingUntypedObjectWrapperFactory();
if(val.equalsIgnoreCase("client")){

factory.add(f, Location.CLIENT);
} else if(val.equalsIgnoreCase("server")) {

factory.add(f, Location.SERVER);
} else {

factory.add(f, Location.BOTH);
}

}
} catch(org.omg.CORBA.ORBPackage.InvalidName e) {

return;
}

}

public void init_complete(org.omg.CORBA.ORB orb) {}
public void shutdown(org.omg.CORBA.ORB orb) {}

}

Executing the sample applications

Before executing the sample applications, make sure that an osagent is running on
your network. You can then execute the server application without any tracing or
timing object wrappers by using the command

Example prompt> vbj Server

Note The server is designed as a co-located application. It implements both the server and
a client.

From another window, you can execute the client application without any tracing or
timing object wrappers to query the balance in a user’s account using the command

Example prompt> vbj Client John

You can also execute this command if want a default name to be used.

Example prompt> vbj Client

Turning on timing and tracing object wrappers
To execute the client with un-typed timing and tracing object wrappers enabled, use
this command:

Example prompt> vbj -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init -DTiming=client \
-DTracing=client Client John

To execute the server with un-typed wrappers for timing and tracing enabled, use
this command:

Example prompt> vbj -Dvbroker.orb.dynamicLibs=UtilityObjectWrappers.Init -DTiming=server\
-DTracing=server Server

U s i n g o b j e c t w r a p p e r s 25-19

C o m b i n e d u s e o f u n - t y p e d a n d t y p e d o b j e c t w r a p p e r s

Turning on caching and security object wrappers
To execute the client with the typed wrappers for caching and security enabled, use
this command:

Example prompt> vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init -DCachingAccount=client \
-DCachingAccountManager=client\
-DSecureAccountManager=client
Client John

To execute the server with typed wrappers for caching and security enabled, use this
command:

Example prompt>vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init -DCachingAccount=server \
-DCachingAccountManager=server \
-DSecureAccountManager=server \
Server

Turning on typed and un-typed wrappers
To execute the client with all typed and un-typed wrappers enabled, use this
command:

Example prompt> vbj -DOvbroker.orb.dynamicLibs=BankWrappers.Init, UtilityObjectWrappers.Init \
-DCachingAccount=client \
-DCachingAccountManager=client\
-DSecureAccountManager=client \
-DTiming=client \
-DTracing=client \
Client John

To execute the server with all typed and un-typed wrappers enabled, use this
command:

Example prompt>vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init, UtilityObjectWrappers.Init \
-DCachingAccount=server \
-DCachingAccountManager=server\
-DSecureAccountManager=server \
-DTiming=server \
-DTracing=server \
Server

Executing a co-located client and server
Specifying the -runCoLocated command-line option allows you to execute the client
and server within the same process.

Property Description

-runCoLocated Client Executes the Server.java and the Client.java within the same process.

-runCoLocated TypedClient Executes the Server.java and the TypedClient.java within the same
process.

-runCoLocated UntypedClient Executes the Server.java and the UntypedClient.java within the same
process.

25-20 P r o g r a m m e r ’ s G u i d e

C o m b i n e d u s e o f u n - t y p e d a n d t y p e d o b j e c t w r a p p e r s

The following command will execute a co-located server and client with all typed
wrappers enabled, the un-typed timing wrapper enables for just the client, and the
un-typed tracing wrapper enabled for just the server, use this command,

Example prompt> vbj -Dvbroker.orb.dynamicLibs=BankWrappers.Init, UtilityObjectWrappers.Init \
-DCachingAccount -DSecureAccountManager \
-DTiming=client -DTracing=server \
Server -runCoLocated Client

U s i n g R M I o v e r I I O P 26-1

C h a p t e r

26
Chapter26Using RMI over IIOP

This chapter describes the VisiBroker tools which allow you to use RMI over IIOP.

Overview
RMI (remote method invocation) is a Java mechanism which allows objects to be
created and used in a distributed environment. In this sense, RMI is an ORB, which is
language-specific (Java) and non-CORBA compliant. The OMG has issued a
specification, the Java language to IDL Mapping, which allows Java classes written
using RMI to interoperate with CORBA objects using the IIOP encoding.

java2iiop and java2idl tools

VisiBroker has two compilers which allow you to adapt your existing Java classes to
work with other objects using the VisiBroker ORB.

• The java2iiop compiler lets you adapt your RMI-compliant classes to use IIOP by
generating all the proper skeleton, stub, and helper classes.

• The java2idl compiler generates IDL from your Java classes, allowing you to
implement them in languages other than Java.

Using java2iiop
The java2iiop compiler lets you define interfaces and data types in Java, rather than
IDL, that can then be used as interfaces and data types in CORBA. The compiler does
not read Java source code (java files) or IDL, but Java bytecode (class files). The
compiler then generates IIOP-compliant stubs and skeletons needed to do all the
marshalling and communication required for CORBA.

26-2 P r o g r a m m e r ’ s G u i d e

U s i n g j a v a 2 i i o p

Supported interfaces

When you run the java2iiop compiler, it generates the same files as if you had written
the interface in IDL. All primitive data types like the numeric types (short, int, long,
float, and double), string, CORBA objects or interface objects, Any objects, typecode
objects are understood by the java2iiop compiler and mapped to the corresponding
IDL types.

You can use java2iiop on any Java class or interface. For example, if a Java interface
adheres to one of the following rules:

• Extends java.rmi.Remote and all of its methods throw java.rmi.RemoteException
• Extends org.omg.CORBA.Object

then, java2iiop will translate the interface to a CORBA interface in IDL.

Code sample 26.1 illustrates a Java RMI interface. The code example can be found in
examples/rmi-iiop folder of the VisiBroker installation.

Code sample 26.1 Extending java.rmi.Remote

public interface Account extends java.rmi.Remote {
String name() throws java.rmi.RemoteException;
float getBalance() throws java.rmi.RemoteException;
void setBalance(float bal) throws java.rmi.RemoteException;

}

Running java2iiop

You must compile your Java classes before you can use the java2iiop compiler. Once
you have generated bytecode, you may run java2iiop to generate to generate client
stubs, server skeletons, and the associated auxiliary files. For example, after running
java2iiop on the Account.class file in the examples/rmi-iiop/Bank directory, you would
have the following files:

• _Account_Stub
• AccountHelper
• AccountHolder
• AccountPOA
• AccountPOATie
• AccountOperations

For more details on these files, see Chapter 4, “Generated interfaces and classes,” in
the VisiBroker for Java Reference.

Reverse mapping of Java classes to IDL
When mapping IDL interfaces to Java classes, using the idl2java compiler, interface
name may use any of the generated classes suffixes (for example, Helper, Holder, POA,
and so on), and the idl2java tool will handle the situation correctly by mangling the
interface name (prefixing an underscore to the identifier). For example, if you define
both a Foo and a FooHolder interface in IDL, idl2java will generate, amongst others,
Foo.java, FooHolder.java, _FooHolder.java, and _FooHolderHolder.java files. On the other

U s i n g R M I o v e r I I O P 26-3

R M I - I I O P B a n k e x a m p l e

hand, when generating IIOP-compliant Java classes from RMI Java classes, using the
java2iiop compiler, the tool cannot generate the mangled classes. So, when declaring
interfaces which use reserved suffixes, you cannot have them in the same package as
the interface with the same name, (for example, you could not have a Foo and a
FooHolder class in the same package when using the java2iiop compiler).

Completing the development process

After generating the associated files from your interfaces, you need to provide
implementations for the interfaces. Follow these steps:

1 Create an implementation for the interface classes.
2 Compile your server class.
3 Write and compile your client code.
4 Start the Server program.
5 Run the Client program.

Note If you attempt to marshal a non-conforming class, an org.omg.CORBA.MARSHAL: Cannot
marshal non-conforming value of class <class name> will be thrown. For instance, if you
create the following two classes,

// This is a conforming class
public class Value implements java.io.Serializable {

java.lang.Object any;
...

}

// This is a non-conforming class
public class Something {
...
}

and then attempt this,

Value val = new Value();
val.any = new Something();

You will raise an org.omg.CORBA.MARSHAL exception when you attempt to marshal val.

RMI-IIOP Bank example
The Account interface extends the java.rmi.Remote interface and is implemented by the
AccountImpl class (see Code sample 26.2).

The Client class (see Code sample 26.3) first creates all the specified Account objects
with the appropriate balances by creating AccountData objects for each account and
passing them to the AccountManager to create the accounts. It then confirms that the
balance is correct on the created account. The client then queries the
AccountManager for a list of all the accounts, and proceeds to credit $10.00 to each
account. It then verifies if the new balance on the account is accurate.

Note The code example can be found in examples/rmi-iiop folder of the VisiBroker
installation.

26-4 P r o g r a m m e r ’ s G u i d e

R M I - I I O P B a n k e x a m p l e

Code sample 26.2 Implementing the Account interface

public class AccountImpl extends Bank.AccountPOA {
public AccountImpl(Bank.AccountData data) {

_name = data.getName();
_balance = data.getBalance();

}
public String name() throws java.rmi.RemoteException {

return _name;
}
public float getBalance() throws java.rmi.RemoteException {

return _balance;
}
public void setBalance(float balance) throws java.rmi.RemoteException {

_balance = balance;
}
private float _balance;
private String _name;

}

Code sample 26.3 Client class

public class Client {
public static void main(String[] args) {

try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Get the manager Id
byte[] managerId = "RMIBankManager".getBytes();
// Locate an account manager. Give the full POA name and the servant ID.
Bank.AccountManager manager =

Bank.AccountManagerHelper.bind(orb, "/rmi_bank_poa", managerId);
// Use any number of argument pairs to indicate name,balance of accounts to create
if (args.length == 0 || args.length % 2 != 0) {

args = new String[2];
args[0] = "Jack B. Quick";
args[1] = "123.23";

}
int i = 0;
while (i < args.length) {

String name = args[i++];
float balance;
try {

balance = new Float(args[i++]).floatValue();
} catch (NumberFormatException n) {

balance = 0;
}
Bank.AccountData data = new Bank.AccountData(name, balance);
Bank.Account account = manager.create(data);
System.out.println("Created account for " + name

+ " with opening balance of $" + balance);
}
java.util.Hashtable accounts = manager.getAccounts();
for (java.util.Enumeration e = accounts.elements(); e.hasMoreElements();) {

Bank.Account account =
Bank.AccountHelper.narrow((org.omg.CORBA.Object)e.nextElement());

U s i n g R M I o v e r I I O P 26-5

S u p p o r t e d d a t a t y p e s

String name = account.name();
float balance = account.getBalance();
System.out.println("Current balance in " + name + "'s account is $" + balance);
System.out.println("Crediting $10 to " + name + "'s account.");
account.setBalance(balance + (float)10.0);
balance = account.getBalance();
System.out.println("New balance in " + name + "'s account is $" + balance);

}
} catch (java.rmi.RemoteException e) {

System.err.println(e);
}

}
}

Supported data types
In addition to all of the Java primitive data types, RMI-IIOP supports a subset of Java
classes.

Mapping primitive data types

Client stubs generated by java2iiop handle the marshalling of the Java primitive data
types that represent an operation request so that they may be transmitted to the
object server. When a Java primitive data type is marshalled, it must be converted
into an IIOP-compatible format. Table 26.1 summarizes the mapping of Java
primitive data types to IDL/IIOP types.

Table 26.1 Mapping Java types to IDL/IIOP

Java type IDL/IIOP type

void void

boolean boolean

byte octet

char char

short short

int long

long long long

float float

double double

java.lang.String CORBA::WStringValue

java.lang.Object any

java.io.Serializable any

java.io.Externalizable any

26-6 P r o g r a m m e r ’ s G u i d e

S u p p o r t e d d a t a t y p e s

Mapping complex data types

This section discusses interfaces, arrays, and Java classes; it shows how the java2iiop
compiler can be used to handle complex data types.

Interfaces

Java interfaces are represented in IDL as CORBA interfaces, and they must inherit
from the org.omg.CORBA.Object interface. When passing objects that implement these
interfaces, they are passed by reference.

Arrays

Another complex data type that may be defined in classes is an array. If you have an
interface or definitions that use arrays, the arrays map to CORBA boxed sequence of
boxed type.

U s i n g t h e d y n a m i c a l l y m a n a g e d t y p e s 27-1

C h a p t e r

27
Chapter27Using the dynamically

managed types
This chapter describes the DynAny feature of VisiBroker, which allows you to construct
and interpret data types at runtime.

Overview
The DynAny interface provides a way to dynamically create basic and constructed data
types at runtime. It also allows information to be interpreted and extracted from an
Any object, even if the type it contains was not known to the server at compile-time.
The use of the DynAny interface enables you to build powerful client and server
applications that create and interpret data types at runtime.

Example client and server applications that illustrate the use of DynAny are included as
part of the VisiBroker distribution. The examples are found in the dynany directory.
The path is inprise/vbroker/examples. These example programs will be used to
illustrate DynAny concepts in this chapter.

DynAny types
A DynAny object has an associated value that may either be a basic data type (such as
boolean, int, or float) or a constructed data type. The DynAny interface, described in
detail in the VisiBroker for Java Reference, provides methods for determining the type
of the contained data as well as for setting and extracting the value of primitive data
types.

27-2 P r o g r a m m e r ’ s G u i d e

D y n A n y t y p e s

Constructed data types are represented by the following interfaces, which are all
derived from DynAny. Each of these interfaces provides its own set of methods that are
appropriate for setting and extracting the values it contains.

Usage restrictions

A DynAny object may only be used locally by the process which created it. Any attempt
to use a DynAny object as a parameter on an operation request for a bound object or to
externalize it using the ORB.object_to_string method will cause a MARSHAL exception to
be raised.

Furthermore, any attempt to use a DynAny object as a parameter on DII request will
cause a NO_IMPLEMENT exception to be raised.

This version does not support the long double and fixed types as specified in
CORBA 2.3.

Creating a DynAny

A DynAny object is created by invoking an operation on a DynAnyFactory object. First
obtain a reference to the DynAnyFactory object, and then use that object to create the
new DynAny object.

// Resolve Dynamic Any Factory
DynAnyFactory factory =

DynAnyFactoryHelper.narrow(orb.resolve_initial_references("DynAnyFactory"));
byte[] oid = "PrinterManager".getBytes();

// Create the printer manager object.
PrinterManagerImpl manager =

new PrinterManagerImpl((com.inprise.vbroker.CORBA.ORB) orb, factory, serverPoa, oid);

// Export the newly create object.
serverPoa.activate_object_with_id(oid, manager);
System.out.println(manager + " is ready.");

Table 27.1 Interfaces derived from DynAny that represent constructed data types

Interface TypeCode Description

DynArray _tk_array An array of values with the same data type that has a fixed
number of elements.

DynEnum _tk_enum A single enumeration value.

DynFixed _tk_fixed Not supported.

DynSequence _tk_sequence A sequence of values with the same data type. The number of
elements may be increased or decreased.

DynStruct _tk_struct A structure.

DynUnion _tk_union A union.

DynValue _tk_value Not supported.

U s i n g t h e d y n a m i c a l l y m a n a g e d t y p e s 27-3

C o n s t r u c t e d d a t a t y p e s

Initializing and accessing the value in a DynAny

The DynAny.insert_<type> methods allow you to initialize a DynAny object with a variety
of basic data types, where <type> is boolean, octet, char, and so on. Any attempt to
insert a type that does not match the TypeCode defined for the DynAny will cause an
TypeMismatch exception to be raised.

The DynAny.get_<type> methods allow you to access the value contained in a DynAny
object, where <type> is boolean, octet, char, and so on. Any attempt to access a value
from a DynAny component which does not match the TypeCode defined for the DynAny
will cause a TypeMismatch exception to be raised.

The DynAny interface also provide methods for copying, assigning, and converting to
or from an Any object. The sample programs, described later in this chapter, provide
examples of how to use some of these methods. The VisiBroker for Java Reference
provides a complete description of these methods.

Constructed data types
The following types are derived from the DynAny interface and are used to represent
constructed data types. These interfaces, and the methods they offer, all described in
the VisiBroker for Java Reference.

Traversing the components in a constructed data type
Several of the interfaces that are derived from DynAny actually contain multiple
components. The DynAny interface provides methods that allow you to iterate through
these components. The DynAny-derived objects that contain multiple components
maintain a pointer to the current component.

DynEnum

This interface represents a single enumeration constant. Methods are provided for
setting and obtaining the value as a string or as an integral value.

DynAny method Description

rewind Resents the current component pointer to the first component. Has no effect
if the object contains only one component.

next Advances the pointer to the next component. If there are no more
components or if the object contains only one component, false is returned.

current_component Returns a DynAny object, which may be narrowed to the appropriate type,
based on the component’s TypeCode.

seek Sets the current component pointer to the component with the specified,
zero-based index. Returns false if there is no component at the specified
index. Sets the current component pointer to –1 (no component) if specified
with a negative index.

27-4 P r o g r a m m e r ’ s G u i d e

E x a m p l e I D L

DynStruct

This interface represents a dynamically constructed struct type. The members of the
structure can be retrieved or set using a sequence of NameValuePair objects. Each
NameValuePair object contains the member’s name and an Any containing the member’s
Type and value.

You may use the rewind, next, current_component, and seek methods to traverse the
members in the structure. Methods are provided for setting and obtaining the
structure’s members.

DynUnion

This interface represents a union and contains two components. The first component
represents the discriminator and the second represents the member value.

You may use the rewind, next, current_component, and seek methods to traverse the
components. Methods are provided for setting and obtaining the union’s
discriminator and member value.

DynSequence and DynArray

A DynSequence or DynArray represents a sequence of basic or constructed data types
without the need of generating a separate DynAny object for each component in the
sequence or array. The number of components in a DynSequence may be changed,
while the number of components in a DynArray is fixed.

You may use the rewind, next, current_component, and seek methods to traverse the
members in a DynArray or DynSequence.

Example IDL
The following code sample shows the IDL used in the example client and server
applications. The StructType structure contains two basic data types and an
enumeration value. The PrinterManager interface is used to display the contents of an
Any without any static information about the data type it contains.

Code sample 27.1 IDL for the DynAny example clients

// Printer.idl
module Printer {

enum EnumType {first, second, third, fourth};
struct StructType {

string str;
EnumType e;
float fl;

};

U s i n g t h e d y n a m i c a l l y m a n a g e d t y p e s 27-5

E x a m p l e c l i e n t a p p l i c a t i o n

interface PrinterManager {
void printAny(in any info);
oneway void shutdown();

};
};

Example client application
Code sample 27.2 shows a client application that can be found in the dynany directory
of the examples directory in the VisiBroker distribution. The path is
inprise/vbroker/examples/dynany.The client application uses the DynStruct interface to
dynamically create a StructType structure.

The DynStruct interface uses a sequence of NameValuePair objects to represent the
structure members and their corresponding values. Each name-value pair consists of
a string containing the structure member’s name and an Any object containing the
structure member’s value.

After initializing the ORB in the usual manner and binding to an PrintManager object,
the client performs these steps:

1 Create an empty DynStruct with the appropriate type.

2 Create a sequence of NameValuePair objects that will contain the structure members.

3 Create and initialize Any objects for each of the structure member’s values.

4 Initialize each NameValuePair with the appropriate member name and value.

5 Initialize the DynStruct object with the NameValuePair sequence.

6 Invoke the PrinterManager.printAny method, passing the DynStruct converted to a
regular Any.

Note You must use the DynAny.to_any method to convert a DynAny object, or one of its derived
types, to an Any before passing it as a parameter on an operation request.

Code sample 27.2 Example client application that uses DynStruct

// Client.java

import org.omg.DynamicAny.*;

public class Client {

public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);

DynAnyFactory factory =
DynAnyFactoryHelper.narrow(orb.resolve_initial_references("DynAnyFactory"));

27-6 P r o g r a m m e r ’ s G u i d e

E x a m p l e s e r v e r a p p l i c a t i o n

// Locate a printer manager.
Printer.PrinterManager manager =

Printer.PrinterManagerHelper.bind(orb, "PrinterManager");

// Create Dynamic struct
DynStruct info =

DynStructHelper.narrow(factory.create_dyn_any_from_type_code
(Printer.StructTypeHelper.type()));

// Create our NameValuePair sequence (array)
NameValuePair[] NVPair = new NameValuePair[3];

// Create and initialize Dynamic Struct data as any’s
org.omg.CORBA.Any str_any = orb.create_any();
str_any.insert_string("String");
org.omg.CORBA.Any e_any = orb.create_any();
Printer.EnumTypeHelper.insert(e_any, Printer.EnumType.second);
org.omg.CORBA.Any fl_any = orb.create_any();
fl_any.insert_float((float)864.50);

NVPair[0] = new NameValuePair("str", str_any);
NVPair[1] = new NameValuePair("e", e_any);
NVPair[2] = new NameValuePair("fl", fl_any);

// Initialize the Dynamic Struct
info.set_members(NVPair);

manager.printAny(info.to_any());

manager.shutdown();
}
catch (Exception e) {
e.printStackTrace();

}
}

}

Example server application
The following code sample shows a server application that can be found in the dynany
directory of the examples directory in the VisiBroker distribution. The server
application performs these steps.

1 Initialize the ORB.
2 Create the policies for the POA.
3 Create a PrintManager object.
4 Export the PrintManager object.
5 Print a message and wait for incoming operation requests.

U s i n g t h e d y n a m i c a l l y m a n a g e d t y p e s 27-7

E x a m p l e s e r v e r a p p l i c a t i o n

Code sample 27.3 Example server application

// Server.java

import java.util.*;
import org.omg.DynamicAny.*;
import org.omg.PortableServer.*;
import com.inprise.vbroker.PortableServerExt.*;

public class Server {

public static void main(String[] args) {
try {
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);

// Resolve Root POA
POA rootPoa = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
rootPoa.the_POAManager().activate();

// Create a BindSupport Policy that makes POA register each servant
// with osagent
org.omg.CORBA.Any any = orb.create_any();
BindSupportPolicyValueHelper.insert(any, BindSupportPolicyValue.BY_INSTANCE);

org.omg.CORBA.Policy bsPolicy =
orb.create_policy(BIND_SUPPORT_POLICY_TYPE.value, any);

// Create policies for our testPOA
org.omg.CORBA.Policy[] policies = {

rootPoa.create_lifespan_policy(LifespanPolicyValue.PERSISTENT),
bsPolicy

};

// Create managerPOA with the right policies
POA serverPoa = rootPoa.create_POA("serverPoa", rootPoa.the_POAManager(), policies);

// Resolve Dynamic Any Factory
DynAnyFactory factory =

DynAnyFactoryHelper.narrow(orb.resolve_initial_references("DynAnyFactory"));

byte[] oid = "PrinterManager".getBytes();

// Create the printer manager object.
PrinterManagerImpl manager =
new PrinterManagerImpl((com.inprise.vbroker.CORBA.ORB) orb, factory, serverPoa, oid);

// Export the newly create object.

serverPoa.activate_object_with_id(oid, manager);

System.out.println(manager + " is ready.");

27-8 P r o g r a m m e r ’ s G u i d e

E x a m p l e s e r v e r a p p l i c a t i o n

// Wait for incoming requests
orb.run();

}
catch (Exception e) {
e.printStackTrace();

}
}

}

The following code sample shows how the PrinterManager implementation follows
these steps in using a DynAny to process the Any object, without any compile-time
knowledge of the type the Any contains.

1 Create a DynAny object, initializing it with the received Any.

2 Perform a switch on the DynAny object’s type.

3 If the DynAny contains a basic data type, simply print out the value.

4 If the DynAny contains an Any type, create a DynAny for it, determine it’s contents, and
then print out the value.

5 If the DynAny contains an enum, create a DynEnum for it and then print out the string
value.

6 If the DynAny contains a union, create a DynUnion for it and then print out the union’s
discriminator and the member.

7 If the DynAny contains a struct, array, or sequence, traverse through the contained
components and print out each value.

Code sample 27.4 Implementation of PrinterManager showing the use of DynAny types
to process a received Any object

// PrinterManagerImpl.java

import java.util.*;
import org.omg.DynamicAny.*;
import org.omg.PortableServer.*;

public class PrinterManagerImpl extends Printer.PrinterManagerPOA {
private com.inprise.vbroker.CORBA.ORB _orb;
private DynAnyFactory _factory;
private POA _poa;
private byte[] _oid;

public PrinterManagerImpl(com.inprise.vbroker.CORBA.ORB orb,
DynAnyFactory factory, POA poa, byte[] oid) {

_orb = orb;
_factory = factory;
_poa = poa;
_oid = oid;

}

public synchronized void printAny(org.omg.CORBA.Any info) {
// Display info with the assumption that we don’t have
// any info statically about the type inside the any

U s i n g t h e d y n a m i c a l l y m a n a g e d t y p e s 27-9

E x a m p l e s e r v e r a p p l i c a t i o n

try {
// Create a DynAny object
DynAny dynAny = _factory.create_dyn_any(info);
display(dynAny);

}
catch (Exception e) {
e.printStackTrace();

}

}

public void shutdown() {
try {
_poa.deactivate_object(_oid);
System.out.println("Server shutting down");
_orb.shutdown(false);

}
catch (Exception e) {
System.out.println(e);

}
}

private void display(DynAny value) throws Exception {
switch(value.type().kind().value()) {
case org.omg.CORBA.TCKind._tk_null:
case org.omg.CORBA.TCKind._tk_void: {
break;

}
case org.omg.CORBA.TCKind._tk_short: {

System.out.println(value.get_short());
break;

}
case org.omg.CORBA.TCKind._tk_ushort: {

System.out.println(value.get_ushort());
break;

}
case org.omg.CORBA.TCKind._tk_long: {

System.out.println(value.get_long());
break;

}
case org.omg.CORBA.TCKind._tk_ulong: {

System.out.println(value.get_ulong());
break;

}
case org.omg.CORBA.TCKind._tk_float: {

System.out.println(value.get_float());
break;

}
case org.omg.CORBA.TCKind._tk_double: {

System.out.println(value.get_double());
break;

}

case org.omg.CORBA.TCKind._tk_boolean: {
System.out.println(value.get_boolean());

27-10 P r o g r a m m e r ’ s G u i d e

E x a m p l e s e r v e r a p p l i c a t i o n

break;
}
case org.omg.CORBA.TCKind._tk_char: {

System.out.println(value.get_char());
break;

}
case org.omg.CORBA.TCKind._tk_octet: {

System.out.println(value.get_octet());
break;

}
case org.omg.CORBA.TCKind._tk_string: {

System.out.println(value.get_string());
break;

}
case org.omg.CORBA.TCKind._tk_any: {

DynAny dynAny = _factory.create_dyn_any(value.get_any());
display(dynAny);
break;

}
case org.omg.CORBA.TCKind._tk_TypeCode: {

System.out.println(value.get_typecode());
break;

}
case org.omg.CORBA.TCKind._tk_objref: {

System.out.println(value.get_reference());
break;

}
case org.omg.CORBA.TCKind._tk_enum: {

DynEnum dynEnum = DynEnumHelper.narrow(value);
System.out.println(dynEnum.get_as_string());
break;

}
case org.omg.CORBA.TCKind._tk_union: {

DynUnion dynUnion = DynUnionHelper.narrow(value);
display(dynUnion.get_discriminator());
display(dynUnion.member());
break;

}
case org.omg.CORBA.TCKind._tk_struct:
case org.omg.CORBA.TCKind._tk_array:
case org.omg.CORBA.TCKind._tk_sequence: {

value.rewind();
boolean next = true;
while(next) {
DynAny d = value.current_component();
display(d);
next = value.next();

}
break;

}

U s i n g t h e d y n a m i c a l l y m a n a g e d t y p e s 27-11

E x a m p l e s e r v e r a p p l i c a t i o n

case org.omg.CORBA.TCKind._tk_longlong: {
System.out.println(value.get_longlong());
break;

}
case org.omg.CORBA.TCKind._tk_ulonglong: {

System.out.println(value.get_ulonglong());
break;

}
case org.omg.CORBA.TCKind._tk_wstring: {

System.out.println(value.get_wstring());
break;

}
case org.omg.CORBA.TCKind._tk_wchar: {

System.out.println(value.get_wchar());
break;

}
default:

System.out.println("Invalid type");

}
}

}

27-12 P r o g r a m m e r ’ s G u i d e

U s i n g v a l u e t y p e s 28-1

C h a p t e r

28
Chapter28Using valuetypes

This chapter explains how to use the valuetype IDL type in VisiBroker.

Understanding valuetypes
The IDL type valuetype is used to pass state data over the wire. A valuetype is best
thought of as a struct with inheritance and methods. Valuetypes differ from normal
interfaces in that they contain properties to describe the valuetype’s state, and
contain implementation details beyond that of an interface. The following IDL code
declares a simple valuetype:

IDL sample 28.1 Simple valuetype IDL

module Map {
valuetype Point {

public long x;
public long y;
private string label;
factory create (in long x, in long y, in string z);
void print();

};
};

Valuetypes are always local. They are not registered with the ORB, and require no
identity, as their value is their identity. They can not be called remotely.

28-2 P r o g r a m m e r ’ s G u i d e

U n d e r s t a n d i n g v a l u e t y p e s

Concrete valuetypes

Concrete valuetypes contain state data. They extend the expressive power of IDL
structs by allowing:

• Single concrete valuetype derivation and multiple abstract valuetype derivation
• Multiple interface support (one concrete and multiple abstract)
• Arbitrary recursive valuetype definitions
• Null value semantics
• Sharing semantics

Valuetype derivation
You can derive a concrete valuetype from one other concrete valuetype. However,
valuetypes can be derived from multiple other abstract valuetypes.

Sharing semantics
Valuetype instances can be shared by other valuetypes across or within other
instances. Other IDL data types such as structs, unions, or sequences can not be
shared. Valuetypes that are shared are isomorphic between the sending context and
the receiving context.

In addition, when the same valuetype is passed into an operation for two or more
arguments, the receiving context receives the same valuetype reference for both
arguments.

Null semantics
Null valuetypes can be passed over the wire, unlike IDL data types such as structs,
unions, and sequences. For instance by boxing a struct as a boxed valuetype, you can
pass a null value struct. For more information, see “Boxed valuetypes” on page 28-7.

Factories
Factories are methods that can be declared in valuetypes to create valuetypes in a
portable way. For more information on Factories, see “Implementing factories” on
page 28-5.

Abstract valuetypes

Abstract valuetypes contain only methods and do not have state. They may not be
instantiated. Abstract valuetypes are a bundle of operation signatures with a purely
local implementation.

For instance, the following IDL defines an abstract valuetype Account that contains no
state, but one method, get_name:

abstract valuetype Account{
string get_name();

}

U s i n g v a l u e t y p e s 28-3

I m p l e m e n t i n g v a l u e t y p e s

Now, two valuetypes are defined that inherit the get_name method from the abstract
valuetype:

valuetype savingsAccount:Account{
private long balance;

}
valuetype checkingAccount:Account{

private long balance;
}

These two valuetypes contain a variable balance, and they inherit the get_name method
from the abstract valuetype Account.

Implementing valuetypes
To implement valuetypes in an application, do the following:

1 Define the valuetypes in an IDL file.

2 Compile the IDL file using idl2java.

3 Implement your valuetypes by inheriting the valuetype base class.

4 Implement the Factory class to implement any factory methods defined in IDL

5 Implement the create_for_unmarshal method.

6 If necessary, register your Factory with the ORB.

7 Either implement the _add_ref, _remove_ref, and _ref_countvalue methods or derive
from CORBA::DefaultValueRefCountBase.

Defining your valuetypes

In IDL sample 28.1 on page 28-1, you define a valuetype named Point that defines a
point on a graph. It contains two public variables, the x and y coordinates, one
private variable that is the label of the point, the valuetype’s factory, and a print
method to print the point.

Compiling your IDL file

Now that you’ve defined your IDL, compile it using idl2java. This will create the Java
source files that you will modify to implement your valuetypes.

If you compile the above IDL, your output will consist of the following files:

• Point.java
• PointDefaultFactory.java
• PointHelper.java
• PointHolder.java
• PointValueFactory.java

28-4 P r o g r a m m e r ’ s G u i d e

I m p l e m e n t i n g v a l u e t y p e s

Inheriting the valuetype base class

After compiling your IDL, create your implementation of the valuetype. The
implementation class will inherit the base class. This class contains the constructor
that is called in your ValueFactory, and contains all the variables and methods
declared in your IDL.

For example, in obv\PointImpl.java, the PointImpl class extends the Point class which
was generated from the IDL:

public class PointImpl extends Point {
public PointImpl() {}
public PointImpl(int a_x, int a_y, String a_label) {

x = a_x;
y = a_y;
label = a_label;

}
public void print () {

System.out.println("Point is [" + label + ": (" + x + ", " + y + ")]");
}

}

Implementing the Factory class

Now that you have created an implementation class, implement the Factory for your
valuetype.

In our example, the generated Point_init class contains the create method declared in
your IDL. This class extends org.omg.CORBA.portable.ValueFactory. The
PointDefaultFactory class implements PointValueFactory:

public class PointDefaultFactory implements PointValueFactory {
public java.io.Serializable read_value (org.omg.CORBA.portable.InputStream is) {

java.io.Serializable val = new PointImpl(); // Called the implementation class
// create and initialize value
val = ((org.omg.CORBA_2_3.portable.InputStream)is).read_value(val);
return val;

}
// It is up to the user to implement the valuetype however they want:
public Point create (int x,

int y,
java.lang.String z) {

// IMPLEMENT:
return null;

}
}

PointImpl() is called to create a new valuetype, which is read in from the InputStream
by read_value.

Note You must call read_value or your Factory will not work, and you may not call any
other method.

U s i n g v a l u e t y p e s 28-5

I m p l e m e n t i n g f a c t o r i e s

Registering your Factory with the ORB

Call ORB.register_value_factory to register your Factory with the ORB. This is required
only if you do not name your factory valuetypenameDefaultFactory. See “Registering
valuetypes” on page 28-6 for more information on registering Factories.

Implementing factories
When the ORB receives a valuetype, it must first be demarshaled, and then the
appropriate factory for that type must be found in order to create a new instance of
that type. Once the instance has been created, the value data is unmarshalled into the
instance. The type is identified by the RepositoryID that is passed as part of the
invocation. The mapping between the type and the factory is language specific.

The following code, using JDK 1.2, contains a sample implementation of the factory
of the Point valuetype:

Code sample 28.1 Factory for Point valuetype

public class PointDefaultFactory implements PointValueFactory {
public java.io.Serializable read_value (org.omg.CORBA.portable.InputStream is) {
java.io.Serializable val = new PointImpl();
// create and initialize value
// It is very important that this call is made.
val = ((org.omg.CORBA_2_3.portable.InputStream)is).read_value(val);
return val;
}
public Point create (int x, int y, java.lang.String z) {

// IMPLEMENT:
return NO_IMPLEMENT;
}

}

VisiBroker 4.5 will generate the correct signatures for either the JDK 1.2 or JDK 1.3
default value factory method. Existing (4.0) generated code is not designed to run
under JDK 1.3, unless you modify the default value factory method signature as
shown in the below. If you use your existing code with JDK 1.3 and do not modify
default value factory, the code will not compile or will throw a NO_IMPLEMENT
exception. Consequently, we recommend that you regenerate your code to generate
the correct signatures.

28-6 P r o g r a m m e r ’ s G u i d e

I m p l e m e n t i n g f a c t o r i e s

The following code sample shows how you should modify the default value factory
method signature to make sure that it compiles under JDK 1.3:

Code sample 28.2 Factory code showing the method signature for JDK 1.3 code generation

public class PointDefaultFactory implements PointValueFactory {
public java.io.Serializable read_value (org.omg.CORBA_2_3.portable.InputStream is) {
java.io.Serializable val = new PointImpl();
// create and initialize value
// It is very important that this call is made.
val = ((org.omg.CORBA_2_3.portable.InputStream)is).read_value(val);
return val;
}
public Point create (int x, int y, java.lang.String z) {

// IMPLEMENT:
return NO_IMPLEMENT;
}

}

Factories and valuetypes

When the ORB receives a valuetype, it will look for that type’s factory. It will look for
a factory named valuetypeDefaultFactory. For instance, the Point valuetype’s factory is
called PointDefaultFactory. If the correct factory doesn’t conform to this naming
schema (valuetypeDefaultFactory), you must register the correct factory so the ORB
can create an instance of the valuetype.

If the ORB cannot find the correct factory for a given valuetype, a MARSHAL
exception is raised, with an identified minor code.

Registering valuetypes

Each language mapping specifies how and when registration occurs. If you created a
factory with the valuetypeDefaultFactory naming convention, this is considered
implicitly registering that factory, and you do not need to explicitly register your
factory with the ORB.

To register a factory that doesn’t conform to the valuetypeDefaultFactory naming
convention, call register_value_factory. To unregister a factory, call
unregister_value_factory on the ORB. You can also lookup a registered valuetype
factory by calling lookup_value_factory on the ORB.

U s i n g v a l u e t y p e s 28-7

B o x e d v a l u e t y p e s

Boxed valuetypes
Boxed valuetypes allow you to wrap non-value IDL data types as valuetypes. For
example, the following IDL boxed valuetype declaration,

valuetype Label string;

is equivalent to this IDL valuetype declaration:

valuetype Label{
public string name;

}

By boxing other data types as valuetypes, it allows you to use valuetype’s null
semantics and sharing semantics.

Valueboxes are implemented purely with generated code. No user code is required.

Abstract interfaces
Abstract interfaces allow you to choose at runtime whether the object will be passed
by value or by reference.

They differ from IDL interfaces in the following ways:

• The actual parameter type determines whether the object is passed by reference or
a valuetype is passed. The parameter type is determined based on two rules. It is
treated as an object reference if it is a regular interface type or sub-type, the
interface type is a sub-type of the signature abstract interface type, and the object
is already registered with the ORB. It is treated as a value if it can not be passed as
an object reference, but can be passed as a value. If it fails to pass as a value, a
BAD_PARAM exception is raised.

• Abstract interfaces do not implicitly derive from org.omg.CORBA.Object because they
can represent either object references or valuetypes. Valuetypes do not necessarily
support common object reference operations. If the abstract interface can be
successfully narrowed to an object reference type, you can invoke the operations
of org.omg.CORBA.Object.

• Abstract interfaces may only inherit from other abstract interfaces.

• valuetypes can support one or more abstract interfaces.

28-8 P r o g r a m m e r ’ s G u i d e

C u s t o m v a l u e t y p e s

For example, examine the following abstract interface.

IDL sample 28.2 Abstract interface IDL

abstract interface ai{
};
interface itp : ai{
};
valuetype vtp supports ai{
};

interface x {
void m(ai aitp);

};
valuetype y {

void op(ai aitp);
};

For the argument to method m:

• itp is always passed as an object reference.
• vtp is passed as a value.

Custom valuetypes
By declaring a custom valuetype in IDL, you bypass the default marshalling and
unmarshalling model and are responsible for encoding and decoding.

IDL sample 28.3 Custom valuetype IDL

custom valuetype customPoint{
public long x;
public long y;
private string label;
factory create(in long x, in long y, in string z);

};

You must implement the marshal and unmarshal methods from the CustomMashal
interface.

When you declare a custom valuetype, the valuetype extends
org.omg.CORBA.portable.CustomValue, as opposed to
org.omg.CORBA.portable.StreamableValue, as in a regular valuetype. The compiler
doesn’t generate read or write methods for your valuetype.

You must implement your own read and write methods by using
org.omg.CORBA.portable.DataInputStream and org.omg.CORBA.portable.DataOutputStream to
read and write the values, respectively. For more information on these classes, see the
VisiBroker for Java Reference.

U s i n g v a l u e t y p e s 28-9

T r u n c a t a b l e v a l u e t y p e s

Truncatable valuetypes
Truncatable valuetypes allow you to treat an inherited valuetype as its parent.

The following IDL defines a valuetype checkingAccount that is inherited from the base
type Account and can be truncated an the receiving object.

valuetype checkingAccount: truncatable Account{
private long balance;

}

This is useful if the receiving context doesn’t need the new data members or methods
in the derived valuetype, and if the receiving context isn’t aware of the derived
valuetype. However, any state data from the derived valuetype that isn’t in the
parent data type will be lost when the valuetype is passed to the receiving context.

Note You cannot make a custom valuetype truncatable.

28-10 P r o g r a m m e r ’ s G u i d e

U s i n g U R L n a m i n g 29-1

C h a p t e r

29
Chapter29Using URL naming

This chapter explains how to use the URL Naming Service which allows you to
associate a URL (Uniform Resource Locator) with an object’s IOR (Interoperable
Object Reference). Once a URL has been bound to an object, client applications can
obtain a reference to the object by specifying the URL as a string instead of the
object’s name. If you want client applications to locate objects without using the
osagent or a CORBA Naming Service, specifying a URL is an alternative.

URL Naming Service
The URL Naming Service is a simple mechanism that lets a server object associate its
IOR with a URL in the form of a string in a file. Client programs can then locate the
object using the URL pointing to the file containing the stringified URL on the web
server. The URL Naming Service supports the http URL scheme for registering
objects and any URL scheme that your Java runtime supports, such as http:, ftp:, or
file: for locating an object by the URL.

This URL name service provides a way to locate objects without using the Smart
Agent or a CORBA Naming Service. It enables client applications to locate objects
provided by any vendor. The IDL specification for this service is shown in
IDL sample 29.1.

Note VisiBroker’s URL Naming supports whatever form of URL handling that your Java
environment supports.

29-2 P r o g r a m m e r ’ s G u i d e

R e g i s t e r i n g o b j e c t s

IDL sample 29.1 WebNaming module

// WebNaming.idl
#pragma prefix "inprise.com"
module URLNaming {

exception InvalidURL{string reason;};
exception CommFailure{string reason;};
exception ReqFailure{string reason;};
exception AlreadyExists{string reason;};
abstract interface Resolver {
// Read Operations

Object locate(in string url_s)
raises (InvalidURL, CommFailure, ReqFailure);

// Write Operations
void force_register_url(in string url_s, in Object obj)

raises (InvalidURL, CommFailure, ReqFailure);
void register_url(in string url_s, in Object obj)

raises (InvalidURL, CommFailure, ReqFailure, AlreadyExists);
};

};

Registering objects
Object servers register objects by binding to the Resolver and then using the
register_url or the force_register_url method to associate a URL with an object’s IOR.
register_url is used to associate a URL with an object’s IOR if no prior association
exists. Using the force_register_url method associates a URL with an object’s IOR
regardless of whether an URL has already been bound to that object. If you use the
register_url method under the same circumstances, an AlreadyExists exception is
raised. For information about all of the available methods, see the VisiBroker for Java
Reference.

For an example illustrating the server-side use of this feature, see Code sample 29.1.
This example uses force_register_url. For force_register_url to be successful, the web
server must be allowed to issue HTTP PUT commands. The code for the examples in
this chapter is provided in the bank_URL directory within the java_examples directory
where the VisiBroker for Java product was installed.

Note To get a reference to the Resolver, use the ORB’s resolve_initial_references method,
as shown in the example.

U s i n g U R L n a m i n g 29-3

R e g i s t e r i n g o b j e c t s

Code sample 29.1 Associating a URL with an Object’s IOR

. . .
public class Server {

public static void main(String[] args) {
if (args.length == 0) {

System.out.println("Usage: vbj Server <URL string>");
return;

}
String url = args[0];
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// get a reference to the root POA
POA rootPOA = POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();
// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();
// Activate the servant with the ID on myPOA
rootPOA.activate_object_with_id(managerId, managerServant);

// Activate the POA manager
rootPOA.the_POAManager().activate();
// Create the object reference
org.omg.CORBA.Object manager =

rootPOA.servant_to_reference(managerServant);
// Obtain the URLNaming Resolver
Resolver resolver = ResolverHelper.narrow(

orb.resolve_initial_references("URLNamingResolver"));
// Register the object reference (overwrite if exists)
resolver.force_register_url(url, manager);
System.out.println(manager + " is ready.");
// Wait for incoming requests
orb.run();

} catch (Exception e) {
e.printStackTrace();

}
}

}

In this code sample args[0] is of the form

Example http://<host_name>:<http_server_port>/<ior_file_path>/<ior_file_name>

The ior_file_name is the user-specified file name where the stringified object reference
is stored. The suffix of the ior_file_name must be .ior if the Gatekeeper will be used
instead of an HTTP server. An example using the Gatekeeper and its default port
number is

Example http://mars:15000/URLNaming/Bank_Manager.ior

29-4 P r o g r a m m e r ’ s G u i d e

L o c a t i n g a n o b j e c t b y U R L

Locating an object by URL
Client applications do not need to bind to the Resolver, they simply specify the URL
when they call the bind method, as shown in Code sample 29.2. The bind accepts the
URL as the object name. If the URL is invalid, an InvalidURL exception is raised. The
bind method transparently calls locate() for you. For an example of how to use
locate(), see Code sample 29.3 on page 29-5.

Code sample 29.2 Obtaining an object reference, given a URL

// ResolverClient.java
import com.inprise.vbroker.URLNaming.*;
public class ResolverClient {

public static void main(String[] args) {
if (args.length == 0) {

System.out.println("Usage: vbj Client <URL string> [Account name]");
return;

}
String url = args[0];
try {

// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Obtain the URLNaming Resolver
Resolver resolver = ResolverHelper.narrow(
orb.resolve_initial_references("URLNamingResolver"));
// Locate the object
Bank.AccountManager manager =
Bank.AccountManagerHelper.narrow(resolver.locate(url));
// use args[0] as the account name, or a default.
String name = args.length > 1 ? args[1] : "Jack B. Quick";
// Request the account manager to open a named account.
Bank.Account account = manager.open(name);
// Get the balance of the account.
float balance = account.balance();
// Print out the balance.
System.out.println("The balance in " + name + "'s account is $" + balance);

} catch(Exception e) {
e.printStackTrace();

}
}

}

U s i n g U R L n a m i n g 29-5

L o c a t i n g a n o b j e c t b y U R L

Code sample 29.3 Obtaining an object reference using the Resolver.locate method

// Client.java
public class Client {

public static void main(String[] args) {
if (args.length == 0) {

System.out.println("Usage: vbj Client <URL string> [Account name]");
return;

}
String url = args[0];
// Initialize the ORB.
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
// Locate the object
Bank.AccountManager manager = Bank.AccountManagerHelper.bind(orb, url);
// use args[0] as the account name, or a default.
String name = args.length > 1 ? args[1] : "Jack B. Quick";
// Request the account manager to open a named account.
Bank.Account account = manager.open(name);
// Get the balance of the account.
float balance = account.balance();
// Print out the balance.
System.out.println("The balance in " + name + "'s account is $" + balance);

}
}

29-6 P r o g r a m m e r ’ s G u i d e

B i d i r e c t i o n a l C o m m u n i c a t i o n 30-7

C h a p t e r

30
Chapter30Bidirectional Communication

This chapter explains how to establish bidirectional connections in VisiBroker
without using the Gatekeeper. Information about bidirectional communications
when using Gatekeeper is available in the VisiBroker for Java Gatekeeper Guide.

Note: Before enabling bidirectional IIOP, please read about “Security considerations” on
page 30-11.

Using bidirectional IIOP
Most clients and servers that exchange information via the Internet are typically
protected by corporate firewalls. In systems where requests are initiated only by the
clients, the presence of firewalls is usually transparent to the clients. However, there
are cases where clients need information asynchronously, that is, information must
arrive that is not in response to a request. Client-side firewalls prevent servers from
initiating connections back to clients. Therefore, if a client is to receive asynchronous
information, it usually requires additional configuration.

In earlier versions of GIOP and VisiBroker, the only way to make it possible for a
server to send asynchronous information to a client was to use a client-side
Gatekeeper to handle the callbacks from the server.

If you use bidirectional IIOP, rather than having servers open separate connections to
clients when asynchronous information needs to be transmitted back to clients (these
would be rejected by client-side firewalls anyway), servers use the client-initiated
connections to transmit information to clients. The CORBA specification also adds a
new policy to portably control this feature.

Because bidirectional IIOP allows callbacks to be set up without a Gatekeeper, it
greatly facilitates deployment of clients.

30-8 P r o g r a m m e r ’ s G u i d e

B i d i r e c t i o n a l O R B p r o p e r t i e s

Bidirectional ORB properties
Three properties provide bidirectional support:

vbroker.orb.enableBiDir=client|server|both|none
vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir=true|false
vbroker.se.<sename>.scm.<scmname>.manager.importBiDir=true|false

vbroker.orb.enableBiDir property

The vbroker.orb.enableBiDir property can be used on both the server and the client
to enable bidirectional communication. This property allows you to change an
existing unidirectional application into a bidirectional one without changing any
code. The vbroker.orb.enableBiDir property may be set to the following values:

vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir property

The vbroker.se.<sename>.scm.<scmname>.manager.exportBiDir property is a client-side
property. By default, it is not set to anything by the ORB. Setting it to true enables
creation of a bidirectional callback POA on the specified server engine. Setting it to
false disables creation of a bidirectional POA on the specified server engine.

vbroker.se.<sename>.scm.<scmname>.manager.importBiDir property

The vbroker.se.<se-name>.scm.<scm-name>.manager.importBiDir property is a server-side
property. By default, it is not set to anything by the ORB. Setting it to true allows the
server-side to reuse the connection already established by the client for sending
requests to the client. Setting it to false prevents reuse of connections in this fashion.

NOTE: These properties are evaluated only once -- when the SCMs are created. In all
cases, the exportBiDir and importBiDir properties on the SCMs govern the enableBiDir
property. In other words, if both properties are set to conflicting values, the SCM-
specific properties will take effect. This allows you to set the enableBiDir property
globally and specifically turn off BiDir in individual SCMs.

Value Description

client Enables bidirectional IIOP for all POAs and
for all outgoing connections. This setting is
equivalent to creating all POAs with a setting
of the BiDirectional policy to both and setting
the policy override for the BiDirectional
policy to both on the ORB level. Furthermore,
all created SCMs will permit bidirectional
connections, as if the exportBiDir property had
been set to true for every SCM.

server Causes the server to accept and use
connections that are bidirectional. This is
equivalent to setting the importBiDir property
on all SCMs to true.

both Sets the property to both client and server.

none Disables bidirectional GIOP altogether. This
is the default value.

B i d i r e c t i o n a l C o m m u n i c a t i o n 30-9

A b o u t t h e e x a m p l e s

About the examples
Examples demonstrating use of this feature are located in subdirectories of examples/
bidir-iiop in the VisiBroker for Java installation directory.

All the examples are based on a simple stock quote callback application:

1 The client creates a CORBA object that processes stock quote updates;

2 The client sends the object reference of this CORBA object to the server;

3 The server invokes this callback object to periodically update stock quotes.

In the sections that follow, these examples are used to explain different aspects of the
bidirectional IIOP feature.

Enabling bidirectional IIOP for existing applications
You can enable bidirectional communication in existing VisiBroker for Java
applications without modifying any source code. A simple callback application that
does not use Bidirectional IIOP at all is stored in the examples/bidir-iiop/basic/
directory.

To enable bidirectional IIOP for this application, you set the vbroker.orb.enableBiDir
property:

1 Make sure the osagent is running.

2 Start the server.

Unix: prompt> vbj -Dvbroker.orb.enableBiDir=server Server &

Windows: prompt>start vbj -Dvbroker.orb.enableBiDir=server Server

3 Start the client:

prompt> vbj -Dvbroker.orb.enableBiDir=client RegularClient

The existing callback application now uses bidirectional IIOP and works through a
client-side firewall.

Explicitly enabling bidirectional IIOP
The Client in directory examples/bidir-iiop/basic is derived from the RegularClient
described above, except that this client enables bidirectional IIOP programmatically.

The changes required are in the client code only. To convert the unidirectional client
into a bidirectional client, all you need to do is:

1 Include the BiDirectional policy in the list of policies for the callback POA and

2 Add the BiDirectional policy to the list of overrides for the object reference that
refers to the server for which we want to enable bidirectional IIOP.

30-10 P r o g r a m m e r ’ s G u i d e

E x p l i c i t l y e n a b l i n g b i d i r e c t i o n a l I I O P

3 Set the exportBiDir property to true in the client.

In the following code snippet, the code that implements bidirectional IIOP is
displayed in bold:

public static void main (String[] args) {
try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
org.omg.PortableServer.POA rootPOA = org.omg.PortableServer.POAHelper.narrow(

orb.resolve_initial_references("RootPOA"));
org.omg.CORBA.Any bidirPolicy = orb.create_any();
bidirPolicy.insert_short(BOTH.value);
org.omg.CORBA.Policy[] policies = {
//set bidir policy
orb.create_policy(BIDIRECTIONAL_POLICY_TYPE.value, bidirPolicy)

};
org.omg.PortableServer.POA callbackPOA =

rootPOA.create_POA("bidir", rootPOA.the_POAManager(), policies);
QuoteConsumerImpl c = new QuoteConsumerImpl();
callbackPOA.activate_object(c);
callbackPOA.the_POAManager().activate();
QuoteServer serv = QuoteServerHelper.bind(orb, "/QuoteServer_poa",

"QuoteServer".getBytes());
serv=QuoteServerHelper.narrow(serv._set_policy_override(

policies, org.omg.CORBA.SetOverrideType.ADD_OVERRIDE));

serv.registerConsumer(QuoteConsumerHelper.narrow(callbackPOA.servant_to_reference(c)));
System.out.println("Client: consumer registered");
//sleeping for 60 seconds, receiving message
try{

Thread.currentThread().sleep(60*1000);
}
catch(java.lang.InterruptedException e){ }

serv.unregisterConsumer(QuoteConsumerHelper.narrow(callbackPOA.servant_to_reference(c)));
System.out.println("Client: consumer unregistered. Good bye.");
orb.shutdown(true);

...

Note: Please see the chapter on QOS framework in the Visibroker for Java Programmers
Guide for information about how to set policies to tune your application.

A client connection can be either unidirectional or bidirectional. A server can use a
bidirectional connection to call back the client without opening a new connection.

Otherwise, the connection is considered unidirectional.

The POA on which the callback object is hosted must enable bidirectional IIOP by
setting the BiDirectional policy to BOTH. This POA must be created on an SCM
which has been enabled for bidirectional support by setting the
vbroker.<sename>.scm.<scmname>.manager.exportBiDir property on the SCM manager.
Otherwise, the POA will not be able to receive requests from the server over a client-
initiated connection.

If a POA does not specify the BiDirectional Policy, it must not be exposed in outgoing
connections. To satisfy this requirement, a POA which does not have the

B i d i r e c t i o n a l C o m m u n i c a t i o n 30-11

S e c u r i t y c o n s i d e r a t i o n s

BiDirectional policy set cannot be created on a Server Engine which has even one
SCM whose exportBiDir property is set. If an attempt is made to create a POA on a
unidirectional SE, an InvalidPolicy exception is raised, with the ServerEnginePolicy in
error.

NOTE: Different objects using the same client connection may set conflicting overrides for
the BiDirectional policy. Nevertheless, once a connection is made bidirectional, it
always remains bidirectional, regardless of the policy effective at a later time.

Once we have full control over the bidirectional configuration, we enable
bidirectional IIOP on the iiop_tp SCM only:

prompt> vbj -Dvbroker.se.iiop_tp.scm.iiop_tp.manager.exportBiDir=true Client

Security considerations
Use of bidirectional IIOP may raise significant security issues. In the absence of other
security mechanisms, a malicious client may claim that its connection is bidirectional
for use with any host and port it chooses. In particular, a client may specify the host
and port of security-sensitive objects not even resident on its host. In the absence of
other security mechanisms, a server that has accepted an incoming connection has no
way to discover the identity or verify the integrity of the client that initiated the
connection. Further, the server might gain access to other objects accessible through
the bidirectional connection. This is why use of a separate, bidirectional SCM for
callback objects is encouraged. If there are any doubts as to the integrity of the client,
it is recommended that bidirectional IIOP not be used.

For security reasons, a server running VisiBroker for Java will not use bidirectional
IIOP unless explicitly configured to do so. The property
vbroker.<se>.<sename>.scm.<scmname>.manager.importBiDir gives you control of
bidirectionality on a per-SCM basis. For example, you might choose to enable
bidirectional IIOP only on a server engine that uses SSL to authenticate the client, and
to not make other, regular IIOP connections available for bidirectional use. (See
“Bidirectional ORB properties” on page 30-8 for more information about how to do
this.) In addition, on the client-side, you might want to enable bidirectional
connections only to those servers that do callbacks outside of the client firewall. To
establish a high degree of security between the client and server, you should use SSL
with mutual authentication (set vbroker.security.peerAuthenticationMode to
REQUIRE_AND_TRUST on both the client and server).

30-12 P r o g r a m m e r ’ s G u i d e

B a c k w a r d c o m p a t i b i l i t y

P a r t

VII
PartVIIBackward compatibility

This part of the VisiBroker for Java Programmer’s Guide includes these chapters.

Chapter 31 “Using the BOA with VisiBroker 4.x”

Chapter 32 “Migrating VisiBroker code”

Chapter 33 “Using object activators”

U s i n g t h e B O A w i t h V i s i B r o k e r 4 . x 31-1

C h a p t e r

31
Chapter31Using the BOA with VisiBroker 4.x

This chapter describes how to use the BOA with VisiBroker 4.x.

Compiling your BOA code with VisiBroker 4.x
If you have existing BOA code that you developed with a previous version of
VisiBroker, you can continue to use them with the current version as long as you
keep the following points in mind.

• To generate the necessary BOA base code, you must use the “-boa” option with the
idl2java tool. For more information on using idl2java to generate the code, see
Chapter 2, “Programmer tools,” in the VisiBroker for Java Reference.

• Because the BOA_init() is no longer available under org.omg.CORBA.ORB, you must
cast the ORB to com.inprise.vbroker.CORBA.ORB.

• Because the BOA class is no longer available in the org.omg.CORBA package, you must
now refer to it in the com.inprise.vbroker.CORBA package. For more information on
the ORB package, see Chapter 5, “Core interfaces and classes,” of the VisiBroker
for Java Reference.

Supporting BOA options
All OA command line options supported by VisiBroker 3.x are still supported.

31-2 P r o g r a m m e r ’ s G u i d e

L i m i t a t i o n s i n u s i n g t h e B O A

Limitations in using the BOA
Two features are not supported with VisiBroker 4.x BOA:

• Persistent DSI objects are not supported
• _boa() on DSI objects is not supported

Using object activators
BOA object activators are supported with VisiBroker 4.x. However, these activators
can be used only with BOA, not POA. The POA uses servant activators and servant
locators in place of object activators.

In this release of VisiBroker, the Portable Object Adaptor (POA) supports the features
that were provided by the BOA in VisiBroker 3.x releases. For backward
compatibility reasons, you may still use the object activators with your code. For
more information on how to use the object activators with this release, see
Chapter 33, “Using object activators.”

Naming objects under the BOA
Though the BOA is deprecated in VisiBroker 4.x, you may still use it in conjunction
with the Smart Agent to specify a name for your server objects which may be bound
to in your client programs.

Object names

When creating an object, a server must specify an object name if the object is to be
made available to client applications through the osagent. When the server calls the
BOA.obj_is_ready method, the object’s interface name will only be registered with the
VisiBroker osagent if the object is named. Objects that are given an object name when
they are created return persistent object references, while objects which are not given
object names are created as transient.

Note If you pass an empty string for the object name to the object constructor in VisiBroker
for Java, a transient object is created (an object which is not registered with the Smart
Agent). If you pass a null reference to the constructor, a transient object is created.

The use of an object name by your client application is required if it plans to bind to
more than one instance of an object at a time. The object name distinguishes between
multiple instances of an interface. If an object name is not specified when the bind
method is called, the osagent will return any suitable object with the specified
interface.

Note In VisiBroker 3.x, it was possible to have a server process that provided different
interfaces, all of which had the same object name, but in VisiBroker 4.x different
interfaces may not have the string equivalent names.

M i g r a t i n g V i s i B r o k e r c o d e 32-1

C h a p t e r

32
Chapter32Migrating VisiBroker code

This chapter describes how to migrate your VisiBroker code from previous versions
of VisiBroker to VisiBroker 4.5. There are two ways of migrating Java code from
VisiBroker 3.x to VisiBroker 4.5: the migrator, a command-line utility that attempts to
automate a significant part of the migration process, and manual migration. It is
recommended that, whenever possible, VisiBroker 3.x code be manually migrated to
VisiBroker 4.x. There are many advantages to using native VisiBroker 4.x calls rather
than upgrading VisiBroker 3.x.

However, a migrator is provided to help migrate the code written for VisiBroker 3.x
to VisiBroker 4.x. The migrator attempts to make its changes automatically, without
any interaction with the user, although this is not always possible.

This chapter begins with information about how to use the migrator. It also provides
information regarding:

• How to use the BOA with VisiBroker 4.5, how to change your BOA code to POA,
and how to use servant activators.

• List of changes to package names, class names, and API calls in VisiBroker 4.5.

Migrator
When the migrator parses the original Java source files, it changes:

• Package name prefixes
• Class names
• API calls

Please see the following tables for more information on these migration changes.

32-2 P r o g r a m m e r ’ s G u i d e

M i g r a t o r

Changes to package name prefixes

The migrator changes package names as follows:

Changes to class names

The migrator changes some class names to those used in VisiBroker 4.5. If it cannot
determine a compatible class, it substitutes a class from VisiBroker 3.x.

Table 32.1 Changes to package name prefixes

VisiBroker 3.x package name prefix VisiBroker 4.5 package name prefix

com.visigenic.vbroker com.inprise.vbroker

com.visigenic.vbroker.services.CosEvent com.inprise.vbroker.CosEvent

com.visigenic.vbroker.services.CosNaming com.inprise.vbroker.naming

Table 32.2 Changes to class names

VisiBroker 3.x class name VisiBroker 4.5 class name

org.omg.CORBA.BOA com.inprise.vbroker.CORBA.BOA

org.omg.CORBA.DynamicImplementation com.inprise.vbroker.CORBA.migration.
DynamicImplementation

com.visigenic.vbroker.interceptor.BindInterceptor com.inprise.vbroker.interceptor.migration.
BindInterceptorDelegate

com.visigenic.vbroker.interceptor.
ChainBindInterceptor

com.inprise.vbroker.interceptor.migration.
ChainBindDelegateFactory

com.visigenic.vbroker.interceptor.
ChainBindInterceptorHelper

com.inprise.vbroker.interceptor.migration.
ChainBindDelegateFactoryHelper

com.visigenic.vbroker.interceptor.ClientInterceptor com.inprise.vbroker.interceptor.migration.
ClientInterceptorDelegate

com.visigenic.vbroker.interceptor.
ClientInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ClientInterceptorFactory

com.visigenic.vbroker.interceptor.
ChainClientInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ChainClientDelegateFactory

com.visigenic.vbroker.interceptor.
ChainClientInterceptorFactoryHelper

com.inprise.vbroker.interceptor.migration.
ChainClientDelegateFactoryHelper

com.visigenic.vbroker.interceptor.ServerInterceptor com.inprise.vbroker.interceptor.migration.
ServerInterceptorDelegate

com.visigenic.vbroker.interceptor.
ServerInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ServerInterceptorDelegateFactory

com.visigenic.vbroker.interceptor.
ChainServerInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ChainServerDelegateFactory

com.visigenic.vbroker.interceptor.
ChainServerInterceptorFactoryHelper

com.inprise.vbroker.interceptor.migration.
ChainServerDelegateFactoryHelper

com.visigenic.vbroker.orb.ServiceInit com.inprise.vbroker.interceptor.migration.
ServiceInit

M i g r a t i n g V i s i B r o k e r c o d e 32-3

M i g r a t o r

Changes to API calls

The migrator changes some API calls to those used in VisiBroker 4.5.

Changes from BOA to POA

The migrator does not change code. For this reason, it does not convert VisiBroker 3.x
code that was written for BOA to use the POA. Because the BOA is no longer
standard in the CORBA ORB, the migrator casts calls that involve the BOA to the
Inprise ORB. For information about manually changing code that uses BOA to POA,
please see “Manually Migrating BOA to POA” on page 32-5.

Changes in use of interceptors

In some cases there is no way to automatically migrate code and provide
functionality similar to that of VisiBroker 3.x. This is the case, for example, with
interceptors. In order to be able to use the old code, a special set of interceptors
provides at least signature compatibility to the old interceptors.

Note In cases where the migrator cannot determine how to migrate code, it uses migration
packages that attempt to wrap the new API using the old semantics. These cases
usually arise where the new API differs completely (in logic and behavior) from the
old API. In these cases, it is possible that some of the migrated code might not work
(the migrated method might not get called) or it might work differently than it did
under VisiBroker 3.x.

Table 32.3 Changes to API calls

VisiBroker 3.x call VisiBroker 4.5 call

BOA_init() on instance of org.omg.CORBA.ORB BOA_init() on instance of
com.inprise.vbroker.orb.ORB

bind(repId, objectName, hostName, bindOptions) on
instance of org.omg.CORBA.ORB

bind(repId, objectName, hostName,
bindOptions) on instance of
com.inprise.vbroker.orb.ORB

create_channel(boa, name, debug, maxQueueLength) on
instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel(name, debug, maxQueueLength)
on instance of
com.inprise.vbroker.CosEvent.EventLibrary

create_channel(boa, name, debug) on instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel(name, debug) on instance of
com.inprise.vbroker.CosEvent.EventLibrary

create_channel(boa, name) on instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel(name) on instance of
com.inprise.vbroker.CosEvent.EventLibrary

create_channel(boa) on instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel() on instance of
com.inprise.vbroker.CosEvent.EventLibrary

32-4 P r o g r a m m e r ’ s G u i d e

I n v o k i n g t h e m i g r a t o r

Invoking the migrator
To run the migrator, type:

migrator [options]

Migrator options

Driver options

Using migrated code
In order to use the code which is migrated with the migrator, the user needs to add
migration.jar to the classpath. This jar file contains the migration classes that are
specific to migration for the Visi Broker 4.x API.

Table 32.4 Migrator options

Option Description

-o <file> Name of output file, or “-” for stdout

-src_dir <path> Directory in which generated source files are to be placed

-src_suffix <string> Source filename suffix (.cc)

-list_files List files written during code generation

-h, -help, -usage, -? Print this usage information

-version Display software version numbers

file1 [file2] ... One or more files to process, or “-” for stdin

Table 32.5 Driver options

Option Description

-J<java option> Pass the option to JVM directly

-VBJversion Print VBJ version

-VBJdebug Print VBJ debug information

-VBJclasspath Specify classpath, precedes CLASSPATH env variable

-VBJprop <name>[=<value>] Pass name/value pair to Java VM

-VBJjavavm <jvmpath> Specify Java VM path

-VBJaddJar <jarfile> Append jarfile to the CLASSPATH before execing VM

M i g r a t i n g V i s i B r o k e r c o d e 32-5

M a n u a l l y M i g r a t i n g B O A t o P O A

Manually Migrating BOA to POA
Class names have changed from previous versions of VisiBroker. Be sure to update
your source files to point to the most recent class names. The following tables
illustrate these name changes using an example class name.

Looking at an example

The examples/boa/boa2poa directory contains an example that shows how to update
your BOA to the equivalent POA code.

In this example, the BOA code in Server.java was updated to POA by:

• Obtaining a reference to the root POA instead of initializing the BOA
• Setting the appropriate POA policies to mimic the BOA characteristics
• Defining the servant (the POA has a different definition of a servant than the BOA)
• Activating the POA manager (no equivalent step for the BOA)
• Waiting for incoming requests through orb.run() instead of boa.impl_is_ready()

Obtaining a reference to the root POA
When using the BOA, a reference to the BOA was obtained through orb.BOA_init().
With the POA, however, you obtain a reference to the root POA. You do this by using
orb.resolve_initial_references(“RootPOA”). resolve_initial_references returns a value
of type CORBA.objectwhich you then narrow to the desired type.

Code sample 32.1 Obtaining a reference to the rootPOA

POA rootPOA = POAHelper.narrow(orb.resolve_initial_references(“RootPOA”));

Setting the POA policies
The characteristics of a POA are defined by the policies set for that POA. Each POA
has its own set of policies; POAs can not inherit policies from other POAs.

In this example, persistent objects are used. With the BOA, persistent objects are
those which have a specific instance name and are registered with the Smart Agent.
A single BOA can support both persistent and transient objects. Under the POA, a
persistent object is one that lives past the process that creates them. A single POA can
support either persistent object or transient objects, not both. The supported object

Table 32.6 Class name changes

Old class name New class name

_st_Account _AccountStub

_st_AccountManager _AccountManagerStub

_AccountImplBase AccountPOA

_AccountManagerImplBase AccountManagerPOA

_tie_Account AccountPOATie

_tie_AccountManager AccountManagerPOATie

32-6 P r o g r a m m e r ’ s G u i d e

M a n u a l l y M i g r a t i n g B O A t o P O A

type is set by the POA policy. Since the root POA supports transient objects (by
default), a new POA must be created to support persistent objects.

Note You can not change the policies of a POA once it is created.

To support persistent objects, set the Lifespan policy to PERSISTENT. This example also
sets the Bind Support policy (a VisiBroker-specific policy) to BY_INSTANCE. This policy
registers all active objects with the Smart Agent instead of just the POAs (the default).

Once the appropriate policies have been set, a new POA can be created with
create_POA().

Code sample 32.2 Setting the POA policies

org.omg.CORBA.Any any = orb.create_any();
BindSupportPolicyValueHelper.insert(any, BindSupportPolicyValue.BY_INSTANCE);
org.omg.CORBA.Policy bsPolicy =

orb.create_policy(com.inprise.vbroker.PortableServerExt.BIND_SUPPORT_POLICY_TYPE.
value, any);

org.omg.CORBA.Policy[] policies = {
rootPOA.create_lifespan_policy(LifespanPolicyValue.PERSISTENT), bsPolicy};
// Create myPOA with the right policies
POA myPOA = rootPOA.create_POA("bank_agent_poa", rootPOA.the_POAManager(),

policies);

Defining the servant
With the BOA, a servant is a CORBA object. In this example, the account manager
object is created and then exported with obj_is_ready().

With the POA, a servant is a programming object that provides the implementation
of an abstract object. A servant is not a CORBA object. Under the POA scenario, the
servant is created and then activated with a specific ID. You can use this ID to obtain
the object reference.

Code sample 32.3 Defining and activating a servant

// Create the servant
AccountManagerImpl managerServant = new AccountManagerImpl();

// Decide on the ID for the servant
byte[] managerId = "BankManager".getBytes();

// Activate the servant with the ID on myPOA
myPOA.activate_object_with_id(managerId, managerServant);

Activating the POA manager
A POA Manager is an object that controls how a POA processes requests. By default,
POA Managers are created in a holding state. In this state, all requests are routed to a
holding queue and are not processed. To allow requests to be dispatched, the POA
Manager associated with the POA must be changed from the holding state to an
active state.

This is a new step required for the POA. There is no equivalent step for the BOA.

Code sample 32.4 Activating the POA manager

rootPOA.the_POAManager().activate();

M i g r a t i n g V i s i B r o k e r c o d e 32-7

M i g r a t i n g t o n e w p a c k a g e n a m e s

Waiting for incoming requests
With the BOA, impl_is_ready() is called in order to wait for requests from clients.
With the POA, use orb.run().

Code sample 32.5 Waiting for incoming requests

orb.run();

Looking at the other files
The AccountImpl and AccountManagerImpl class changes are much simpler. Most of the
changes simply involve pointing to the new classes.

Mapping BOA types to POA policies

The following table shows how to set your POA policies to mimic BOA behavior.

Migrating to new package names
The following table shows how VisiBroker 3.x package name prefixes map to the
latest release.

Table 32.7 Mapping BOA types to POA policies

Transient BOA Persistent BOA

TPOOL Server Engine policy with
TPOOL dispatcher
LifeCycle property set to
TRANSIENT

Server Engine policy with TPOOL dispatcher
LifeCycle property set to PERSISTENT

IDAssignment policy set to USER_ID

BindSupport policy set to BY_INSTANCE

TSESSION Server Engine policy with
TSESSION dispatcher
LifeCycle property set to
TRANSIENT

Server Engine policy with TSESSION dispatcher
LifeCycle property set to PERSISTENT

IDAssignment policy set to USER_ID

BindSupport policy set to BY_INSTANCE

Service-activated
objects

LifeCycle property set to
TRANSIENT

Request Processing policy
to USE_SERVANT_MANAGER

Implicit Activation policy
set to IMPLICIT_ACTIVATION

LifeCycle property set to PERSISTENT

Request Processing policy to USE_SERVANT_MANAGER

Implicit Activation policy set to
IMPLICIT_ACTIVATION

VisiBroker 3.x package names VisiBroker 4.5 package names

com.visigenic.vbroker com.inprise.vbroker

com.visigenic.vbroker.services.CosEvent com.inprise.vbroker.CosEvent

com.visigenic.vbroker.services.CosNaming com.inprise.vbroker.naming

32-8 P r o g r a m m e r ’ s G u i d e

M i g r a t i n g t o n e w c l a s s n a m e s

Migrating to new class names
The following table shows how VisiBroker 3.x class names map to the latest release.

Migrating to new API calls
The following table shows how VisiBroker 3.x API calls map to the latest release.

VisiBroker 3.x class names VisiBroker 4.5 class names

org.omg.CORBA.BOA com.inprise.vbroker.CORBA.BOA

org.omg.CORBA.DynamicImplementation com.inprise.vbroker.CORBA.migration.
DynamicImplementation

com.visigenic.vbroker.interceptor.
BindInterceptor

com.inprise.vbroker.interceptor.migration.
BindInterceptorDelegate

com.visigenic.vbroker.interceptor.
ChainBindInterceptor

com.inprise.vbroker.interceptor.
ChainBindDelegateFactory

com.visigenic.vbroker.interceptor.
ChainBindInterceptorHelper

com.inprise.vbroker.interceptor.migration.
ChainBindDelegateFactoryHelper

com.visigenic.vbroker.interceptor.
ClientInterceptor

com.inprise.vbroker.interceptor.migration.
ClientInterceptorDelegate

com.visigenic.vbroker.interceptor.
ClientInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ClientInterceptorFactory

com.visigenic.vbroker.interceptor.
ChainClientInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ChainClientDelegateFactory

com.visigenic.vbroker.interceptor.
ChainClientInterceptorFactoryHelper

com.inprise.vbroker.interceptor.migration.
ChainClientDelegateFactoryHelper

com.visigenic.vbroker.interceptor.
ServerInterceptor

com.inprise.vbroker.interceptor.migration.
ServerInterceptorDelegate

com.visigenic.vbroker.interceptor.
ServerInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ServerInterceptorDelegateFactory

com.visigenic.vbroker.interceptor.
ChainServerInterceptorFactory

com.inprise.vbroker.interceptor.migration.
ChainServerDelegateFactory

com.visigenic.vbroker.interceptor.
ChainServerInterceptorFactoryHelper

com.inprise.vbroker.interceptor.migration.
ChainServerDelegateFactory
Helper

com.visigenic.vbroker.orb.ServiceInit com.inprise.vbroker.interceptor.migration.
ServiceInit

VisiBroker 3.x API calls VisiBroker 4.5 API calls

BOA_init() on instance of org.omg.CORBA.ORB BOA_init() on instance of
com.inprise.vbroker.orb.ORB

bind(repId, objectName, hostName, bindOptions) on
instance of org.omg.CORBA.ORB

bind(repId, objectName, hostName,
bindOptions) on instance of
com.inprise.vbroker.orb.ORB

M i g r a t i n g V i s i B r o k e r c o d e 32-9

M i g r a t i n g i n t e r c e p t o r s

For more information on the new package names, classes, and API calls, see the
VisiBroker for Java Reference.

Migrating interceptors
The preferred method for migrating interceptors to VisiBroker 4.5 is to use the new
VisiBroker 4.5 interceptors.

Note: Although VisiBroker 4.5 does provide wrappers that allow you to migrate your old
interceptor code virtually unchanged (described below), the VisiBroker 4.5 wrappers
for 3.x code do not provide functionality comparable to that of VisiBroker 4.5
interceptors.

Using VisiBroker 3.x interceptors

Although VisiBroker 4.5 ensures that method signatures of VisiBroker 3.x
interceptors need not change, installation and initialization procedures for old-style
interceptors are changed.

Installing VisiBroker 3.x interceptors
In order to use old-style interceptors with VisiBroker 4.5:

1 When the migration tool migrates the interceptors, it adds the following statement
to the imports declaration in the Java file:

import com.inprise.vbroker.interceptor.migration.*;

If you are migrating the interceptors manually, you need to add this statement to
the imports declaration yourself.

create_channel(boa, name, debug, maxQueueLength) on
instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel(name, debug, maxQueueLength)
on instance of
com.inprise.vbroker.CosEvent.EventLibrary

create_channel(boa, name, debug) on instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel(name, debug) on instance of
com.inprise.vbroker.CosEvent.EventLibrary

create_channel(boa, name) on instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel(name) on instance of
com.inprise.vbroker.CosEvent.EventLibrary

create_channel(boa) on instance of
com.visigenic.vbroker.services.CosEvent.EventLibrary

create_channel() on instance of
com.inprise.vbroker.CosEvent.EventLibrary

VisiBroker 3.x API calls VisiBroker 4.5 API calls

32-10 P r o g r a m m e r ’ s G u i d e

M i g r a t i n g i n t e r c e p t o r s

2 Rename the following interceptors as shown in the following table:

Migrating BindInterceptors
The VisiBroker 4.5, wrappers simulate the real BindInterceptor.

In previous versions, to add a BindInterceptor, you would:

1 Get the reference to the ChainBindInterceptor by calling
ORB.resolve_initial_references("ChainBindInterceptor").

2 Add the new interceptor to the chain.

To use your VisiBroker 3.x bind interceptor code in VisiBroker 4.5, you should
instead:

1 Get the reference to interceptor_migration.ChainBindDelegateFactory by calling
ORB.resolve_initial_references("ChainBindInterceptor").

2 Then, create and add your interceptor_migration.BindInterceptorDelegate (rather
than the interceptor.BindInterceptor that you used in VisiBroker 3.x) to the chain.

Migrating client- and server-side interceptors
In previous versions, to add a ClientInterceptor or a ServerInterceptor, you would:

First, implement the interface Interceptor.ClientInterceptorFactory or
Interceptor.ServerInterceptorFactory. This interface provides methods for creating
user-implemented ClientInterceptors and ServerInterceptors. You could then obtain a
reference to the ChainClientDelegateFactory or the ChainServerDelegateFactory and,
using these, you can add your own interceptors to the chain.

Under VisiBroker 4.5, you should instead:

Implement Interceptor_migration.ClientInterceptorDelegate or
Interceptor_migration.ServerInterceptorDelegate. Then, obtain a reference to the
Inteceptor_migration.ClientInterceptorFactory or the
Inteceptor_migration.ServerInterceptorFactory. These methods return the instance of
the appropriate InterceptorDelegate.

Table 32.9 Renaming interceptors

Old style name New style name

com.(inprise|borland|visigenic).vbroker.interceptor.
BindInterceptor

com.inprise.vbroker.interceptor.
migration.BindInterceptorDelegate

com.(inprise|borland|visigenic).vbroker.interceptor.
ChainBindInterceptor

com.inprise.vbroker.interceptor.
migration.ChainBindDelegateFactory

com.(inprise|borland|visigenic).vbroker.interceptor.
ClientInterceptor

com.inprise.vbroker.interceptor.
migration.ClientInterceptorDelegate

com.(inprise|borland|visigenic).vbroker.interceptor.
ServerInterceptor

com.inprise.vbroker.interceptor.
migration.ServerInterceptorDelegate

com.(inprise|borland|visigenic).vbroker.interceptor.
ClientInterceptorFactory

com.inprise.vbroker.interceptor.
migration.ClientInterceptorFactory

com.(inprise|borland|visigenic).vbroker.interceptor.
ServerInterceptorFactory

com.inprise.vbroker.interceptor.
migration.ServerInterceptorFactory

M i g r a t i n g V i s i B r o k e r c o d e 32-11

M i g r a t i n g i n t e r c e p t o r s

After you have access to the client factory, server factory or both, you can install your
client- or server-side interceptors into the appropriate factory chain. To do so, call
ORB.resolve_initial_references("ChainClientDelegateFactory") or
ORB.resolve_initial_references("ChainServerDelegateFactory") Once you have the
references, you can use the Add() method to add to the chain. (This procedure is
unchanged from VisiBroker 3.x.)

32-12 P r o g r a m m e r ’ s G u i d e

U s i n g o b j e c t a c t i v a t o r s 33-1

C h a p t e r

33
Chapter33Using object activators

This chapter describes using the VisiBroker object activators.

In this release of VisiBroker, the Portable Object Adaptor (POA) supports the features
that were provided by the BOA in VisiBroker 3.x releases. For backward
compatibility reasons, you may still use the object activators as described in this
chapter with your code. For more information on how to use the BOA activators with
this release, see Chapter 31, “Using the BOA with VisiBroker 4.x,” and Chapter 32,
“Migrating VisiBroker code.”

Deferring object activation
You can defer activation of multiple object implementations, using service activation,
with a single Activator when a server needs to provide implementations for a large
number of objects.

Activator interface
You can derive your own interface from the Activator interface. This allows you to
implement the activate and deactivate methods that the ORB will use for the
DBObjectImpl object. You can then delay the instantiation of the AccountImpl object until
the BOA receives a request for that object. It also allows you to provide clean-up
processing when the BOA deactivates the object.

33-2 P r o g r a m m e r ’ s G u i d e

U s i n g t h e s e r v i c e a c t i v a t i o n a p p r o a c h

Code sample 33.1 shows the Activator interface, which provides methods invoked by
the BOA to activate and deactivate an ORB object.

Code sample 33.1 Activator interface

package com.inprise.vbroker.extension;
public interface Activator {

public abstract org.omg.CORBA.Object activate(ImplementationDef impl);
public abstract void deactivate(org.omg.CORBA.Object obj, ImplementationDef impl);

}

Code sample 33.2 shows how to create an Activator for the DBObjectImpl interface.

Code sample 33.2 Deriving an DBActivator interface, implementing the activate and deactivate methods

// Server.java
import com.inprise.vbroker.extension.*;
. . .
class DBActivator implements Activator {

private static int _count;
private com.inprise.vbroker.CORBA.BOA _boa;

public DBActivator(com.inprise.vbroker.CORBA.BOA boa) {
_boa = boa;

}
public org.omg.CORBA.Object activate(

com.inprise.vbroker.extension.ImplementationDef impl) {
System.out.println("Activator called " + ++_count + " times");
byte[] ref_data = ((ActivationImplDef) impl).id();
DBObjectImpl obj = new DBObjectImpl(new String(ref_data));
_boa.obj_is_ready(obj);
return obj;

}
public void deactivate(org.omg.CORBA.Object obj,

com.inprise.vbroker.extension.ImplementationDef impl) {
// nothing to do here...

}
}
. . .

Using the service activation approach
Service activation can be used when a server needs to provide implementations for a
large number of objects (commonly thousands of objects, possibly millions) but only
a small number of implementations need to be active at any specific time. The server
can supply a single Activator which is notified whenever any of these subsidiary
objects are needed. The server can also deactivate these objects when they are not in
use.

For example, you might use service activation for a server that loads objects
implementations whose states are stored in a database. The Activator is responsible
for loading all objects of a given type or logical distinction. When ORB requests are
made on the references to these objects, the Activator is notified and creates a new
implementation whose state is loaded from the database. When the Activator

U s i n g o b j e c t a c t i v a t o r s 33-3

U s i n g t h e s e r v i c e a c t i v a t i o n a p p r o a c h

determines that the object should no longer be in memory and if the object had been
modified, it writes the object’s state to the database and releases the implementation.

Figure 33.1 Diagram showing the process of deferring activation for a service

Deferring object activation using service activators

Assuming the objects that will make up the service have already been created, the
following steps are required to implement a server that uses service activation:

1 Define a service name that describes all objects activated and deactivated by the
Activator.

2 Provide implementations for the interface which are service objects, rather than
persistent objects. This is done when the object constructs itself as an activatable
part of a service.

3 Implement the Activator which creates the object implementations on demand. In
the implementation, you derive an Activator interface from extension::Activator,
overriding the activate and deactivate methods.

4 Register the service name and the Activator interface with the BOA.

Example of deferred object activation for a service

The following sections describe the odb example for service activation which is
located in the examples/boa/odb directory of your VisiBroker installation. The examples
directory contains the following files:

Table 33.1 Files in the odb example for service activation

Name Description

odb.idl IDL for DB and DBObject interfaces.

Server.java Creates objects using service activators, returns IORs for the objects, and
deactivates the objects.

Creator.java Calls the DB interface to create 100 objects and stores the resulting
stringified object references in a file (objref.out).

Activator

Client

Server

Service A

bind() to objects
in service A

Activator activates objects in service
A to process client requests

Objects in service A activated and
ready to process client requests = Active object

33-4 P r o g r a m m e r ’ s G u i d e

U s i n g t h e s e r v i c e a c t i v a t i o n a p p r o a c h

The odb example shows how an arbitrary number of objects can be created by a
single service. The service alone is registered with the BOA, instead of each
individual object, with the reference data for each object stored as part of the IOR.
This facilitates object-oriented database (OODB) integration, since you can store
object keys as part of an object reference. When a client calls for an object that has not
yet been created, the BOA calls a user-defined Activator. The application can then
load the appropriate object from persistent storage.

In this example, an Activator is created that is responsible for activating and
deactivating objects for the service named “DBService.” References to objects created
by this Activator contain enough information for the ORB to relocate the Activator for
the DBService service, and for the Activator to recreate these objects on demand.

The DBService service is responsible for objects that implement the DBObject interface.
An interface (contained in odb.idl) is provided to enable manual creation of these
objects.

odb.idl interface
The odb.idl interface enables manual creation of objects that implement the DBObject
odb interface.

IDL sample 33.1 db.idl interface

interface DBObject {
string get_name();

};

typedef sequence<DBObject> DBObjectSequence;

interface DB {
DBObject create_object(in string name);

};

The DBObject interface represents an object created by the DB interface, and can be
treated as a service object.

DBObjectSequence is a sequence of DBObjects. The server uses this sequence to keep track
of currently active objects.

The DB interface creates one or more DBObjects using the create_object operation. The
objects created by the DB interface can be grouped together as a service.

Client.java Reads the stringified object references to the objects from a file and makes
calls on them, causing the activators in the server to create the objects.

Makefile When make or nmake (on Windows) is invoked in the odb subdirectory, builds
the following client and server programs:
Server
Creator
Client

Table 33.1 Files in the odb example for service activation (continued)

Name Description

U s i n g o b j e c t a c t i v a t o r s 33-5

U s i n g t h e s e r v i c e a c t i v a t i o n a p p r o a c h

Implementing a service activator
Normally, an object is activated when a server instantiates the Java classes
implementing the object, and then calls obj_is_ready followed by impl_is_ready. To
defer activation of objects, it is necessary to gain control of the activate method that
the BOA invokes during object activation. You obtain this control by deriving a new
class from com.inprise.vbroker.extenstion.Activator and overriding the activate
method, using the overridden activate method to instantiate Java classes specific to
the object.

In the odb example, the DBActivator class derives from
com.inprise.vbroker.extenstion.Activator, and overrides the activate and deactivate
methods. The DBObject is constructed in the activate method.

Code sample 33.3 Example of overriding activate and deactivate

// Server.java
class DBActivator implements Activator {

private static int _count;
private com.inprise.vbroker.CORBA.BOA _boa;
public DBActivator(com.inprise.vbroker.CORBA.BOA boa) {

_boa = boa;
}
public org.omg.CORBA.Object activate(

com.inprise.vbroker.extension.ImplementationDef impl) {
System.out.printIn("Activator called " + ++_count + " times");
byte[] ref_data = ((ActivationImplDef) impl).id();
DBObjectImpl obj = new DBObjectImpl(new String(ref_data));
_boa.obj_is_ready(obj);
return obj;

}
public void deactivate(org.omg.CORBA.Object obj, ImplementationDef impl) {

// nothing to do here...
}

}

As shown in Code sample 33.4, the DBActivator class creates an object based on its
ReferenceData parameter. When the BOA receives a client request for an object under
the responsibility of the Activator, the BOA invokes the activate method on the
Activator. When calling this method, the BOA uniquely identifies the activated object
implementation by passing the Activator an ImplementationDef parameter—from
which the implementation can obtain ReferenceData, the requested object’s unique
identifier.

Code sample 33.4 Example of implementing a service activator

public org.omg.CORBA.Object activate(ImplementationDef impl) {
System.out.println("Activator called " + ++_count + " times");
byte[] ref_data = ((ActivationImplDef) impl).id();
DBObjectImpl obj = new DBObjectImpl(new String(ref_data));
_boa.obj_is_ready(obj);
return obj;

}

33-6 P r o g r a m m e r ’ s G u i d e

U s i n g t h e s e r v i c e a c t i v a t i o n a p p r o a c h

Instantiating the service activator
As shown in Code sample 33.5 below, the DBActivator service activator is created and
registered with the BOA using the impl_is_ready call in the main server program. The
DBActivator service activator is responsible for all objects that belong to the DBService
service. All requests for objects of the DBService service are directed through the
DBActivator service activator. All objects activated by this service activator have
references that inform the ORB that they belong to the DBService service.

Code sample 33.5 Example of instantiating the service activator

public static void main(String[] args) {
org.omg.CORBA.ORB orb = ORB.init(args, null);
com.inprise.vbroker.CORBA.BOA boa = ((com.inprise.vbroker.orb.ORB)orb).BOA_init();
DB db = new DBImpl("Database Manager");
boa.obj_is_ready(db);
boa.impl_is_ready("DBService", new DBActivator(boa));

}

Note that the call to impl_is ready is a variation on the usual call to impl_is_ready—it
takes two arguments:

• Service name.

• Instance of an Activator interface that will be used by the BOA to activate objects
belonging to the service.

Using a service activator to activate an object
Whenever an object is constructed, obj_is_ready must be explicitly invoked in
activate. There are two calls to obj_is_ready in the server program. One call occurs
when the server creates a service object and returns an IOR to the creator program.

Code sample 33.6 First server call to obj_is_ready

public DBObject create_object(String name) {
System.out.println("Creating: " + name);
DBObject dbObject = new DBObjectImpl(name);
_boa().obj_is_ready(dbObject, "DBService", name.getBytes());
return dbObject;

}

The second occurrence of obj_is_ready is in activate, and this needs to be explicitly
called. Refer to Code sample 33.4 on page 33-5 to see this second call in context.

C O R B A e x c e p t i o n s A-1

A p p e n d i x

A
AppendixACORBA exceptions

This appendix provides information about CORBA exceptions that can be thrown by
the VisiBroker ORB, and explains possible causes for VisiBroker throwing them.

The following table lists CORBA exceptions, and explains reasons why the
VisiBroker ORB might throw them.

Table A.1 CORBA exceptions and possible causes

Exception Explanation Possible causes

CORBA::BAD_CONTEXT An invalid context
has been passed to
the server.

An operation may raise this exception if a client invokes
the operation but the passed context does not contain
the context values required by the operation.

CORBA::BAD_INV_ORDER The necessary
prerequisite
operations have
not been called
prior to the
offending
operation request.

An attempt to call the CORBA::Request::get_response() or
CORBA::Request::poll_response() methods may have
occurred prior to actually sending the request.
An attempt to call the exception::get_client_info()
method may have occurred outside of the
implementation of a remote method invocation. This
function is only valid within the implementation of a
remote invocation.
An operation was called on a n ORB that was already
shut down.

CORBA::BAD_OPERATION An invalid
operation has been
performed.

A server throws this exception if a request is received
for an operation that is not defined on that
implementation’s interface. Ensure that the client and
server were compiled from the same IDL.
The CORBA::Request::return_value() method throws this
exception if the request was not set to have a return
value. If a return value is expected when making a DII
call, be sure to set the return value type by calling the
CORBA::Request::set_return_type() method.

A-2 P r o g r a m m e r ’ s G u i d e

C O R B A e x c e p t i o n s

CORBA::BAD_PARAM A parameter
passed to the ORB
is invalid.

Sequences throw CORBA::BAD_PARAM if an access is
attempted to an invalid index. Make sure you use the
length() method to set the length of the sequence before
storing or retrieving elements of the sequence.
ORB throws this exception if null reference is passed).
An attempt was made to send a value that is out of
range for an enumerated data type.
An attempt may have been made to construct a TypeCode
with an invalid kind value.
An attempt may have been made to insert a null object
reference into an Any.
Using the DII and one way method invocations, an OUT
argument may have been specified. An interface
repository thrown this exception if an argument passed
into an IR object’s operation conflicts with its existing
settings. See the compiler errors for more information.

CORBA::BAD_TYPECODE The ORB has
encountered a
malformed type
code.

CORBA::CODESET_INCOMPATIBLE Communication
between client and
server native code
sets fails because
the code sets are
incompatible.

The code sets used by the client and server cannot work
together. For instance, the client uses ISO 8859-1 and the
server uses the Japanese code set.

CORBA::COMM_FAILURE Communication is
lost while an
operation is in
progress, after the
request was sent by
the client but
before the reply has
been returned.

This exception is raised if communication is lost while
an operation is in progress, after the request was sent by
the client, but before the reply from the server has been
returned to the client.

CORBA::DATA_CONVERSION The ORB cannot
convert the
representation of
marshaled data
into its native
representation or
vice-versa.

An attempt to marshal Unicode characters with
Output.write_char() or Output.write_string fails.

CORBA::IMP_LIMIT An implementation
limit was exceeded
in the ORB run
time.

The ORB may have reached the maximum number of
references it can hold simultaneously in an address
space.
The size of the parameter may have exceeded the
allowed maximum.
The maximum number of running clients and servers
has been exceeded.

Table A.1 CORBA exceptions and possible causes (continued)

Exception Explanation Possible causes

C O R B A e x c e p t i o n s A-3

C O R B A e x c e p t i o n s

CORBA::INITIALIZE A necessary
initialization has
not been
performed.

The ORB_init() method may not have been called. All
clients must call the ORB_init() method prior to
performing any ORB-related operations. This call is
typically made immediately upon program startup at
the top of the main routine.

CORBA::INTERNAL An internal ORB
error has occurred.

An internal ORB error may have occurred. For instance,
the internal data structures of the ORB may have been
corrupted.

CORBA::INTF_REPOS An instance of the
Interface
Repository could
not be located.

If an object implementation cannot locate an interface
repository during an invocation of the get_interface()
method, this exception will be thrown to the client.
Ensure that an Interface Repository is running, and that
the requested object’s interface definition has been
loaded into the Interface Repository.

CORBA::INV_FLAG An invalid flag was
passed to an
operation.

A Dynamic Invocation Interface request was created
with an invalid flag.

CORBA::INV_IDENT An IDL identifier is
syntactically
invalid.

An identifier passed to the interface repository is not
well formed.
An illegal operation name is used with the Dynamic
Invocation Interface.

CORBA::INV_OBJREF An invalid object
reference has been
encountered.

The ORB will throw this exception if an object reference
is obtained that contains no usable profiles.
The ORB::string_to_object() method will throw this
exception if the stringified object reference does not
begin with the characters “IOR:”.

CORBA::INV_POLICY An invalid policy
override has been
encountered.

This exception can be thrown from any invocation. It
can be raised when an invocation cannot be made due to
an incompatibility between policy overrides that apply
to the particular invocation.

CORBA::INVALID_TRANSACTION A request carried
an invalid
transaction context.

See your transaction service documentation for more
information on this exception.

CORBA::MARSHAL Error marshalling
parameter or
result.

A request or reply from the network is structurally
invalid. This error typically indicates a bug in either the
client-side or server-side run time. For example, if a
reply from the server indicates that the message
contains 1000 bytes, but the actual message is shorter or
longer than 1000 bytes, the ORB raises this exception. A
MARSHAL exception can also be caused by using the DII or
DSI incorrectly. For example, if the type of the actual
parameters sent does not agree with IDL signature of an
operation.

Table A.1 CORBA exceptions and possible causes (continued)

Exception Explanation Possible causes

A-4 P r o g r a m m e r ’ s G u i d e

C O R B A e x c e p t i o n s

CORBA::NO_IMPLEMENT The requested
object could not be
located.

Indicates that even thought the operation that was
invoked exists (it has an IDL definition), no
implementation for that operation exists.
For example, a NO_IMPLEMENTATION is raised when
a server doesn’t exist or is not running when a clients
initiates a bind.

CORBA::NO_MEMORY The ORB runtime
has run out of
memory.

CORBA::NO_PERMISSION The caller has
insufficient
privileges to
complete an
invocation.

CORBA::NO_RESOURCES A necessary
resource could not
be acquired.

If a new thread cannot be created, this exception will be
thrown.
A server will throw this exception when a remote client
attempts to establish a connection if the server cannot
create a socket—for example, if the server runs out of
file descriptors. The minor code contains the system
error number obtained after the server’s failed
::socket() or ::accept() call.
A client will similarly throw this exception if a
::connect() call fails due to running out of file
descriptors.

CORBA::NO_RESPONSE A client attempts to
retrieve the result
of a deferred
synchronous call,
but the response
for the request is
not yet available.

CORBA::OBJ_ADAPTER An administrative
mismatch has
occurred.

A server has attempted to register itself with an
implementation repository under a name that already is
in use, or is unknown to the repository.
The POA has raised an OBJ_ADAPTER error due to
problems with the application’s servant managers.

CORBA::OBJECT_NOT_EXIST The requested
object does not
exist.

A server throws this exception if an attempt is made to
perform an operation on an implementation that does
not exist within that server. This will be seen by the
client when attempting to invoke operations on
deactivated implementations. For instance, if an attempt
to bind to an object fails, or an auto-rebind fails,
OBJECT_NOT_EXIST will be raised.

CORBA::PERSIST_STORE A persistent
storage failure has
occurred.

Attempts to establish a connection to a database has
failed, or the database is corrupt.

Table A.1 CORBA exceptions and possible causes (continued)

Exception Explanation Possible causes

C O R B A e x c e p t i o n s A-5

C O R B A e x c e p t i o n s

CORBA::REBIND The client has
received an IOR
which conflicts
with QOS policies.

Thrown anytime the client gets an IOR which will
conflict with the QOS policies that have been set. If the
RebindPolicy has a value of NO_REBIND, NO_CONNECT, or
VB_NOTIFY_REBIND and an invocation on a bound object
reference results in an object forward or a location
forward message.

CORBA::TRANSACTION_REQUIRED The request carried
a null transaction
context, but an
active transaction is
required.

See your transaction service documentation for more
information on this exception.

CORBA::TRANSACTION_ROLLEDBACK The transaction
associated with a
request has already
been rolled back, or
marked for roll
back.

See your transaction service documentation for more
information on this exception.

CORBA::TRANSIENT An error has
occurred, but the
ORB believes it is
possible to retry the
operation.

A communications failure may have occurred and the
ORB is signalling that an attempt should be made to
rebind to the server with which communications have
failed. This exception will not occur if the BindOptions are
set to false with the enable_rebind() method, or the
RebindPolicy is properly set.

CORBA::UNKNOWN The ORB could not
determine the
thrown exception.

The server throws something other than a correct
exception, such as a Java runtime exception.
There is an IDL mismatch between the server and the
client, and the exception is not defined in the client
program.
In DII, if the server throws an exception not known to
the client at the time of compilation and the client did
not specify an exception list for the CORBA::Request. Set
the property vbroker.orb.warn=2 on the server to see
which runtime exception caused the problem.

Table A.1 CORBA exceptions and possible causes (continued)

Exception Explanation Possible causes

Table A.2 CORBA exception minor codes

System exception Minor code Explanation

BAD_PARAM 1 Failure to register, unregister, or lookup the value factory

2 RID already defined in the interface repository

3 Name already used in the context in the interface repository

4 Target is not a valid container

5 Name clash in inherited context

6 Incorrect type for abstract interface

MARSHAL 1 Unable to locate value factory

NO_IMPLEMENT 1 Missing local value implementation

2 Incompatible value implementation version

A-6 P r o g r a m m e r ’ s G u i d e

C O R B A e x c e p t i o n s

BAD_INV_ORDER 1 Dependency exists in the interface repository preventing the
destruction of the object

2 Attempt to destroy indestructible objects in the interface
repository

3 Operation would deadlock

4 ORB has shut down

OBJECT_NOT_EXIST 1 Attempt to pass an unactivated (unregistered) value as an
object reference

Table A.2 CORBA exception minor codes (continued)

System exception Minor code Explanation

G l o s s a r y G-1

Glossary
This is a glossary of terms used in Inprise products.

activation
Process of preparing an object to receive requests.

API (application program interface)
A set of operations which allows a (client) program to access functionality contained
in a library or another program, possibly a server.

attribute
An attribute is a property of an object. For example, a Point object might have two
coordinate attributes, X and Y.

applet
A small, platform-independent program designed to be downloaded and executed
by a Java-enabled web browser. An applet is downloaded from a host at runtime and
is not “trusted”—because of security restrictions placed on the applet by the web
browser, it cannot open local files or establish network connections.

application
A computer program designed to help people perform a certain type of work.
Depending on the work for which it was designed, an application can manipulate
text, numbers, graphics, or a combination of these elements.

bind (NamingService)
The process of associating a Name with a remote object in a server application, so
that a client application can resolve the Name and obtain a reference to the remote
object.

bind (VisiBroker)
The process of establishing a connection to a server hosting an object we are
interested in.

class
A class is a data type which declares what attributes and operations an instantiated
object will have.

client/server
A programming strategy in which two programs cooperate with one another using
some common and conventional protocol. For example, on the worldwide web, the
browser is the client software, the web server is the server software, and HTTP is the
protocol. Clients send requests to servers, and servers send replies to clients.

G-2 P r o g r a m m e r ’ s G u i d e

component
A chunk or object of a distributed application.

CORBA (common object request broker architecture)
An open, object-oriented, standard architecture developed by the OMG for the
interoperability of distributed objects on different platforms, under different
operating systems and implemented in different programming languages.

distributed application
An application whose components are distributed across multiple computers on a
network but which seem to be running on the user’s computer.

distributed objects
Software modules that are designed to work together but reside in multiple
computer systems throughout the organization. A program in one machine sends a
message to an object in a remote machine to perform some processing. The results are
sent back to the calling machine.

Dynamic Invocation Interface (DII)
An API that allows a client to make dynamic invocations on remote CORBA objects.
It is used if at compile time a client does not have knowledge about an object it wants
to invoke. Once an object is discovered, the client program can obtain a definition of
it, issue a parameterized call to it, and receive a reply from it, all without having a
type-specific client stub for the remote object.

Dynamic Skeleton Interface (DSI)
An API that provides a way to deliver requests from an ORB to an object
implementation when the type of the object implementation is not known at compile
time. DSI, which is the server side analog to the client side DII, makes it possible for
the application programmer to inspect the parameters of an incoming request to
determine a target object and method.

failover
Having more than one system which may be used as backup in case one of the
systems fail.

HTML (hypertext markup language)
An SGML application used to specify the structure of a hypertext (web) document.

HTTP (hypertext transport protocol)
A protocol used by worldwide web client/server applications to connect and transfer
HTML documents.

IDL (interface definition language)
A high-level, programming language independent, declarative language for defining
the interface of a distributed object.

G l o s s a r y G-3

IDL compiler
A compiler which translates an IDL specification into programming language
specific stub and skeleton files which are used to implement distributed objects.

IDL file
A plain text file which declares modules and interfaces in IDL.

IIOP (Internet Inter-ORB protocol)
A TCP/IP-based protocol developed by the OMG. The IIOP enables two or more
ORBs to work in conjunction to provide requests to objects.

interface
The set of public attributes and operations (or signature) which a (server) object
exposes to a (client) object.

interface repository
A service that contains all the registered component interfaces, the methods they
support, and the parameters they require. The IFR stores, updates, and manages
object interface definitions. Programs may use the IFR APIs to access and update this
information.

JNDI (Java naming and directory interface)
The Java Naming and Directory Interface (JNDI) is a standard extension to the Java
platform, providing Java-enabled applications with a unified interface to multiple
naming and directory services in the enterprise.

master/slave

The Interoperable Naming service runs master and slave naming service for a
failover purposes. The master is the primary service and the slave is the fallback
service in general.

method
An operation of an object (the server) which when called by another object (the client)
performs some declared behavior.

multithreading
A programming technique whereby an application can be divided into more than
one asynchronous time-slice (or thread of execution).

name
A name is a predefined name, an alias, or a convenient handle which is associated
with a server object. To bind a name to an object, you use the bind method. To resolve
a name (that is, to retrieve an object reference) use the resolve method.

G-4 P r o g r a m m e r ’ s G u i d e

namespace
A collection of names, no two of which are identical.

naming service
A CORBA service that allows CORBA objects to be named by means of binding a
name to an object reference. The name binding may be stored in the naming service,
and a client may supply the name to obtain the desired object reference.

n-tier
A programming strategy in which n programs cooperate with one another using
some common and conventional protocol. For example, a client/server application
can also be described as a two-tier application.

object
A programming entity which is defined by its properties (attributes) and behaviors
(operations). Objects have unique identities and can be distinguished from one
another. An object is an instance of a particular class.

object adapter
The ORB component which provides object reference, activation, and state related
services to an object implementation.

object implementation
A server process that offers one or more objects which client applications may use.

object reference
A handle to an object, used by a client application to invoke methods on the object.

OMG (Object Management Group)
A consortium of software companies which is charged with the development of the
CORBA specification: (see http://www.omg.org/).

operation
The method of an object (the server) which when called by another object (the client)
performs some declared behavior.

ORB (object request broker)
The ORB allows clients to make and receive requests and responses.

package
A logical collection of Java classes that provide similar or related features.

protocol
A language which defines the requests and replies of client/server objects or
applications.

G l o s s a r y G-5

RMI (remote method invocation)
A Java API which allows objects to be instantiated and used in a distributed
application.

RPC (remote procedure call)
A strategy which allows procedures to be called from outside the currently running
program’s memory. RPC allows two or more different programs to interoperate with
one another.

scalability
The degree to which a system or application can handle increasing or decreasing
demand on system resources without significant performance degradation.

servant
An instance of an object implementation for an IDL interface. The servant object is
registered with the ORB so that the ORB knows where to send invocations. It is the
servant that performs the services requested when a CORBA object's method is
invoked.

server
An object or application which performs a service for other objects or applications
(the clients). A server replies to a client’s request using a protocol.

service
The functionality of a given server.

SGML (standard generalized markup language)
Abbreviation of Standard Generalized Markup Language, a system for organizing
and tagging elements of a document. SGML was developed and standardized by the
International Organization for Standards (ISO). SGML itself does not specify any
particular formatting; rather, it specifies the rules for tagging elements. These tags
can then be interpreted to format elements in different ways.

signature
The set of parameters and their names of a given operation which uniquely identify
the operation.

skeleton (file)
An older construct (used prior to VisiBroker 4.0): a serverside file generated from IDL
which is to be implemented by the object implementor.

stringification
Converting an object reference to a character string format. Used when an object
reference needs to be made persistent to a text file or stored in a database or sent to a
client program.

G-6 P r o g r a m m e r ’ s G u i d e

stub (file)
The portion of a client or server program that executes the data marshalling and
network transportation routines.

TCP/IP (transport control protocol / internet protocol)
TCP is one of the main protocols in TCP/IP networks. Whereas the IP protocol deals
only with packets, TCP enables two hosts to establish a connection and exchange
streams of data. TCP guarantees delivery of data and also guarantees that packets
will be delivered in the same order in which they were sent.

thread
A thread is a stream of execution within a process. In a multithreaded environment,
multiple tasks can execute concurrently within the same application.

transaction server
A server which supports transactional semantics, (for example, commit or rollback).

XML (extensible markup language)
Extensible Markup Language. A specification developed by the World Wide Web
Consortium (W3C). XML is a subset of the SGML document language, designed
especially for Web documents.

I n d e x I-1

Symbols
... ellipsis 1-5
:: scope resolution operator 23-5
[] brackets 1-5
| vertical bar 1-5

A
abstract

interfaces 28-7
valuetypes 28-2

accessing
Implementation Repository 12-7
Interface Repository 12-10
Location Service 12-2
Naming Service 12-4
value of a DynAny 27-3

account.idl, files produced from
account_c.cc 4-4

activate() method 32-1
activating

the POA manager 31-6
activating objects

changing characteristics dynamically 20-10
deferring 32-1, 32-3
deferring object activation with service

activators 32-3
OAD, arguments passed by 20-12
registering with OAD

oadutil, using 20-6
activation 2-3

service activation 32-2
activation policies

setting using CreationImplDef 20-9
Activator class

deactivating an ORB object 32-2
deferring object activation with 32-2, 32-3

ActiveObjectLifeCycleInterceptor 24-4
adding fields to user exceptions 5-7
additional information

where to find 1-6
administration commands

oadutil list 20-5
oadutil unreg 20-12
osfind 16-12

agent
reporting 16-12

agentaddr file
specifying IP addresses 16-9
specifying Smart Agent IP addresses in 16-5

AliasDef object 21-7

Any 23-7
class 22-10

Any class 19-2
APIs

migrating to new calls 31-8
application development costs, reducing 2-1
Application Server Console

starting 11-2
applications

defining object interfaces 4-3
thread pooling 8-4
thread-per-session 8-7

applications, running 4-8
client program, starting 4-9
server object, starting 4-9
Smart Agent, starting 4-8

arguments
-export 32-3

ArrayDef object 21-7
at runtime 18-2
AttributeDef object 21-7
attributes, interface 15-7

B
backing store 18-14
backingStoreType 18-16
BAD_CONTEXT exception 5-1
BAD_INV_ORDER exception 5-1
BAD_OPERATION exception 5-1

raised when operation is not found 23-7
BAD_PARAM exception 5-1
BAD_TYPECODE exception 5-1
bank example 4-2
bind

generic object references 22-5
nsutil 18-8
process 10-2

bind_context
nsutil 18-8

bind_new_context
nsutil 18-8

binding
multiple names 18-2
names to objects 18-2
ORB’s tasks 16-12

binding to the EventChannel 19-8
binding, to objects

actions performed by _bind() 10-2
connection established by ORB 10-2
proxy object created 10-2

Index

I-2 P r o g r a m m e r ’ s G u i d e

BindInterceptor 24-2
migrating 31-10

BindInterceptorDelegate 31-10
BindInterceptorManager 31-10
BOA

binding 16-12
class moved 30-1
compiling BOA code 30-1
defining the servant 31-6
incoming requests 31-7
limitations in using 30-2
mapping to POA 31-7
migrating to POA 31-1
object activators 30-2
objects

naming 30-2
supported options 30-1
using with VisiBroker 4.0 30-1

BOA initialization option
OAConnectionMax 4-12
OAconnectionMax 4-13
OAconnectionMaxIdle 4-12
OAid—TPool or TSession 4-13
OAipAddr 4-13
OAThreadMax 4-13
OAthreadMaxIdle 4-13
OAThreadMin 4-13

BOA initialization
optionOAconnectionMaxIdle 4-13

BOA::obj_is_ready() method 23-2
BOA_init

change to package 30-1
BOA_init options

OAConnectionMax 4-12, 4-13
OAThreadMax 4-13

bootstrapping the naming service 18-7, 18-9
bound objects

determining location and state 10-4
boxed valuetypes 28-7
broadcast address 16-7
broadcast messages 16-1
browser

Implementation Repository 12-7
Interface Repository 12-8, 12-10, 12-11
Location Service 12-1, 12-2
Naming Service 12-3, 12-4
Naming Service clusters 12-5
Naming Service federations 12-6
refreshing active object list 12-3
viewing Interface Repositories 12-9

browsing
Interface Repository 12-11

buffer size
setting 4-12

building code 4-8

make 4-8
nmake 4-8

C
callback object

triggers, using for 17-6
calls

migrating to new API calls 31-8
catching exceptions

modifying object to 5-6
system exceptions 5-4
user exceptions 5-6

ChainClientInterceptorFactory 31-11
ChainServerInterceptorFactory 31-11
class

PullSupplierPOA 19-9
classes

_tie
how it works 9-1

Any 22-10
ConstantDef 21-7
CORBA::DynamicImplementation 23-2
CreationImplDef 20-9

activation policy property 20-9
args property 20-9
env property 20-9
path_name property 20-9

DynamicImplementation 23-3
example of deriving from 23-3

ExceptionDef 21-7
migrating to new class names 31-8
NamedValue 22-9
NVList 23-7

ARG_IN parameter 23-7
ARG_INOUT parameter 23-7
ARG_OUT parameter 23-7

Repository 21-8
Request 22-6
ServerRequest 23-6
TriggerHandler 17-6
TypeCode 22-10

CLASSPATH 3-2
client

implementing 4-5
locating objects via URL 29-1
specifying a URL 29-1
using thread pooling 8-4
using thread-per-session 8-7

client and server
running 4-8

client application
DynAny example 27-5

client stubs
generating 4-3

ClientInterceptor 31-10

I n d e x I-3

ClientInterceptorDelegate 31-10
ClientInterceptorFactory 31-10
ClientRequestInterceptor 24-3
client-side interceptors

migrating 31-10
Closure objects

working with interceptors 24-16
clusters 18-20

browsing 12-5
code

compiling BOA code 30-1
code generation 4-4
COMM_FAILURE exception 5-1
command_line

setting properties 14-3
Common Object Request Broker See CORBA
compilers

IDL, feature summary 2-4
make 4-8
nmake 4-8

compiling
BOA code 30-1
the idl file 28-3

completion status 5-2
system exceptions, obtaining for 5-2

complex name 18-5
configuring

Console 11-2
setting Console preferences 11-3
setting preferences 11-3

configuring the naming service 18-6
connect_pull_consumer 19-20
connect_pull_supplier 19-7, 19-20
connect_push_consumer 19-8, 19-20
connect_push_supplier 19-7
connecting

client applications with objects 2-1
point-to-point communications 16-8
Smart Agents on different local networks 16-5

Connecting Suppliers to an EventChannel 19-7
connection management 2-3

idle time 4-13
maximum number of connections 4-13

connections
idle time 4-12
managing 4-12
managing, feature summary 2-3
point-to-point

IP addresses
agentaddr file, using 16-9
OSAGENT_ADDR, using 16-9
OSAGENT_ADDR_FILE, using 16-9
specifying at runtime 16-8

Console 11-1, 12-1, 12-3, 12-8
browsers 12-1

changing property settings 13-8
configuring 11-2
Content pane 11-6
contents 11-1
elements 11-5
Gatekeeper 11-7
Implementation Repository 11-7
Interface Repositories (IREP) 11-7
invoking methods 13-6
Location Service 11-6
Naming Service 11-6
navigating 11-5
Navigation pane 11-6
ORB Services 11-6
preferences 11-3
Server Manager 11-7, 13-1
Server Manager contents 13-4
Server Manager security 13-4
setting preferences 11-3
setting properties 13-7
starting 11-2
starting from Application Server 11-2
starting from JBuilder 11-2
system information 11-4

ConsoleImplementation Repositories 12-7
ConstantDef object 21-7
constructed

data types 27-3
constructed data types 27-3
consumer

adding to the EventChannel 19-8
consumer proxy

getting a 19-7
ConsumerAdmin

getting a 19-8
interface 19-18
methods

obtain_pull_supplier 19-18
obtain_push_supplier 19-18

contacting
Borland 1-6
Inprise 1-6
Inprise Sales 1-6
technical support 1-6

Contained object 21-8
defined_in() method 21-8
describe() method 21-8
name() method 21-8

container
top level 13-2

Container object 21-8
Content pane

Console 11-6
contents

highlights 1-4

I-4 P r o g r a m m e r ’ s G u i d e

conventions
documentation 1-5
platform 1-5
typographic 1-5

converting object references to string 10-3
CORBA

Common Object Request Broker
Architecture 2-1

defined 2-1
description of 2-1
VisiBroker compliance 2-6

CORBA exceptions A-1
CORBA::DynamicImplementation class 23-2
CORBA::ORB::create_operation_list() method 23-7
corbaloc URL 18-10
corbaname URL 18-10
CosNaming

calling from the command line 18-7
creating

a DII request 22-6
DynAnys 27-2
software components 2-1

CreationImplDef class 20-9
activation_policy property 20-9
args property 20-9
env property 20-9
path_name property 20-9

CreationImplDef struct
activating an object 20-10

custom valuetypes 28-8

D
data transfer to EventChannel 19-7
data types

constructed 27-3
DynArray 27-4
DynEnum 27-3
DynSequrence 27-4
DynStruct 27-4
DynUnion 27-4
traversing the components 27-3

DATA_CONVERSION exception 5-1
DataExpress (DX) adaptor 1-3
DataExpress adaptor 18-14
deactivate() method 32-1
debugging interceptors, using 24-1
def_kind() method 21-8
default factories 28-6
default naming context 18-12
deferring

object activation 32-3
deferring object activation

service activation
example of 32-3

ways to defer 32-1

defined_in() method 21-8
defining interface names 15-2
deploying

applications 4-9
deployment

description 4-9
describe() method 21-8
DescSeq all_instance_descs() method 17-4
DescSeq all_replica_descs() method 17-5
destroy

nsutil 18-8
developer support 1-6
developing

an example application 4-1
development

defining object interfaces 4-3
DII 2-4

creating a DII request 22-6
creating a request 22-6
feature summary 2-4
generic object reference 22-5
Interface Repository 21-1, 22-16
receiving multiple requests 22-15
receiving results 22-13
requests

asynchronous 22-14
sending a request 22-13
sending and receiving multiple requests 22-15
setting request arguments 22-8
using idl2java compiler 22-5, 23-2

disabling
Smart Agent 16-3

disconnect_push_consumer 19-21
distributed applications

development process for distributed
applications 4-1

domains, running multiple 16-4
Dynamic Invocation Interface See DII
Dynamic Skeleton Interface 2-4, 23-3

activating objects 23-8
compiling object servers 23-2
deriving classes 23-3
DynamicImplementation class, deriving

from 23-3
examples

invoke() method, implementing 23-3
location of 23-2

feature summary 2-4
implementation

derive from
CORBA::DynamicImplementation
class 23-2

implement invoke() method 23-2
register with BOA using BOA::obj_is_ready()

method 23-2

I n d e x I-5

responsible for 23-1
steps for creating 23-2

input parameters 23-7
inter-protocol bridging 23-1
overview 23-1
protocol bridging 23-1
return values 23-7
server object, implementing 23-6
ServerRequest class 23-6

DynamicImplementation class 23-3
example of deriving from 23-3

DynAny
access and initializing 27-3
constructed data types 27-3
creating 27-2
current_component method 27-3
example application 27-4
example client application 27-5
example IDL 27-4
example server application 27-6
next method 27-3
overview 27-1
rewind method 27-3
seek method 27-3
to_any method 27-5
types 27-1
usage restrictions 27-2

DynArray 27-2
data type 27-4

DynEnum 27-2
data type 27-3

DynFixed 27-2
DynSequence 27-2

data type 27-4
DynStruct 27-2

data type 27-4
DynUnion 27-2

data type 27-4

E
effective policies 10-6
enabling rebinds

with the Smart Agent 16-10
EnumDef object 21-7
environment variables

CLASSPATH 3-2
for OAD 20-3
OSAGENT_ADDR 16-9
OSAGENT_ADDR_FILE 16-5
OSAGENT_LOCAL_FILE 16-7
OSAGENT_PORT

port number, choosing for Smart Agent 16-4
setting 3-3

overriding the Windows registry 3-2, 3-3
PATH, setting 3-1

VBROKER_ADM
setting 3-2
setting path to agentaddr file 16-5

equivalent implementations, checking for 10-4
error log files 3-3

location of 3-4
VBROKER_ADM, setting to log directory 3-4

event channel 19-2
in-process implementation 19-15
using 19-6

event service
communication models 19-4
overview 19-1
pull models 19-5
push models 19-5
setting queue length 19-14
starting 19-14

EventChannel 19-5
interface 19-17
methods

destroy 19-17
for_consumers 19-17
for_suppliers 19-17

EventChannelFactory
interface 19-17
methods

create 19-17, 19-18
EventLibrary 19-15, 19-16

for Java 19-16
example application

compiling the example 4-8
defining object interfaces 4-3
deploying the application 4-9
development process 4-1
generating client stubs 4-3
implementing the client 4-5
implementing the server 4-6
running the example 4-8
server servants 4-3
starting the server 4-8
with VisiBroker 4-1
writing the account interface in IDL 4-3

example program, bank example 4-2
examples

_tie class
location of code sample 9-2

activating objects 32-5
overriding activate() and deactivate()

methods 32-2
service activator

instantiating 32-6
activation

deferring with Activator
service 32-3

I-6 P r o g r a m m e r ’ s G u i d e

Dynamic Implementation class, deriving
from 23-3

Dynamic Skeleton Interface
activating objects 23-8
Dynamic Implementation class, deriving

from 23-3
invoke() method, implementing 23-3
location of sample code 23-2

exceptions
catching, modifying object to 5-6
fields, adding to user exceptions 5-7
narrowing to a system exception 5-4
printing an exception 5-3
throwing, modifying object to 5-6
user, defining 5-5

IDL
example specification 15-2
interface inheritance, specifying 15-8
oneway methods, defining 15-7

Interface Repository
interface, looking up 21-9

Location Service
finding all instances of an interface 17-7
finding all known by Smart Agents 17-8
trigger handler

implementing 17-10
OSAGENT_PORT environment variable,

setting 16-4
push consumer 19-8
push supplier 19-8
quick start

building example 4-8
make 4-8
makefile sample 4-8
nmake 4-8

client
balance, obtaining 4-6
binding to Account object 4-5
implementing 4-5

compiling, files produced 4-4
IDL, writing account interface in 4-3
running example 4-8

Account server, starting 4-9
client program, starting 4-9
Smart Agent, starting 4-8

server
implementing Account 4-6

server 13-2
Smart Agent localaddr file 16-7

examplesactivating objects 32-5
ExceptionDef object 21-7
exceptions

adding fields to user exceptions 5-7
BAD_OPERATION 23-7
catching user exceptions 5-6

completion status for exceptions 5-2
CORBA, overview 5-1
CORBA-defined system exceptions 5-1
handling 5-3
narrowing to system exceptions 5-3
system

BAD_CONTEXT 5-1
BAD_INV_ORDER 5-1
BAD_OPERATION 5-1
BAD_PARAM 5-1
BAD_TYPECODE 5-1
COMM_FAILURE 5-1
completion status, obtaining 5-2
CompletionStatus values 5-2
DATA_CONVERSION 5-1
FREE_MEM 5-2
handling 5-3
IMP_LIMIT 5-2
INITIALIZE 5-2
INTERNAL 5-2
INTF_REPOS 5-2
INV_FLAG 5-2
INV_INDENT 5-2
INV_OBJREF 5-2
MARSHAL 5-2
narrowing exceptions to 5-3
NO_IMPLEMENT 5-2
NO_MEMORY 5-2
NO_PERMISSION 5-2
NO_RESOURCES 5-2
NO_RESPONSE 5-2
OBJ_ADAPTOR 5-2
OBJECT_NOT_EXIST 5-2
PERSIST_STORE 5-2
SystemException class 5-1
TRANSIENT 5-2
types, catching specific 5-4
UNKNOWN 5-2
UserException class 5-5

throwing 5-6
user

catching exceptions, modifying object to 5-6
defining 5-5
fields, adding to 5-7
throwing exceptions, modifying object

to 5-6
exclusive connection 1-1
-export argument 32-3

F
factories

default 28-6
valuetypes 28-5

factory
migration 31-11

I n d e x I-7

factory_name 18-8
setting 18-7

failover 18-23
fault tolerance 2-3, 18-24

object implementation 16-10
providing for objects 16-10
replicating objects registered with the

OAD 16-10
features of VisiBroker 2-3

activating objects and implementations 2-3
compilers, IDL 2-4
connection management 2-3
dynamic invocation 2-4
IDL compilers 2-4
IDL interface to Smart Agent 2-3
implementation activation 2-3
implementation repository 2-4
interface repository 2-4
Location Service 2-3
multithreading 2-3
object activation 2-3
object database integration 2-5
Smart Agent architecture 2-3
thread management 2-3

federations
browsing 12-6

file extensions 4-4
files

agentaddr 16-5
compiling, produced by 4-4
impl_rep 20-2
localaddr 16-7

for_consumers 19-8
method 19-17

for_suppliers 19-7
method 19-17

FREE_MEM exception 5-2

G
Gatekeeper

Console 11-7
generating

client stubs and server servants 4-3
_get_policy 10-6
globally scoped objects

Smart Agent, registration with 16-1
Glossary G-1

H
handling system exceptions 5-3
hash value, obtaining for an object reference 10-4
HostnameSeq all_agent_locations() method 17-4
HTML

setting properties 14-3

I
id field

NameComponent 18-4
IDL

compiler 4-3
feature summary 2-4
generating stubs and skeletons with 4-3

constructs, represented in Interface
Repository 21-2

DynAny example 27-4
example specification 15-2
idl2cpp compiler

how it generates code 15-2
interface inheritance, specifying 15-8
methods for attributes, generated by 15-7
oneway methods, defining 15-7

interface inheritance, specifying 15-8
Interface Repository, information contained

in 21-1
mapping to Java 2-9, 4-3
OAD interface 20-14
oneway methods, defining 15-7
specifying objects in 4-3

idl2cpp compiler 4-3
attribute methods 15-7
-export 32-3
how it generates code 15-2
interface inheritance, specifying 15-8
methods for attributes, generated by 15-7
oneway methods, defining 15-7

idl2ir compiler 21-5
command info 2-6
description 2-6

idl2java compiler
generating stub code using DII 22-5, 23-2
-portable flag 22-5, 23-2

IMP_LIMIT exception 5-2
impl_is_down() method 17-6
impl_is_ready() method

Location Service, with 17-6
impl_rep file for Implementation Repository

data 20-2
implementation

activating
changing characteristics dynamically 20-10

activation 2-3
deferred

Service Activator 32-5
activation policies

setting using CreationImplDef 20-9
connections with Smart Agents 16-1
deferring

example of 32-3
services 32-3

I-8 P r o g r a m m e r ’ s G u i d e

ways to defer 32-1
dynamic creation with DSI, steps for 23-2

implement invoke() method 23-2
register with BOA using boa.obj_is_ready()

method 23-2
equivalent, checking for 10-4
fault tolerance, providing 16-10
migrating

between hosts 16-11
instantiated objects 16-11
OAD, registered with 16-11
objects with state 16-11

multiple instances, distinguishing
between 20-9

OAD, arguments passed by 20-12
registering

multiple instances, defining 20-9
replicating 16-10
state, invoking methods on 16-10
stateless, invoking methods on 16-10
support 2-3
unregistering with the OAD 20-12

oadutil, using 20-12
Implementation Repository 2-4

accessing 12-7
browser 12-7
Console 11-7
contents of, displaying 20-14
feature summary 2-4
for OAD 20-5
impl_rep file 20-2
registration information stored in 20-2
removed when unregistered with the

OAD 20-12
specifying directory with OAD 20-3
unregistering objects 20-12
using OAD 20-3

implementations
binding 16-12
inheritance

allowing 9-1
listing 20-5
registered with OAD 20-5
reporting 16-12
thread pooling 8-3
unregistering with OAD 20-12, 20-13
using thread-per-session 8-7

implementing
a list of NamedValue objects 22-8
push suppliers 19-8
the client 4-5
the server 4-6

implementing factories 28-5
implementing the Factory class 28-4
implementing valuetypes 28-3

import statements 18-24
importBiDir 11
information, where to find 1-6
inheritance

from implementations, allowing 9-1
implementations

generated skeleton, not from 23-1
interface 15-8

inheritance of interfaces
specifying 15-8

inheriting
valuetype base classes 28-4

INITIALIZE exception 5-2
initializing

value of a DynAny 27-3
Initializing the naming service (Java only) 18-12
In-memory adaptor 18-14
Inprise

contacting 1-6
in-process event channel 19-15, 19-16
input parameters, processing in DSI 23-7
input/output arguments

for method invocation requests 22-9
installation support 1-6
installing the naming service 18-6
instances

determining for object reference 10-4
distinguishing between 20-9
finding with all_instances method 17-4
finding with Location Service 17-1
like-named, finding using Location

Service 17-5
interceptor

default interceptor classes 24-6
Interceptor interface

example 24-7
interfaces 24-2
managers 24-2
message, supported 24-1
overview 24-1
registering with the ORB 24-6
request, supported 24-1

interceptors
ActiveObjectLifeCycleInterceptor 24-4
BindInterceptor 24-2
client 24-2
ClientRequestInterceptor 24-3
creating interceptor objects 24-7
customizing the ORB 2-5
example program 24-7
interfaces 24-2
IORCreationInterceptor 24-5
loading 24-7
managers 24-2
passing data between 24-16

I n d e x I-9

POALifeCycleInterceptor 24-4
registering interceptors with the ORB 24-6
server 24-4
ServerRequestInterceptor 24-4

*_interface_name() method 10-4
interface

attributes 15-7
IDL, defining in 4-3
inheritance 15-8
looking up 21-9
TriggerHandler 17-6

Interface Definition Language See IDL
interface name

obtaining 10-4
unregistering objects with OAD 20-12

Interface Repository 2-4, 12-8
_get_interface() method 21-2
accessing 12-10
accessing object information 21-8
browser 12-8, 12-10, 12-11
browsing 12-11
console 11-7
contents of 21-2, 21-7
def_kind 21-6
definition types 12-9
description 21-1
examples 21-9
feature summary 2-4
how many? 21-2
id, identifying an IRObject with 21-6
identifying objects within 21-6

def_kind 21-6
id 21-6
name 21-6

inherited interfaces 21-8
Contained 21-8

defined_in() method 21-8
describe() method 21-8
name() method 21-8

Container 21-8
IRObject 21-8

def_kind() method 21-8
irep 12-8
name, specifying for IR objects 21-6
populating with idl2ir 2-6
starting 12-8
structure 21-6
structure of 21-5
types of objects stored in 21-7

AliasDef 21-7
ArrayDef 21-7
AttributeDef 21-7
ConstantDef 21-7
EnumDef 21-7
ExceptionDef 21-7

InterfaceDef 21-7
ModuleDef 21-7
OperationDef 21-7
PrimitiveDef 21-7
Repository 21-7
SequenceDef 21-7
StringDef 21-7
StructDef 21-7
UnionDef 21-7

updating contents with idl2ir 21-5
viewing 12-9
viewing contents of 21-4
what is? 21-1

InterfaceDef object 21-7
in Interface Repository 21-2

interfaces
abstract 28-7
accessible, finding all 17-4
descriptions of in Interface Repository 21-1
inheritance, specifying 15-8
Quality of Service 10-6
reporting 16-12
using java2iiop 26-6

INTERNAL exception 5-2
interoperability 2-8

with other ORB products 2-9
with VisiBroker for C++ 2-8

INTF_REPOS exception 5-2
INV_FLAG exception 5-2
INV_INDENT exception 5-2
INV_OBJREF exception 5-2
invocation feature summary 2-4
invoke() method 23-1, 23-2

example of implementing 23-3
IORCreationInterceptor 24-5
IP address 4-12
IP subnet mask

broadcast messages, specifying scope of 16-5
localaddr file, contained within 16-7

IR See Interface Repository 2-4
IR See Interface Repository
IREP

Console 11-7
irep tool

creating an interface repository with this
tool 21-3

creating Interface Repository with 21-3
viewing Interface Repository with 21-4

IRObject object 21-8
def_kind() method 21-8

_is_a() method 10-4
_is_bound() method 10-4
_is_local() method 10-4
_is_remote() method 10-4

I-10 P r o g r a m m e r ’ s G u i d e

J
Java

Java Development Kit (JDK) 2-7
runtime environment 2-7

java2iiop
mapping complex data types 26-6
mapping primitive types 26-5

JDataStore JDBC driver 1-3
JDBC adaptor 1-3, 18-14
JDBC Adaptor properties 18-16
jdbcDriver 18-16

K
kind field

NameComponent 18-4

L
limitations

in using BOA 30-2
list

nsutil 18-8
listing, contents of implementation

repository 20-14
load balancing

Location Service, used for 17-3
migrating objects between hosts 16-11

localaddr file, specifying interface usage 16-7
Location Service 12-1

accessing 12-2
Agent, accessible through 17-3

DescSeq all_instance_descs() method 17-4
DescSeq all_replica_descs() method 17-5
HostnameSeq all_agent_locations()

method 17-4
impl_is_down() method 17-6
impl_is_ready() method 17-6
ObjSeq all_instances() method 17-4
ObjSeq all_replica() method 17-5
reg_trigger() method 17-5
RepositoryIDSeq all_repository_ids()

method 17-4
browser 12-1, 12-2
components of Location Service Agent 17-3
Console 11-6
enhanced object discovery 2-3
examples

finding all instances of an interface 17-7
finding all known by Smart Agents 17-8
trigger handler

implementing 17-10
feature summary 2-3
filtering 12-1
instances, finding 17-4

like-named 17-5
refreshing 12-1
refreshing active object list 12-3
repository ID, used to identify interfaces 17-4
Smart Agents

cooperation with 17-1
finding hosts running 17-4

starting 12-1
trigger

creating 17-6
first instance only, looking at 17-6
what is? 17-5

TriggerHandler 17-6
what is a location service? 17-1

location, determining for an object reference 10-4
log files 3-3

location of 3-4
VBROKER_ADM, setting to log directory 3-4

logging output 3-3
loginPwd 18-16
lookup() method 21-8

M
make, compiling with 4-8
makefile, sample for Solaris 4-8
managing

Implementation Repositories
starting 12-7

Interface Repository 12-8
Location Service 12-1
Naming Service 12-3

manual
conventions 1-5

mapping
IDL to Java 2-9

MARSHAL exception 5-2
marshalling 28-8

using java2iiop 26-5
maxQueueLength 19-14
message interceptors, supported 24-1
method 10-6

for_consumers 19-17
methods

*_interface_name() 10-4
*_object_name() 10-4
*_repository_id() 10-4
*object_to_string() 10-3
_is_a() 10-4
_is_bound() 10-4
_is_local() 10-4
_is_remote() 10-4
_name()

discovering name of IR object with 21-8
activate() 32-1
boa.obj_is_ready() 23-2

I n d e x I-11

CORBA::ORB::create_operation_list() 23-7
deactivate() 32-1
def_kind() 21-8
defined_in() 21-8
describe() 21-8
DescSeq all_instance_descs() 17-4
DescSeq all_replica_descs() 17-5
for_suppliers 19-17
_get_policy 10-6
HostnameSeq all_agent_locations() 17-4
impl_is_down() 17-6
impl_is_ready() 17-6
invoke() 23-1, 23-2

example of implementing 23-3
invoking in the Console 13-6
lookup() 21-8
ObjSeq all_instances() 17-4
ObjSeq all_replica() 17-5
oneway, defining 15-7
open() 23-7
reg_trigger() 17-5
RepositoryIDSeq all_repository_ids() 17-4
_set_policy_override method 10-6
state

objects with, invoking on 16-10
stateless objects, invoking on 16-10
string_to_object() 10-3
unreg_trigger() 17-5

migrating
activating the POA manager 31-6
BOA to POA 31-1
code 31-1
defining the servant 31-6
incoming requests 31-7
instantiated objects 16-11
mapping BOA types to POA 31-7
objects 16-11
objects between hosts 16-11
objects registered with OAD 16-11
objects with state 16-11
setting POA policies 31-5
to new API calls 31-8
to new class names 31-8
to new package names 31-7

Migrating BindInterceptor 31-10
ModuleDef object 21-7

in Interface Repository 21-2
multihomed hosts

described 16-6
interface usage, specifying 16-7

multithreading
feature summary 2-3

N
Name

binding names to objects 18-1
_name() method 21-8
name

complex 18-5
defined 18-4
object

qualifying binding with 10-2
resolution 18-4
simple 18-5
stringified 18-5

Name Resolution 18-5
NameComponent

defined 18-4
id field 18-4
kind field 18-4

NamedValue
class 22-9
objects 22-8
pair 22-9

nameserve 18-7
namespace 18-1
NameValuePair 27-5
Naming Contexts

class 18-11
default 18-12
defined 18-3
root 18-4
use by client applications 18-3
use by object implementations 18-3

Naming Service 12-3
accessing 12-4
bootstrapping 18-7, 18-9
browser 12-3, 12-4
browsing 12-5
clusters 12-5, 18-20
configuring 18-6
Console 11-6
failover 18-23
fault tolerance 18-24
federations 12-6
hierarchical namespace 18-2
installing 18-6
overview 18-1
pluggable backing store 18-14

configuration 18-15
properties file 18-15
types 18-14

properties 18-13
sample programs 18-25
starting 12-3, 18-6

Naming Service Utility 18-7
Naming Services Manager

introduction 12-3, 12-8
NamingContext

bootstrapping 18-4

I-12 P r o g r a m m e r ’ s G u i d e

factories 18-4
NamingContextExt 18-12
narrowing

exceptions to system exception 5-3
object reference 10-5

navigating
the Console 11-5

Navigation pane
Console 11-6

network
reporting objects and services 16-12

new_context
nsutil 18-8

nmake, compiling with 4-8
NO_IMPLEMENT exception 5-2
NO_MEMORY exception 5-2
NO_PERMISSION exception 5-2
NO_RESOURCES exception 5-2
NO_RESPONSE exception 5-2
nsutil 18-7
NT services

console mode 16-3
osagent 16-3

null semantics 28-7
NVList class 23-7

ARG_IN parameter 23-7
ARG_INOUT parameter 23-7
ARG_OUT parameter 23-7
implementing a list of arguments with 22-8

O
OAD

arguments passed by 20-12
IDL interface to 20-14
impl_rep file 20-2
implementation repository 20-2
listing objects 20-5
migrating objects registered with 16-11
programming interface 20-14
registering objects 20-10
registration information stored in

Implementation Repository 20-2
replicating objects registered with 16-10
setting the activation policy 20-11
specifying time-out 20-3
starting 20-2 to 20-3
storing registration info 20-5
unregistering objects 20-12

oadutil, using 20-12
removing from Implementation

Repository 20-12
removing from Smart Agent 20-12

OAD command
setting environment variables for 20-3

oadj

reporting 16-12
oadutil

listing objects registered with OAD 20-5
unregistering implementations 20-12

oadutil tool
displaying contents of Implementation

Repository 20-14
registering object implementations with 20-1

OBJ_ADAPTOR exception 5-2
*object_to_string() method 10-3
object

accessible, finding all 17-4
accessing information from Interface

Repository 21-8
activating

changing characteristics dynamically 20-10
deferring

services 32-3
OAD, arguments passed by 20-12

activation
deferred service Activator 32-5

activation policies
setting using CreationImplDef 20-9

active connection 10-5
connecting to with the OAD 16-2
connections with Smart Agents 16-1
deferring

ways to defer 32-1
dynamic creation with DSI, steps for 23-2

implement invoke() method 23-2
register with BOA using boa.obj_is_ready()

method 23-2
Dynamic Skeleton Interface

server object, implementing 23-6
exceptions

catching, modifying to 5-6
throwing, modifying to 5-6

fault tolerance, providing 16-10
finding with Location Service 17-1
getting object name 10-4
IDL, specifying in 4-3
implementing a specific interface 10-4
implementing on remote host 10-5
in local address space 10-5
inheritance

from implementations 9-1
generated skeletons, not from 23-1

instances
finding using Location Service 17-4
like-named, finding using Location

Service 17-5
listing 20-5
migrating

between hosts 16-11
instantiated objects 16-11

I n d e x I-13

OAD, registered with 16-11
objects with state 16-11

multiple instances, distinguishing
between 20-9

referring to same interface implementation 10-4
registering

multiple instances, defining 20-9
with OAD 20-10
with Smart Agent, automatic 16-3

replicating 16-10
reporting objects on a network 16-12
setting the activation policy 20-11
setting the path 20-11
state, invoking methods on 16-10
stateless, invoking methods on 16-10
unregistering

from OAD 20-12
with OAD 20-12

unregistering with the OAD
oadutil, using 20-12

using CreationImplDef struct 20-10
object activation 2-3

deferred 32-6
example of deferred method 32-3
service activation 32-2
support 2-3

Object Activation Daemon See OAD
Object Database Activator

feature summary 2-5
object discovery

enhanced with the Location Service 2-3
object implementation

changing dynamically 20-10
fault tolerance 16-10
implementations that maintain state 16-10

Object Management Group 2-1
object migration 16-11
object names

obtaining 10-4
qualifying binding with 10-2

object reference
converting to string 10-3
converting type 10-5
determining the locations and state 10-4
equivalent implementations, checking for 10-4
hash value, obtaining 10-4
instance of type, determining 10-4
instances, finding 17-4
instances, finding like-named 17-5
interface name, obtaining 10-4
location, determining 10-4
narrowing 10-5
object name, obtaining 10-4
obtaining object and interface names 10-4
operations on 10-3

repository id, obtaining 10-4
state, determining 10-4
string, converting to 10-3
sub-type, determining if is 10-4
super-type, converting to 10-5
type, determining 10-4
type, using the _is_a() method 10-4
widening 10-5

object references
persistent 30-2

Object Request Broker See ORB
object wrappers

adding un-typed 25-6
co-located client and server 25-11
customizing the ORB 2-5
deriving a typed wrapper 25-11
described 25-1
example programs 25-2
installing un-typed 25-5
post_method 25-4
pre_method 25-4
removing typed wrappers 25-14
removing un-typed factories 25-8
typed 25-2, 25-8

order of invocation 25-10
un-typed 25-2

implementing 25-4
using 25-4

using both typed and un-typed wrappers 25-14
OBJECT_NOT_EXIST exception 5-2
object-oriented approach

software component creation 2-1
objects

associating a URL 29-1
binding 16-12
executable’s path 20-11
locating via URL 29-1

ObjectWrapper 25-11
ObjSeq all_instances() method 17-4
ObjSeq all_replica() method 17-5
obtain_pull_consumer 19-7
obtain_push_consumer

method 19-7
obtain_push_supplier 19-8
obtaining

object and interface names 10-4
OMG 2-1

Common Object Services Specification 19-3
Event Service 19-1
Notification Service 19-1

oneway methods, defining 15-7
open() method 23-7
OpenFusion Notification Service 19-1
OperationDef object 21-7

in Interface Repository 21-2

I-14 P r o g r a m m e r ’ s G u i d e

operator
scope resolution (::) 23-5

options
BOA options 30-1

OptJDBC adaptor 1-3
ORB

creating proxy 16-12
customizing with interceptors and object

wrappers 2-5
definition 16-12
domains 16-4
function of 2-1
interoperability 2-8
object implementations 20-5
resolve_initial_references 18-9

ORB browsers
Console 12-1

ORB Console services 11-6
ORB initialization option

ORBagentaddr 4-12
ORBagentport 4-12
ORBmbufsize 4-12
ORBtcpNoDelay 4-12

ORBDefaultInitRef property 18-10
ORBInitRef 18-7
ORBInitRef property 18-9
OSAgent

checking client existing (heartbeat) 16-3
detecting other Agents 16-6
disabling 16-3
ensuring availability 16-3
locating objects 16-2
Smart Agent 16-1
starting 16-2
verbose output 16-3

osagent
binding 16-12
object name 30-2
reporting 16-12
starting Smart Agents with 4-8

OSAgent (Smart Agent)
VisiBroker architecture 2-3

OSAGENT_ADDR environment variable 16-9
OSAGENT_ADDR_FILE environment

variable 16-5
OSAGENT_LOCAL_FILE environment

variable 16-7
OSAGENT_PORT environment variable 16-4

setting 3-3
osfind

command info 16-12
output, logging 3-3
overrides

policy 10-6
overview

event service 19-1
Naming Service 18-1

P
package names

migrating to new packages 31-7
parameters, passing

input, processing in DSI 23-7
PATH, setting 3-1
PERSIST_STORE exception 5-2
persistent objects

ODA, feature summary 2-5
ping

nsutil 18-8
platform conventions 1-5
platform designation with icons 1-5
pluggable backing store 18-14

configuration 18-15
properties file 18-15
types 18-14

POA
activating objects 7-12
activating the manager 31-6
creating 7-3, 7-6
defined 7-1
defining the servant 31-6
dispatching properties 7-20
incoming requests 31-7
listener port property 7-22
listening properties 7-20
managing POAs 7-17
mapping from BOA types 31-7
migrating from BOA 31-1
obtaining a root reference 31-5
POA manager 7-17
policies 7-3
processing requests 7-25
servant managers 7-12
ServantLocators 7-15
servants

using 7-12
setting policies 31-5

POALifeCycleInterceptor 24-4
point-to-point communication 16-8

IP addresses
agentaddr file, using 16-9
OSAGENT_ADDR, using 16-9
OSAGENT_ADDR_FILE, using 16-9
specifying at runtime 16-8

policies 10-6
effective 10-6
mapping BOA to POA 31-7
POA 7-3
setting for POA 31-5

policy overrides 10-6

I n d e x I-15

poolSize 18-16
port number 4-12

listener 7-22
specifying for Smart Agent 16-4

portability
server-side 2-5

Portable object adapter
policies 7-3

preferences
setting for Console 11-3
setting in the Console 11-3

PrimitiveDef object 21-7
process

quick start example
building example 4-8

makefile sample 4-8
client

balance, obtaining 4-6
binding to Account object 4-5
implementing 4-5

compiling, files produced 4-4
IDL, writing account interface in 4-3
running example 4-8

Account server, starting 4-9
client program, starting 4-9
Smart Agent, starting 4-8

server
implementing Account 4-6

properties 13-10
data types 14-4
DataExpress adaptor 18-18
grouping properties example 14-4
Java 14-6
JDBC adaptor 18-16
JNDI adaptor 18-18
Naming Service 18-13, 18-15
ORBDefaultInitRef 18-10
ORBInitRef 18-9
order of precedence 14-1
properties file 14-4
property file 14-5
reload from server 13-11
save settings to file 13-10
setting 14-1
setting boolean values 14-5
setting in the Console 13-7
setting null values 14-5
setting through command-line 14-3
setting through HTML 14-3
specify for the ORB 14-1
specifying a property file 14-5
storage file 13-8
SVCnameroot 18-9
using 14-5
using ORB.init 14-1
VisiBroker 14-1

property settings
changing 13-8

property types
used in the Server Manager 13-7

proxy consumer 19-2
proxy object

binding process, created during 10-2
proxy objects

binding 16-12
proxy supplier 19-2
ProxyPullConsumer 19-5

interface 19-19
ProxyPullSupplier 19-5

interface 19-20
methods

connect_pull_consumer 19-20
connect_push_consumer 19-20

ProxyPushConsumer 19-5
interface 19-20
methods

connect_pull_supplier 19-20
ProxyPushSupplier 19-5
pull 19-7, 19-8
pull model 19-5
PullConsume 19-12
PullConsume.java 19-9
PullConsumer

interface 19-21
methods

disconnect_push_consumer 19-21
PullModel 19-8
PullSupplier

interface 19-22, 19-23
methods

disconnect_pull_supplier 19-22
disconnect_push_supplier 19-23
pull 19-22
try_pull 19-22

PullSupplierPOA
class 19-9

PullSupply 19-9
PullSupply.java 19-9
push 19-7
push model 19-5
push supplier

example 19-8
PushConsumer

example 19-8
interface 19-21

PushModel 19-8
PushSupplier

implementing 19-8

Q
QoS 10-6
Quality of Service 10-6

I-16 P r o g r a m m e r ’ s G u i d e

interfaces 10-6
queue length

setting 19-14

R
rebind

nsutil 18-8
rebind_context

nsutil 18-8
receiving multiple requests 22-15
reducing application development costs 2-1
ref_data parameter 20-9
reference data 20-9
reg_trigger() 17-5

method 17-5
registering

valuetypes 28-6
your Factory with the ORB 28-5

registering objects 20-9
oadutil, using 20-6
unregistering

with OAD 20-12
unregistering with the OAD

oadutil, using 20-12
registration

OAD, information stored in Implementation
Repository 20-2

Smart Agents, with 16-1
RelativeConnectionTimeoutPolicy 10-8
replicating objects registered with the OAD 16-10
*_repository_id() method 10-4
Repository class 21-8
repository id

obtaining 10-4, 20-4
Repository object 21-7
RepositoryIDSeq all_repository_ids() method 17-4
Request class 22-6
request interceptors, supported 24-1
requests

waiting for incoming requests with BOA 31-7
waiting for incoming requests with POA 31-7

REQUIRE_AND_TRUST 11
resolve

nsutil 18-8
Resolver interface

associating a URL with an object 29-2
restrictions

usage of DynAnys 27-2
root

POA 31-5
root NamingContext 18-4
running applications 4-8

client program, starting 4-9
server object, starting 4-9
Smart Agent, starting 4-8

S
sample programs

Naming Service 18-25
scope resolution operator (::) 23-5
sending

a DII request 22-13
multiple requests 22-15

SequenceDef object 21-7
servant

defining 31-6
server

enabling 13-5
implementing 4-6
reload properties 13-11
restart 13-10
update 13-10

server application
DynAny example 27-6

Server Manager
changing property settings 13-8
Console 11-7, 13-1
enabling a server 13-5
example server 13-2
GUI 13-2
invoking methods 13-6
property types 13-7
reload properties 13-11
restart server 13-10
setting properties 13-7
setting security 13-4
specifying property storage 13-8
top level container 13-2
update server 13-10
update server and save properties to file 13-10
viewing contents 13-4

server servants
generating 4-3

ServerInterceptor 31-10
ServerInterceptorDelegate 31-10
ServerInterceptorFactory 31-10
ServerRequest class 23-6
ServerRequestInterceptor 24-4
servers

example of tie mechanism 9-2
setting the activation policy 20-11
setting the path 20-11
threading considerations 8-10

server-side
portability 2-5

server-side interceptors
migrating 31-10

service activation
deferred, implementing 32-3

example of 32-3

I n d e x I-17

deferring object activation 32-3
example of 32-3
implementing a service Activator 32-5
instantiating service activator 32-6

service activator
implementing 32-5
instantiating 32-6

ServiceInit class 24-8
ServiceLoader interface 24-7, 24-8
services

in the Console 11-6
reporting services on a network 16-12

_set_policy_override method 10-6
setting

Console preferences 11-3
properties 13-7

sharing semantics 28-7
shutdown

nsutil 18-8
simple name 18-5
skeletons 4-3
Smart Agent

agentaddr file
specifying IP addresses in 16-5

availability, ensuring 16-3
binding 16-12
checking client existing (heartbeat) 16-3
communication 16-1
connecting networks, different local 16-5
connecting to objects with the OAD 16-2
cooperation with other agents 16-2
detecting other Agents 16-6
disabling 16-3
domains, running under multiple 16-4
ensuring availability 16-3
fault tolerance, providing for objects 16-10
feature summary 2-3
flat namespace 18-2
hosts, finding all running Smart Agents 17-4
IP addresses

agentaddr file, using 16-9
OSAGENT_ADDR, using 16-9
OSAGENT_ADDR_FILE, using 16-9
specifying at runtime 16-8

localaddr file, specifying interface usage 16-7
locating 16-1
Location Service, cooperation with 17-1
multihomed hosts

interface usage, specifying 16-7
using 16-6

OAD, cooperating with 16-2
object name 30-2
objects removed from when unregistered with

OAD 20-12
OSAgent 16-1

OSAGENT_ADDR environment variable 16-9
OSAGENT_ADDR_FILE environment

variable 16-5
OSAGENT_LOCAL_FILE file 16-7
OSAGENT_PORT environment variable 16-4
point-to-point

communication 16-8
IP addresses

agentaddr file, using 16-9
OSAGENT_ADDR, using 16-9
OSAGENT_ADDR_FILE, using 16-9
specifying at runtime 16-8

port numbers, specifying 16-4
reregistration of objects automatically 16-3
starting 16-2
starting multiple instances 16-2
VBROKER_ADM environment variable 16-5
verbose output 16-3
versus the Naming Service 18-2
what is? 16-1

Smart Agent (OSAgent)
architecture 2-3

sockets
batching requests 4-12

specifying
IP addresses 16-9

starting
Application Server Console 11-2
Console 11-2
OAD 20-2 to 20-3

starting the naming service 18-6
state

determining for an object reference 10-4
state, objects with, invoking methods on 16-10
stateless objects, invoking methods on 16-10
status, completion

system exceptions, obtaining for 5-2
string

converting to object references 10-3
string_to_object() method 10-3
StringDef object 21-7
stringification

using object_to_string() method 10-3
stringified names 18-5
StructDef object 21-7
subnet mask 16-5, 16-7
sub-type, determining 10-4
supplier

adding to the EventChannel. 19-7
supplier proxy

getting a 19-8
SupplierAdmin

getting 19-7
interface 19-19
methods

I-18 P r o g r a m m e r ’ s G u i d e

obtain_pull_consumer 19-19
obtain_push_consumer 19-19

supplier-consumer communication model 19-1
suppliers

connecting to an EventChannel 19-7
support

implementation and object activation 2-3
support options 1-6
SVCnameroot 18-7
SVCnameroot property 18-9
system exceptions

BAD_CONTEXT 5-1
BAD_INV_ORDER 5-1
BAD_OPERATION 5-1
BAD_PARAM 5-1
BAD_TYPECODE 5-1
catching 5-4
COMM_FAILURE 5-1
completion status, obtaining 5-2
CompletionStatus values 5-2
CORBA-defined 5-1
DATA_CONVERSION 5-1
FREE_MEM 5-2
handling 5-3
IMP_LIMIT 5-2
INITIALIZE 5-2
INTERNAL 5-2
INTF_REPOS 5-2
INV_FLAG 5-2
INV_INDENT 5-2
INV_OBJREF 5-2
MARSHAL 5-2
narrowing exceptions to 5-3
NO_IMPLEMENT 5-2
NO_MEMORY 5-2
NO_PERMISSION 5-2
NO_RESOURCES 5-2
NO_RESPONSE 5-2
OBJ_ADAPTOR 5-2
OBJECT_NOT_EXIST 5-2
PERSIST_STORE 5-2
SystemException class 5-1
TRANSIENT 5-2
type

catching specific 5-4
UNKNOWN 5-2

T
technical support 1-6

contacting 1-6
thread management 2-3

idle time 4-13
maximum number of threads 4-13
TPool 4-13
TSession 4-13

threading
thread policies 8-2
thread pooling policy 8-2
thread-per-session policy 8-7
using synchronized block 8-10
worker threads 8-2, 8-7

threads
multithreading, feature summary 2-3

throwing exceptions, modifying object to 5-6
throwing user exceptions 5-6
_tie class

delegator implementation 9-1
how it works 9-1

tools
administration 2-7
CORBA services 2-7
idl2cpp 4-3
idl2ir 2-6
oadutil unreg 20-12
oadutil, registering objects with 20-6
osfind 16-12
programming 2-6
vregedit 3-2, 3-3

TPool 4-13
tracing code

interceptors, using 24-1
TRANSIENT exception 5-2
TriggerHandler

interface 17-6
TriggerHandler class 17-6
triggers

creating 17-6
first instance only, looking at 17-6
trigger handler

implementing 17-10
what are triggers? 17-3

truncatable valuetypes 28-9
try_pull 19-7, 19-8
TSession 4-13
type

Any 23-7
contained in the Interface Repository 12-9
descriptions of in Interface Repository 21-1
determining for an object reference 10-4
exceptions

catching specific 5-4
instance, determining if is 10-4
sub-type, determining if is 10-4

TypeCode class 22-10
typecodes, Interface Repository, represented

in 21-2
types

DynAny 27-1
typographic conventions 1-5

I n d e x I-19

U
UDP protocol 16-1
unbind

nsutil 18-8
UnionDef object 21-7
UNKNOWN exception 5-2
unmarshalling 28-8
unreg_trigger()

method 17-5
unregistering objects

OAD 20-12
oadutil, using 20-12

URL
naming service 29-1

url 18-17
user exceptions

adding fields to 5-7
catching exceptions, modifying object to 5-6
defining 5-5
fields, adding to 5-7
throwing exceptions, modifying object to 5-6
UserException class 5-5

utilities
idl2cpp compiler

how it generates code 15-2
interface inheritance, specifying 15-8
methods for attributes, generated by 15-7
oneway methods, defining 15-7

idl2ir 21-5
irep 21-3
oadutil

displaying contents of Implementation
Repository 20-14

registering object implementations
with 20-1

osagent 4-8

V
valuetypes 28-1

abstract 28-2
abstract interfaces 28-7
boxed 28-7
compiling the IDL file 28-3
concrete 28-2
custom 28-8
defining 28-3
derivation 28-2
factories 28-2, 28-6
implementing 28-3
implementing factories 28-5
implementing the Factory class 28-4
inheriting valuetype base classes 28-4
overview 28-1
registering 28-6

registering your Factory with the ORB 28-5
truncatable 28-9

variables, environment
OSAGENT_PORT, setting 3-3
PATH, setting 3-1
VBROKER_ADM, setting 3-2 to 3-3

vbroker.naming.backingStore 18-16
vbroker.naming.jdbcDriver 18-16
vbroker.naming.loginName 18-16
vbroker.naming.loginPwd 18-16
vbroker.naming.poolSize 18-16
vbroker.naming.url 18-17
vbroker.security.peerAuthenticationMode 11
VBROKER_ADM environment variable 16-5

log directory, specifying with 3-4
setting 3-2 to 3-3

VBROKER_JAVAVM 1-3
VBROKER_TAG 1-3
version of product 2-6
viewing

Console System Information 11-4
Interface Repositories 12-9

VisiBroker
Console

using 11-1
CORBA compliance 2-6
described 2-2
features of 2-3

activating objects and implementations 2-3
compilers, IDL 2-4
connection management 2-3
dynamic invocation 2-4
IDL compilers 2-4
IDL interface to Smart Agent 2-3
implementation activation 2-3
implementation repository 2-4
interface repository 2-4
Location Service 2-3
multithreading 2-3
object activation 2-3
object database integration 2-5
Smart Agent architecture 2-3
thread management 2-3

introduction 1-1
new in this guide 1-4
new in this release 1-1

VisiBroker for C++
additional information 1-6

VISObjectWrapper::ChainUntypedObjectWrapper
adding factories 25-6
removing factories 25-8

VISObjectWrapper::UntypedObjectWrapper
post_method 25-5

vregedit tool 3-2, 3-3

I-20 P r o g r a m m e r ’ s G u i d e

W
ways to defer 32-1
web naming

associating a URL with an object 29-1
web sites

CORBA specification 1-6, 2-6
What is CORBA? 9-1, 19-1, 25-1, 27-1
What’s new in 4.1 1-2, 1-3
widening object references 10-5

	Programmer’s Guide
	Contents
	Tables
	Figures
	Ch 1: Introduction
	What’s new in this manual
	What’s new in Visibroker 4.1
	What’s new in Visibroker 4.5
	What’s in this guide?
	Manual conventions
	Typographic conventions
	Platform conventions

	Where to find additional information
	Contacting Inprise developer support

	Part I: Basic Concepts
	Ch 2 : Understanding the CORBA model
	What is CORBA?
	What is VisiBroker?
	VisiBroker for Java features
	VisiBroker Smart Agent architecture
	Enhanced object discovery with the Location Service
	Implementation and object activation support
	Robust thread and connection management
	IDL compilers
	Dynamic invocation with DII and DSI
	Interface and implementation repositories
	Server-side portability
	Customizing the ORB with interceptors and object wrappers
	Backing stores in the Naming Service
	Web naming
	Defining interfaces without IDL
	Gatekeeper (optional feature)

	VisiBroker CORBA compliance
	VisiBroker development environment
	Programmer’s tools
	CORBA services tools
	Administration tools

	Java Development Environment
	Java Runtime Environment
	What’s Required for VisiBroker?
	Java-enabled Web Browser

	Interoperability with VisiBroker for C++
	Interoperability with other ORB products
	IDL to Java mapping

	Ch 3: Setting up your environment
	Setting the Path environment variable
	Updating the PATH on a Windows platform
	Updating the PATH on a Windows NT platform
	Setting the Path on a UNIX platform

	CLASSPATH
	Setting the VBROKER_ADM environment variable
	Setting VBROKER_ADM on a Windows platform
	Setting VBROKER_ADM on a UNIX platform

	Setting the OSAGENT_PORT environment variable
	Logging output

	Ch 4: Developing an example application with VisiBroker
	Development process
	Step 1: Defining object interfaces
	Writing the account interface in IDL

	Step 2: Generating client stubs and server servants
	Files produced by the idl compiler

	Step 3: Implementing the client
	Client.java
	Binding to the AccountManager object
	Obtaining an Account object
	Obtaining the balance

	AccountManagerHelper.java
	Other methods

	Step 4: Implementing the server
	Server.java

	Step 5: Building the example
	Compiling the example

	Step 6: Starting the server and running the example
	Starting the Smart Agent
	Starting the server
	Running the client

	Deploying applications with VisiBroker
	VisiBroker for Java applications
	Deploying applications
	Using vbj
	Executing client applications
	Executing server applications

	Ch 5: Handling exceptions
	Exceptions in the CORBA model
	System exceptions
	Obtaining completion status
	Catching system exceptions
	Downcasting exceptions to a system exception
	Catching specific types of system exceptions

	User exceptions
	Defining user exceptions
	Modifying the object to raise the exception
	Catching user exceptions
	Adding fields to user exceptions

	Part II: Server concepts
	Ch 6: Server basics
	Overview
	Initializing the ORB
	Creating the POA
	Obtaining a reference to the root POA
	Creating the child POA
	Implementing servant methods
	Activating the POA

	Activating objects
	Waiting for client requests
	Complete example

	Ch 7: Using POAs
	What is a Portable Object Adapter?
	POA terminology
	Steps for creating and using POAs

	POA policies
	Thread policy
	Lifespan policy
	Object ID Uniqueness policy
	ID Assignment policy
	Servant Retention policy
	Request Processing policy
	Implicit Activation policy
	Bind Support policy

	Creating POAs
	POA naming convention
	Obtaining the rootPOA
	Setting the POA properties
	Creating and activating the POA

	Activating objects
	Activating objects explicitly
	Activating objects on demand
	Activating objects implicitly
	Activating with the default servant
	Deactivating objects

	Using servants and servant managers
	ServantActivators
	ServantLocators

	Managing POAs with the POA manager
	Getting the current state
	Holding state
	Active state
	Discarding state
	Inactive state

	Setting the listening and dispatching properties
	Setting the server engine properties
	Setting the server connection manager properties
	Manager properties
	Listener properties
	Dispatcher properties

	When to use these properties

	Adapter activators
	Processing requests

	Ch 8: Managing threads and connections
	Using threads with VisiBroker
	What thread policies does VisiBroker provide?
	Thread pooling policy
	Thread-per-session policy
	What connection management does VisiBroker provide?
	Setting dispatch policies and properties
	Thread pooling
	Threads-per-session
	Coding considerations

	Ch 9: Using the tie mechanism
	How does the tie mechanism work?
	Example program
	Location of an example program using the tie mechanism
	Changes to the server class
	Changes to the AccountManager
	Changes to the Account class
	Building the tie example

	Part III: Client concepts
	Ch 10: Client basics
	Initializing the ORB
	Binding to objects
	Action performed during the bind process

	Invoking operations on an object
	Manipulating object references
	Converting a reference to a string
	Obtaining object and interface names
	Determining the type of an object reference
	Determining the location and state of bound objects
	Narrowing object references
	Widening object references

	Using quality of service
	Understanding Quality of Service
	Policy overrides and effective policies

	QoS interfaces
	org.omg.CORBA.Object
	com.inprise.vbroker.CORBA.Object
	org.omg.CORBA.PolicyManager
	org.omg.CORBA.PolicyCurrent
	org.omg.Messaging.RebindPolicy
	com.inprise.vbroker.QoSExt.RelativeConnectionTimeoutPolicy
	com.inprise.vbroker.QoSExt.DeferBindPolicy
	com.inprise.vbroker.QoSExt.ExclusiveConnectionPolicy
	com.inprise.vbroker.QoSExt.SyncScopePolicy
	QoS exceptions

	QoS example

	Part IV: Configuration and management
	Ch 11: Using the VisiBroker Console
	What is the VisiBroker Console?
	Starting the VisiBroker Console
	Configuring the Console
	Setting preferences
	Viewing system information

	Navigating the VisiBroker Console
	Menu bar
	Toolbar
	Status bar
	Pull down or context menus
	Navigation pane
	Content pane

	Supported ORB Services
	Location Service
	Naming Services
	Interface Repositories
	Implementation Repositories
	Server Manager
	Gatekeeper

	Ch 12: Using the ORB Services browsers
	Introduction
	Location Service
	Accessing the Location Service browser
	Refreshing the active object list

	Naming Services
	Accessing the Naming Services
	Browsing the Naming Service
	Browsing the VisiBroker Naming Service clusters
	Browsing the VisiBroker Naming Service federations

	Implementation Repositories
	Accessing the Implementation Repositories

	Interface Repositories
	Viewing an Interface Repository
	Accessing the Interface Repositories
	Browsing the Interface Repositories

	Ch 13: Using the Server Manager
	What is the Server Manager
	Viewing the top-level container
	Server Manager browser
	Using the VisiBroker 4.x example server
	Setting security for the Server Manager

	Using the Server Manager browser
	Viewing the contents of a server
	Enabling the server
	Invoking methods
	Setting properties
	Property types
	Specifying the property storage file
	Changing property settings

	Ch 14: Setting properties
	Overview
	Setting Visibroker properties
	Shell/console environment variables
	Windows registry
	Command line arguments
	Applet parameters
	System properties
	Programmatically via ORB.init
	Property file via ORBpropStorage option
	Properties file

	Default properties file

	Property precedence under NT and Unix
	Property precedence for applets
	VisiBroker for Java properties

	Part V: Tools and services
	Ch 15: Using IDL
	Introduction to IDL
	How the IDL compiler generates code
	Example IDL specification

	Looking at the generated code
	_<interface name>Stub.java
	<interface name>.java
	<interface name>Helper.java
	<interface name>Holder.java
	<interface name>Operations.java
	<interface name>POA.java
	<interface name>POATie.java

	Defining interface attributes in the IDL
	Specifying oneway methods with no return value
	Specifying an interface in IDL that inherits from another interface

	Ch 16: Using the Smart Agent
	What is the Smart Agent?
	Locating Smart Agents
	Locating objects through Agent cooperation
	Cooperating with the OAD to connect with objects
	Starting a Smart Agent (osagent)
	Verbose output
	Disabling the agent

	Ensuring Agent availability
	Checking client existence

	Working within ORB domains
	Connecting Smart Agents on different local networks
	How Smart Agents detect each other

	Working with multihomed hosts
	Specifying interface usage for Smart Agents

	Using point�to�point communications
	Specifying a host as a runtime parameter
	Specifying an IP address with an environment variable
	Specifying hosts with the agentaddr file

	Ensuring object availability
	Invoking methods on stateless objects
	Achieving fault-tolerance for objects that maintain state
	Replicating objects registered with the OAD

	Migrating objects between hosts
	Migrating objects that maintain state
	Migrating instantiated objects
	Migrating objects registered with the OAD

	Reporting all objects and services
	Binding to Objects

	Ch 17: Using the Location Service
	What is the Location Service?
	Location Service components
	What is the Location Service agent?
	Obtaining names of all hosts running Smart Agents
	Finding all accessible interfaces
	Obtaining references to instances of an interface
	Obtaining references to like-named instances of an interface

	What is a trigger?
	Looking at trigger methods
	Creating triggers
	Looking at only the first instance found by a trigger

	Querying an agent
	Finding all instances of an interface
	Finding everything known to Smart Agents

	Writing and registering a trigger handler
	Implementing and registering a trigger handler

	Ch 18: Using the Naming Service
	Overview
	Understanding the namespace
	Naming contexts
	Naming context factories
	Names and NameComponent
	Name resolution
	Stringified names
	Simple and complex names

	Running the Naming Service
	Installing the Naming Service
	Configuring the Naming Service
	Starting the Naming Service
	Starting the Naming Service with vbj

	Invoking the Naming Service from the Command Line
	Configuring nsutil
	Running nsutil
	Closing nsutil

	Bootstrapping a Naming Service
	Calling resolve_initial_references
	Using -DSVCnameroot
	Using -DORBInitRef
	Using a corbaloc URL
	Using a corbaname URL

	-DORBDefaultInitRef
	Using -DORBDefaultInitRef with a corbaloc URL
	Using -DORBDefaultInitRef with corbaname

	NamingContext
	NamingContextExt
	Default naming contexts
	Obtaining the default naming context

	Naming Service Properties
	Pluggable backing store
	Types of backing stores
	In-memory adaptor
	JDBC adaptor
	DataExpress adaptor
	JNDI adaptor

	Configuration and use
	Properties file
	JDBC Adaptor properties
	DataExpress Adaptor properties
	JNDI adaptor properties
	Caching facility

	Clusters
	Clustering criteria
	Cluster and ClusterManager interfaces
	Creating a cluster
	Explicit and implicit clusters

	Load balancing

	Failover
	Configuring the Naming Service for fault tolerance

	Import statements for Java
	Sample programs
	Binding a name in Java

	Ch 19: Using the Event Service
	Overview
	Proxy consumers and suppliers
	OMG common object services specification

	Communication models
	Push model
	Pull model

	Using event channels
	Example push supplier and consumer
	Running the Push model example
	Running the Pull model example
	PullSupply
	Executing PullSupply
	PullConsume
	Executing PullConsume

	Starting the Event Service
	Setting the queue length

	In�process event channel
	Java usage
	Java EventLibrary class
	Java example

	Import statements for Java
	Interface reference
	EventChannel
	EventLibrary (Java)
	EventLibrary methods

	ConsumerAdmin
	SupplierAdmin
	ProxyPullConsumer
	ProxyPushConsumer
	ProxyPullSupplier
	ProxyPushSupplier
	PullConsumer
	PushConsumer
	PullSupplier
	PullSupplier methods

	PushSupplier

	Ch 20: Using the Object Activation Daemon
	Automatic activation of objects and servers
	Locating the implementation repository data
	Activating servers

	Starting the Object Activation Daemon
	Starting the Object Activation Daemon on a Windows platform
	Starting the Object Activation Daemon on a UNIX platform

	Using the Object Activation Daemon utilities
	Converting interface names to repository IDs
	Listing objects with oadutil list
	Description

	Registering objects with oadutil
	Example 1: Specifying repository ID
	Example 2: Specifying IDL interface name
	Remote registration to an OAD
	Accessing a server without using the Smart Agent

	Distinguishing between multiple instances of an object
	Setting activation properties using the CreationImplDef class
	Dynamically changing an ORB implementation
	OAD Registration using OAD::reg_implementation
	Example of object creation and registration
	Arguments passed by the OAD

	Un-registering objects
	Un-registering objects using the oadutil tool
	Unregistration example

	Un-registering with the OAD operations
	Displaying the contents of the implementation repository

	IDL interface to the OAD

	Ch 21: Using interface repositories
	What is an interface repository?
	What does an interface repository contain?
	How many interface repositories can you have?

	Creating and viewing an interface repository with irep
	Creating an interface repository with irep
	Viewing the contents of the interface repository

	Updating an interface repository with idl2ir
	Understanding the structure of the interface repository
	Identifying objects in the interface repository
	Types of objects that can be stored in the interface repository
	Inherited interfaces

	Accessing an interface repository
	Example programs

	Part VI: Advanced concepts
	Ch 22: Using the Dynamic Invocation Interface
	What is the Dynamic Invocation Interface?
	Introducing the main DII concepts
	Using request objects
	Encapsulating arguments with the Any type
	Options for sending requests
	Options for receiving replies

	Steps for invoking object operations dynamically
	Location of example programs for using the DII
	Using the idl2java compiler

	Obtaining a generic object reference
	Creating and initializing a request
	Request interface
	Ways to create and initialize a DII request
	Using the create_request method
	Using the _request method
	Example of creating a Request object
	Setting arguments for the request
	Implementing a list of arguments with the NVList
	Setting input and output arguments with the NamedValue Class

	Passing type safely with the Any class
	Representing argument or attribute types with the TypeCode class

	Sending DII requests and receiving results
	Invoking a request
	Sending a deferred DII request with the send_deferred method
	Sending an asynchronous DII request with the send_oneway method
	Sending multiple requests
	Receiving multiple requests

	Using the interface repository with the DII

	Ch 23: Using the Dynamic Skeleton Interface
	What is the Dynamic Skeleton Interface?
	Using the idl2java compiler

	Steps for creating object implementations dynamically
	Location of an example program for using the DSI

	Extending the DynamicImplementation class
	Example of designing objects for dynamic requests
	Specifying repository ids

	Looking at the ServerRequest class
	Implementing the Account object
	Implementing the AccountManager object
	Processing input parameters
	Setting the return value

	Server implementation

	Ch 24: Using interceptors
	Overview
	Interceptor interfaces and managers
	Client interceptors
	BindInterceptor
	ClientRequestInterceptor

	Server interceptors
	POALifeCycleInterceptor
	ActiveObjectLifeCycleInterceptor
	ServerRequestInterceptor
	IORCreationInterceptor

	Service Resolver interceptor
	Default interceptor classes
	Registering interceptors with the VisiBroker ORB
	Creating interceptor objects
	Loading interceptors

	Example interceptors
	Example code
	Client-server interceptors example
	ServiceResolverInterceptor example

	Code listings

	Passing information between your interceptors

	Ch 25: Using object wrappers
	Overview
	Typed and un-typed object wrappers
	Special idl2java requirements
	Example applications

	Un-typed object wrappers
	Using multiple, un-typed object wrappers
	Order of pre_method invocation
	Order of post_method invocation

	Using un-typed object wrappers
	Implementing an un-typed object wrapper factory
	Implementing an un-typed object wrapper
	pre_method and post_method parameters

	Creating and registering un-typed object wrapper factories
	Removing un-typed object wrappers

	Typed object wrappers
	Using multiple, typed object wrappers
	Order of invocation
	Typed object wrappers with co-located client and servers

	Using typed object wrappers
	Implementing typed object wrappers
	Registering typed object wrappers for a client
	Registering typed object wrappers for a server
	Removing typed object wrappers

	Combined use of un�typed and typed object wrappers
	Command-line arguments for typed wrappers
	Initializer for typed wrappers
	Command-line arguments for un-typed wrappers
	Initializers for un-typed wrappers
	Executing the sample applications
	Turning on timing and tracing object wrappers
	Turning on caching and security object wrappers
	Turning on typed and un-typed wrappers
	Executing a co-located client and server

	Ch 26: Using RMI over IIOP
	Overview
	java2iiop and java2idl tools

	Using java2iiop
	Supported interfaces
	Running java2iiop
	Reverse mapping of Java classes to IDL

	Completing the development process

	RMI-IIOP Bank example
	Supported data types
	Mapping primitive data types
	Mapping complex data types
	Interfaces
	Arrays

	Ch 27: Using the dynamically managed types
	Overview
	DynAny types
	Usage restrictions
	Creating a DynAny
	Initializing and accessing the value in a DynAny

	Constructed data types
	Traversing the components in a constructed data type
	DynEnum
	DynStruct
	DynUnion
	DynSequence and DynArray

	Example IDL
	Example client application
	Example server application

	Ch 28: Using valuetypes
	Understanding valuetypes
	Concrete valuetypes
	Valuetype derivation
	Sharing semantics
	Factories

	Abstract valuetypes

	Implementing valuetypes
	Defining your valuetypes
	Compiling your IDL file
	Inheriting the valuetype base class
	Implementing the Factory class
	Registering your Factory with the ORB

	Implementing factories
	Factories and valuetypes
	Registering valuetypes

	Boxed valuetypes
	Abstract interfaces
	Custom valuetypes
	Truncatable valuetypes

	Ch 29: Using URL naming
	URL Naming Service
	Registering objects
	Locating an object by URL

	Ch 30: Bidirectional Communication
	Using bidirectional IIOP
	Bidirectional ORB properties
	About the examples
	Enabling bidirectional IIOP for existing applications
	Explicitly enabling bidirectional IIOP
	Security considerations

	Part VII: Backward compatibility
	Ch 31: Using the BOA with VisiBroker 4.x
	Compiling your BOA code with VisiBroker�4.x
	Supporting BOA options
	Limitations in using the BOA
	Using object activators
	Naming objects under the BOA
	Object names

	Ch 32: Migrating VisiBroker code
	Migrator
	Changes to package name prefixes
	Changes to class names
	Changes to API calls
	Changes from BOA to POA
	Changes in use of interceptors

	Invoking the migrator
	Using migrated code
	Manually Migrating BOA to POA
	Looking at an example
	Obtaining a reference to the root POA
	Setting the POA policies
	Defining the servant
	Activating the POA manager
	Waiting for incoming requests
	Looking at the other files

	Mapping BOA types to POA policies

	Migrating to new package names
	Migrating to new class names
	Migrating to new API calls
	Migrating interceptors
	Using VisiBroker 3.x interceptors

	Ch 33: Using object activators
	Deferring object activation
	Activator interface
	Using the service activation approach
	Deferring object activation using service activators
	Example of deferred object activation for a service
	odb.idl interface
	Implementing a service activator
	Instantiating the service activator
	Using a service activator to activate an object

	App A: CORBA exceptions
	Glossary
	Index

