Reference

VisiBroker- for Java

Inprise Corporation, 100 Enterprise Way
Scotts Valley, CA 95066-3249

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1996, 2000 Inprise Corporation. All rights reserved. All Inprise and Borland brands and product names
are trademarks or registered trademarks of Inprise Corporation. Java and all Java-based marks are trademarks or
registered trademarks in the United States and other countries. Other brands and product names are trademarks or
registered trademarks of their respective owners.

Printed in the U.S.A. PDF VJD0045WW21001

Contents

Chapter 1

Preface
What’s new in 4.0
What's new in 4.1
What’s new in 4.5
Manual conventions.
Typographic conventions
Platform conventions
Where to find additional information
Contacting developer support

Chapter 2

Programmer tools
Options
Generaloptions.

ir2idl. . .o
idl2java
java2idl
java2iiop
vbj
vbjc
Specifying the classpath.
Specifying the JVM
Other tools

Chapter 3
IDL to Java mapping

Basic types
IDL type extensions
Holderclasses.

String
WString L.
Integer types
Floating point types
Helper classes
Constants
Constants within an interface.
Constants NOT within an interface

11
11
1-3
1-3
1-4
14
14
15
15

2-1
21
21
21
22

Constructed types. 3-11
Enum.......... 3-11
Struct Lo oo 3-13
Union. 3-14
Sequence L 3-16
Array 3-17

Interfaces. 3-18
Passing parameters 3-20
Server implementation with inheritance . . 3-21
Server implementation with delegation . . 3-22
Interfacescope. 3-23

Mapping for exceptions 3-23

User-defined exceptions 3-23

System exceptions 3-24

Mapping for the Any type. 3-25

Mapping for certain nested types. 3-25

Mapping for Typedef. 3-25
SimpleIDLtypes 3-26
ComplexIDLtypes 3-26

Chapter 4

Generated interfaces and classes ~ 4-1

Overview 4-1
Signature and operations classes 4-1
Ancillary classes. 4-2
Portability stub and skeleton interfaces. . . .4-2

<interface_name>Operations 4-3

<type_name>Helper 4-3

Methods for all Helper classes. 4-3

Methods generated for interfaces 4-4
Methods generated for object wrappers . . .4-5
<type_name>Holder 4-6
Memberdata. 4-7
Methods 4-7
_<interface_name>Stub 4-7
<interface_name>POA. 4-7
<interface_name>POATie 4-8
Methods 4-8
Chapter 5
Core interfaces and classes 5-1
BindOptions. 5-1
IDL definition 5-1
BindOptions constructors 5-2
BOA 5-2
IDL definition 5-3

BOAmethods. 5-3
CompletionStatus 5-5
IDL definition. 5-5
CompletionStatus methods 5-5
Context 5-6
IDL definition. 5-6
Contextmethods 5-6
InvalidName 5-8
Object 5-8
org.omg.CORBA Object definition. 5-8
org.omg.Object methods. 5-9
VisiBroker extension to Object 5-11
VisiBroker extension to Object methods . . .5-12
ORB e 5-13
JDK’s ORB definition 5-14
JDKORBmethods 5-15
OMG ORB definition. 5-22
VIsiBroker ORB extensions 5-22
VisiBroker ORBmethods 5-23
PortableServer.AdapterActivator 5-25
PortableServer.AdapterActivator methods .5-25
PortableServer.Current 5-26
PortableServer.Current methods 5-26
PortableServer.POA 5-26
PortableServer.POA methods. 5-26
PortableServerPOAManager. 5-36
PortableServerPOAManager methods . . .5-37
PortableServer.ServantActivator. 5-37
PortableServer.ServantActivator methods. .5-37
PortableServer.ServantLocator 5-38
PortableServer.ServantLocator methods. . .5-39
PortableServer.ServantManager 5-40
Principal 5-40
IDL definition. 5-40
Principal methods 5-41
Chapter 6
Dynamic interfaces and classes 6-1
Any ..o 6-1
Anymethods 6-1
Any extraction methods 6-2
Any Insertion methods 6-3
ARG_IN. 6-4
Variables. 6-4
ARG_INOUT. 6-4
Variables. 6-4
ARG OUT 6-4
Variables. 6-5
ContextList 6-5

ii

IDL definition 6-5
ContextListmethods 6-5
DynAny 6-6
Important usage restrictions 6-6
DynAnymethods 6-7
DynAny Extraction methods. 6-8
DynAny Insertion methods 6-8
DynArray, 6-9
Important usage restrictions 6-9
DynArray methods 6-10
DynAnyFactory. 6-10
Important usage restrictions 6-10
DynAnyFactory methods. 6-10
DynEnum 6-11
Important usage restrictions 6-11
DynEnum methods 6-11
DynFixed. 6-12
DynFixed methods 6-12
DynSequence 6-12
Important usage restrictions 6-12
DynSequence methods 6-13
DynStruct 6-13
Important usage restrictions 6-14
DynStruct methods 6-14
DynUnion 6-14
Important usage restrictions 6-15
DynUnion methods 6-15
DynValue 6-16
DynValuemethods 6-16
DynamicImplementation 6-17
Constructors 6-17
DynamicImplementation methods 6-17
Environment. 6-18
Environmentmethods 6-18
ExceptionList 6-18
IDL definition 6-18
ExceptionList methods 6-19
InputStream 6-19
InputStream methods. 6-19
Invalid 6-20
InvalidSeq 6-21
NamedValue. 6-21
IDL definition 6-21
NameValuemethods 6-21
NameValuePair 6-22
NameValuePair variables. 6-22
NameValuePair constructors. 6-22
NVList 6-22
IDL definition 6-22

NVListmethods
OutputStream
OutputStream methods
Request
IDL definition.
Requestmethods
ServerRequest
IDL definition.
ServerRequest methods
TCKind
IDL definition.
TCKind methods
TypeCode.
IDL definition.
TypeCode methods.
UnknownUserException

Chapter 7
Interface repository

interfaces and classes
AbstractInterfaceDef.
AbstractInterfaceDef methods
AliasDef.
AliasDef methods
ArrayDef L
ArrayDef methods
AttributeDef
AttributeDef methods
AttributeDescription.
AttributeDescription variables
AttributeDescription methods
AttributeMode
AttributeMode enumeration elements. . . .
ConstantDef
ConstantDef methods
ConstantDescription.
ConstantDescription variables
Constant Description methods
Contained.
IDL definition.
Contained methods
ContainedPackage.Description.
ContainedPackage.Description variables .
ContainedPackage.Description methods .
Container
IDL definition.
Containermethods.
ContainerPackage.Description
ContainerPackage.Description variables .

7-1

7-1
7-3
7-4
7-4
7-4
7-5
7-5
7-6
7-6

7-7
7-7
7-8
7-8

7-9
7-9
7-10
7-10
7-10
7-12

.7-12
.7-12

7-12
7-13
7-14
7-19

.7-19

iii

ContainerPackage.Description methods . . 7-19

DefinitionKind 7-20
DefinitionKind methods 7-20
DefinitionKind enumeration values 7-20

EnumDef. 7-21
EnumDefmethods 7-21

ExceptionDef 7-21
ExceptionDef methods 7-22

ExceptionDescription. 7-22
ExceptionDescription variables 7-22
ExceptionDescription methods 7-23

FixedDef 7-23
FixedDef methods. 7-23

FullValueDescription. 7-24
FullValueDescription variables 7-24
FullValueDescription methods. 7-25

IDLTypeo 7-25
IDL definition 7-26
IDLTypemethods 7-26

InterfaceDef 7-26
IDL definition 7-26
InterfaceDef methods. 7-27

InterfaceDefPackage.FulllnterfaceDescription. 7-28
InterfaceDefPackage.FulllnterfaceDescription

variables 7-28
InterfaceDefPackage.FulllnterfaceDescription
methods. 7-29
InterfaceDescription 7-29
InterfaceDescription variables. 7-30
InterfaceDescription methods 7-30
IRObject 7-30
IDL definition 7-31
IORObject methods 7-31
ModuleDef.o oL 7-31
ModuleDescription. 7-31
ModuleDescription variables 7-31
ModuleDescription methods. 7-32
NativeDef 7-32
OperationDef 7-32
OperationDef methods 7-33
OperationDescription 7-34
OperationDescription variables 7-34
OperationDescription methods 7-35
OperationMode 7-35
ParameterDescription 7-36
ParameterDescription variables 7-36
ParameterDescription methods 7-36
ParameterMode 7-37
PrimitiveDef. 7-37

PrimitiveDef method. 7-37
PrimitiveKind 7-37
PrimitiveKind methods 7-38
PrimitiveKind constants. 7-38
Repository 7-38
Repository methods 7-39
SequenceDef 7-40
SequenceDef methods 7-40
StringDef 7-41
StringDef methods 7-41
StructDef 7-42
StructDef methods 7-42
StructMember 7-42
StructMember variables 7-42
StructMember methods 7-43
TypedefDef 7-43
TypeDescription 7-43
TypeDescription variables. 7-43
TypeDescription methods 7-44
UnionDef 7-44
UnionDef methods. 7-44
UnionMember 7-45
UnionMember variables. 7-45
UnionMember methods 7-45
ValueBoxDef 7-46
ValueBoxDef methods 7-46
ValueDef 7-46
ValueDef methods 7-47
ValueDescription. 7-49
ValueDescription variables 7-49
ValueDescription methods 7-50
ValueMemberDef 7-50
ValueMemberDef methods 7-50
WstringDef oL 7-51
WStringDef methods. 7-51
Chapter 8
Activation interfaces and classes 8-1
ActivationImplDef. 8-1
ActivationImplDef methods 8-1
Activator 8-2
Activatormethods 8-2
CreationImplIDef 8-3
IDL definition. 8-3
Activationpolicy 8-3
Examples 8-4
Environment variables. 8-4

Environment variables that are propagated or
passed explicitly
CreationImplDef methods.

iv

ImplementationDef. 8-7
OAD 8-7
ImplementationStatus 8-8
OADmethods 8-9
Chapter 9
Naming service interfaces and classes
9-1
NamingContext. 9-1
IDL definition 9-1
NamingContext methods. 9-2
NamingContextExt 9-6
IDL definition 9-6
NamingContextExt methods. 9-7
Binding and BindingList. 9-8
IDL definition 9-9
Bindinglterator 9-9
IDL definition 9-9
Bindinglterator methods 9-10
NamingContextFactory 9-10
IDL definition 9-10
NamingContextFactory methods 9-11
ExtendedNamingContextFactory. 9-11
IDL definition 9-11

ExtendedNamingContextFactory methods. 9-12

Chapter 10
Event service interfaces and classes10-1
ConsumerAdmin 10-1
IDL definition 10-1
Javadefinition. L. 10-1
ConsumerAdmin methods. 10-2
EventChannel 10-2
Javadefinition. 10-2
EventChannel methods. 10-2
EventLibrary (Java). 10-3
Javadefinition. oL 10-3
EventLibrary methods 10-3
ProxyPullConsumer 10-4
IDL definition 10-4
Java definition. 10-5
ProxyPullConsumer method. 10-5
ProxyPushConsumer. 10-5
IDL definition 10-5
Javadefinition. 10-5
ProxyPushConsumer method 10-6
ProxyPullSupplier 10-6
IDL definition 10-6
Javadefinition. 10-6

ProxyPullSupplier method 10-6

ProxyPushSupplier 10-7
IDL definition. 10-7
Java definition 10-7
ProxyPushSupplier method. 10-7

PullConsumer 10-7
IDL definition. 10-8
Java definition 10-8
PullConsumer method. 10-8

PushConsumer. 10-8
IDL definition. 10-8
Javadefinition 10-8
PushConsumer methods 10-9

PullSupplier 10-9
IDL definition. 10-9
Java definition 10-9
PullSupplier methods 10-10

PushSupplier. 10-10
IDL definition. 10-10
Java definition 10-10
PushSupplier method 10-11

SupplierAdmin. 10-11
IDL definition. 10-11
Java definition 10-11
SupplierAdmin methods 10-11

Chapter 11

Exceptions classes 11-1

Introduction 11-1

SystemException. 11-1
SystemException attributes 11-2

UserException 11-3
UserException constructor 11-3

Chapter 12

Interceptor and object wrapper

interfaces and classes 121
Introduction L 12-1
InterceptorManagers 12-1
IORtemplates 12-2
InterceptorManager 12-2
InterceptorManagerControl. 12-2

Importstatement. 12-2
InterceptorManagerControl method 12-3
BindInterceptor. 12-3
Import statement. 12-3
BindInterceptor methods 12-3
BindInterceptorManager 12-4

Import statement. 12-5

BindInterceptorManager method 12-5
ClientRequestInterceptor. 12-5
Import statement 12-5
ClientRequestInterceptor methods 12-5
ClientRequestInterceptorManager 12-7
Import statement 12-7
ClientRequestInterceptorManager methods 12-7
POALifeCyclelnterceptor 12-7
Import statement 12-7
POALifeCyclelnterceptor methods 12-7
POALifeCyclelnterceptorManager 12-8
Import statement 12-8
POALifeCycleInterceptorManager method 12-8
ActiveObjectLifeCycleInterceptor. 12-9
Import statement L. 12-9
ActiveObjectLifeCycleInterceptor methods 12-9
ActiveObjectLifeCycleInterceptorManager . . 12-9
Import statement 12-10
ActiveObjectLifeCycleInterceptorManager
method 12-10
ForwardRequestException. 12-10
Variables 12-10
ServerRequestInterceptor 12-10
Import statement 12-10

ServerRequestInterceptor methods 12-11
ServerRequestInterceptorManager
Import statement 12-12
ServerRequestInterceptorManager method 12-12

IORCreationInterceptor 12-13
Import statement 12-13
IORInterceptor method. 12-13

IORInterceptorManager 12-13
Import statement 12-13
IORInterceptorManager method 12-14

Location 12-14

Closure. 12-14

ExtendedClosure 12-14

ChainUntypedObjectWrapperFactory 12-15
Import statement 12-15

ChainUntypedObjectWrapperFactory methods .
12-16

UntypedObjectWrapper 12-16
UntypedObjectWrapper methods 12-17
UntypedObjectWrapperFactory. 12-18
Import statement 12-18

UntypedObjectWrapperFactory method . 12-18

Chapter 13
Quality of Service interfaces and classes

13-1
PolicyManager 13-1
IDL definition. 13-2
Policy Manager methods 13-2
PolicyCurrent. 13-3
IDL definition. 13-3
Object 13-3
org.omg.CORBA.Object methods 13-3

com.inprise.vbroker. CORBA.Object methods. .

13-4
RebindPolicy 13-5
IDL definition. 13-6
Policy Values 13-6
RelativeConnectionTimeoutPolicy. 13-8
IDL definition. 13-8
DeferBindPolicy 13-9
IDL definition. 13-9
ExclusiveConnectionPolicy 13-9
IDL definition. 13-9
SyncScopePolicy 13-10
IDL definition. 13-10
QoSexceptions. 13-11
Chapter 14
IOP and IIOP interfaces and classes 14-1
IIOPProfileBody 14-1
IDL definition. 14-1
IIOP.ProfileBody variables 14-2
IIOP.ProfileBody constructors. 14-2
IIOPIORValue 14-2
IDL definition. 14-3
IIOPIORValue variables 14-3
IOPServiceContext 14-3
IDL definition. 14-4
IIOP.ServiceContext variables. 14-4
IIOP.ServiceContext constructors. 14-4
IOP.TaggedProfile 14-4
IDL definition. 14-4
IIOP.TaggedProfile variables 14-5
IIOP.TaggedProfile constructors 14-5
Chapter 15
RMI interfaces and classes 15-1
PortableRemoteObject. 15-1
Constructors 15-1
PortableRemoteObject methods 15-2

vi

Chapter 16
URL Naming interfaces and classes 16-1
Resolver 16-1
Resolver methods 16-2
Chapter 17
Location Service interfaces and classes
17-1
Agent. L 17-1
IDL definition 17-1
Agentmethods 17-2
Desc. 17-4
IDL definition 17-5
Descvariables 17-5
Desc constructor. 17-5
Descmethods 17-6
Fail o o 17-6
Fail variables. 17-6
TriggerDesc 17-6
IDL definition 17-7
TriggerDesc variables. 17-7
TriggerDesc constructor 17-7
TriggerDescmethods 17-7
TriggerHandler 17-8
IDL definition 17-8
TriggerHandler methods 17-8
Appendix A
Using command-line options A1
How to set ORB and BOA options A-1
Using vbj with command-line arguments . A-1
Using vbj and starting your executable. . . A-2
Applets. L. A-2
Setting properties programmatically using
methods. A-2
BOA_init() method A-2
BOAoptions. A-3
ORB.init) method A4
ORBoptions A-5
ORBbackcompat option A-7
Location Service options A-7
Appendix B
Using VisiBroker properties B-1
JAVA RMI over IIOP properties. B-1
OSAgent properties. B-2
ORB properties B-3
POA properties B-7

Server Manager properties B-7
Location Service properties. B-7
Event Service properties B-8
Naming Service properties B-8
OAD properties B-8
Interface Repository properties. B-9
URL Naming properties. B-9
Client-Side Connection properties. B-10

Client-Side In Process Connection properties. .B-10
Server-Side Server Engine properties

vii

Server-Side Thread Session IIOP_TS/IIOP_TS

Connection properties B-11
Server-Side Thread Session BOA_TS/BOA_TS
Connection properties B-12
Server-Side Thread Pool IIOP_TP/IIOP_TP
Connection properties B-13
Server-Side Thread Pool BOA_TP/BOA_TP
Connection properties B-14
Properties that support bidirectional
communication B-14

viii

Preface

VisiBroker allows you to develop and deploy distributed object-based
applications, as defined in the Common Object Request Broker (CORBA)
specification.

The VisiBroker for Java Reference provides a description of the classes and
interfaces supplied with VisiBroker for Java, the programmer tools, and
command-line options. I has been updated to reflect the latest VisiBroker
release. It is written for Java programmers who are familiar with object-oriented
development.

This Preface highlights the latest features, and identifies typographical and
platform conventions used throughout the manual. It also tells you where to
find additional information about Common Object Request Broker
Architecture (CORBA) and the remaining VisiBroker for Java documentation
set, and how to contact Inprise developer support.

What'’s new in 4.0

The VisiBroker 4.0 features and enhancements include:

¢ CORBA 2.3 compliance: VisiBroker for Java is fully compliant with the
CORBA specification (version 2.3) from the Object Management
Group (OMG). For more details or the latest information, refer to the CORBA
specification located at http:/ /www.omg.org/.

* CORBA 2.3 language mappings: These includes the new typecodes and new
methods for typecodes. The new typecodes are designed to be more
maintanable by having multiple typecode classes that deal with functionality
specific to each typecode. See Chapter 3, “IDL to Java mapping,” for more
information on typecodes.

¢ Naming Service: The new VisiBroker Naming Service provides clustering
and fault tolerance features and persistence is handled differently.

Preface 1-1

What’s new in 4.0

1-2 Reference

Clustering allows you to associate a number of bindings with a single name.
Fault tolerance features include failover and load balancing capabilities. To
maintain persistence, you now can keep the namespace in a relational
database. Previous versions stored the namespace in a flat logging file. The
corbaloc and corbaname provide stringified object references which can be
used in an Internet environment. This allows you to refer to objects by a
URL. See Chapter 9, “Naming service interfaces and classes,” for a
description of the Naming Service classes and interfaces and Chapter 18,
“Using the Naming Service,” in the VisiBroker for Java Programmer’s Guide
for a description of how to use the Naming Service.

Portable Object Adaptor (POA): The POA offers portability on the server
side. This feature replaces the Basic Object Adapter (BOA). Although BOA is
being deprecated, VisiBroker 4.x still supports BOA functionality. See
Chapter 5, “Core interfaces and classes,” for a description of the POA classes
and interfaces and Chapter 7, “Using POAs,” in the VisiBroker for Java
Programmer’s Guide for an explanation of how to use the POA interfaces.

Objects by value (OBV) or Value types: Previous versions of CORBA
allowed you to pass objects between clients and servers by reference.
However, CORBA 2.3 allows you to pass objects by value between clients
and servers using VisiBroker. See Chapter 3, “IDL to Java mapping,” for
more information.

Property Management: This feature provides you with a way to centralize
management of properties. You can set properties that are available to you in
the Server Manager Console. See Appendix B, “Using VisiBroker
properties,” for a list of the VisiBroker for Java properties and Chapter 13,
“Using the Server Manager,” in the VisiBroker for Java Programmer’s Guide
for more information on using the Server Manager browser in the VisiBroker
Console.

Quality of Service (QoS): This feature allows you to define properties that
influence how connections are made. You perform client- side policy
management by setting properties that are associated with connections or
client/server pairs. See Chapter 13, “Quality of Service

interfaces and classes,” for a description of the QoS interfaces, classes, and
policies.

Interceptors and Object Wrappers: This feature has been upgraded to
CORBA 2.3 specifications. The ORB provides a set of APIs known as
interceptors which provide a way to plug in additional ORB behavior such as
support for transactions and security, which may be defined on either the
client or server side. One of the main differences in this release is that
interceptors now have scope. See Chapter 12, “Interceptor and object
wrapper interfaces and classes,” for more information on interceptor and
object wrapper classes and interfaces.

What's new in 4.1

What'’s new in 4.1

The VisiBroker 4.1 features and enhancements include:

Abstract base support: This feature provides CORBA 2.3.1-compliant
support for VisiBroker 4.x and ensures that its CORBA 2.3.- compliant
Interface Repository is compatible with VisiBroker 3.x clients.

Class downloading: This feature allows the client to receive or find
implementations of some classes that are not stored locally on the system.
Depending on the security policy configured for your server, clients will be
able to download classes from one source but will be denied the ability to
download them from another source.

Redesigned Interface Repository: This feature has been enhanced to make
sure that it is compatible with the VisiBroker for Java 3.4 Interface
Repository.

Connection timeout: This feature allows you to indicate a timeout after
which attempts to connect to an object using one of the available endpoints
will be aborted.

What'’s new in 4.5

New features and enhancements in Visibroker 4.5 include:

Bidirectional support: This feature makes it possible for a server to
asynchronously connect with a client. For more information about this
feature, see the VisiBroker for Java Programmer’s Guide. A number of
policies have been added to support this feature. These are listed in “Using
VisiBroker properties” on page B-1.

SyncScope support: Support for CORBA 2.4-compliant SyncScope
capabilities is now provided (see “SyncScopePolicy” on page 13-10).

Ability to create exclusive connections. For more information
see”ExclusiveConnectionPolicy” on page 13-9.

This manual includes a new section that describes the vbjc tool (“vbjc” on
page 2-10), a section describing generation of classpath (“Specifying the
classpath” on page 2-10) and a section describing specification of the JVM
(“Specifying the JVM” on page 2-11) by the vbj and vbjc launchers in
Solaris and NT. The “Using VisiBroker properties” Appendix now
describes a number of previously-undocumented properties.

Preface 1-3

Manual conventions

Manual conventions

Windows

WinNT
Win95
Win98
Win2000
UNIX
Solaris

AIX

HP-UX

IRIX

Digital UNIX

1-4 Reference

This section identifies the VisiBroker for Java Reference’s typographical and
platform conventions.

Typographic conventions

This manual uses the following conventions:

Convention
boldface

italics

computer
bold computer
UPPERCASE

[]

Used for

Bold type indicates that syntax should be typed exactly as shown. For
UNIX, used to indicate database names, file names, and similar terms.

Italics indicates information that the user or application provides, such
as variables in syntax diagrams. It is also used to introduce new terms.

Computer typeface is used for sample command lines and code.
In code samples, important statements appear in boldface.
Uppercase letters indicate Windows file names.

Brackets indicate optional items.

An ellipsis indicates the continuation of previous lines of code or that the
previous argument can be repeated.

A vertical bar separates two mutually exclusive choices.

Platform conventions

This manual uses the following conventions—where necessary—to indicate
that information is platform-specific:

All Windows platforms including Windows 3.1, Windows NT, and

Windows 95

Windows NT only
Windows 95 only

Windows 98 only
Windows 2000 only
All UNIX platforms

Solaris only
AIX only

HP-UX only

IRIX only

Digital UNIX only

Where to find additional information

Where to find additional information

For more information about VisiBroker for Java, refer to these information
sources:

VisiBroker for Java Release Notes contain late-breaking information about the
current release of VisiBroker for Java.

VisiBroker for Java Installation Guide. This guide contains the instructions for
installing VisiBroker for Java on Windows and UNIX and information for
system administrators who are configuring VisiBroker.

VisiBroker for Java Programmer’s Guide provides information on developing
distributed object-based applications in Java for Windows and UNIX
platforms.

VisiBroker for Java Visibroker Gatekeeper Guide. This guide provides
information about how to configure and use the Gatekeeper.

The Inprise web site also provides a variety of useful information to
developers and others who are interested in evaluating our products and
ORB technology. From the web site you can view information specific to
developers using the VisiBroker ORB. This includes a section listing
Frequently Asked Questions (FAQ) and their answers. Visit the Inprise web
site at http:/ /www .borland.com/visibroker/.

For more information about the CORBA specification, refer to The Common
Object Request Broker: Architecture and Specification. This document is available
from the Object Management Group and describes the architectural details of
CORBA. You can access the CORBA specification at the OMG web site:
http:/ /www.omg.org/.

Contacting developer support

Inprise offers a variety of support options. These include free services on the
Internet, where you can search our extensive information base and connect with
other users of Inprise products. In addition, you can choose from several
categories of telephone support, ranging from support on installation of the
Inprise product to fee-based consultant-level support and detailed assistance.

For more information about Inprise’s developer support services, please see our
web site at http:/ /www .borland.com/devsupport/, call Inprise Assist at
800-523-7070, or contact our Sales Department at 800-632-2864.

When you contact developer support, you will be asked to provide the
following information:

Your Access ID number
Product name and version (for example, VisiBroker for Java, version 4.5)

Operating system and version (for example, Windows NT Server 4.0 with
Service Pack 5)

Preface 1-5

* Your desired priority (low, medium, high)
* Brief description of the problem

* Details of any error messages or exceptions raised

1-6 Reference

Programmer tools

This chapter describes the programmer tools offered by VisiBroker for Java. For
information about the syntax used with these tools, see Chapter 1, “Preface.”

Options

All programmer’s tools have both general and specific options. The specific
options for each tool are listed in the section for the tool. The general options are
listed below.

General options

The following options are common to all programmer tools:

Option Description

-J<java_option> Passes the java_option directly to the Java virtual machine.
-VBJversion Prints the version.

-VBJprop Passes a property to VBJ

-VBJdebug Prints the debug information.

idI2ir

This command allows you to populate an interface repository with objects
defined in an Interface Definition Language (IDL) source file.

Syntax idi2ir [options] {idl filename}

Example id12ir -irep my_repository -replace java_examples/bank/Bank.idl

Programmer tools 2-1

ir2idl

Description

Options

ir2idl

The 1d12ir command takes an IDL file as input, binds itself to an interface
repository server and populates the repository with the IDL constructs
contained in idl filename. If the repository already contains an item with the
same name as an item in the IDL file, the old item will be modified.

The following options are available for idl2ir.

Option

-D, -define foo[=har]

-1, -include <dir>

-P, -no_line_directives

-H, -list_includes

-C, -retain_comments

-U, -undefine foo
-[no_]1dl_stirct

- [no_]warn_unrecognized_pragmas
- [no_]back_compat_mapping

-irep <irep name>

-deep
-replace

-h, -help, -usage, -?
filel [file2] ...

Description
Defines a preprocessor macro foo, optionally with
a value bar.

Specifies an additional directory for #include
searching.

Suppresses the generation of line number
information. The default is off.

Prints the full paths of included files on the
standard error output. The default is off.

Retains comments from IDL file when the Java
code is generated. Otherwise, the comments will
not appear in the Java code.

Undefines a preprocessor macro foo.

Specifies a strict OMG standard interpretation of
IDL source. The default is off.

Displays a warning that appears if a #pragma is
not recognized. The default is on.

Specifies the use of mapping that is compatible
with 3.x.

Specifies the name of the interface repository.

Applies a deep (versus shallow) merge. The
default is off.

Replaces entire repository instead of merging. The
default is off.

Prints help information.

Specifies the one or more files to be processed.

In addition, you can use any of the command line options for the vbj command
as command line options for the idl12ir command. For a complete list of the vb]

options, see “Options” on page 2-9.

Syntax

Example

2-2 Reference

This command allows you to create an Interface Definition Language (IDL)
source file with objects from an interface repository.

ir2idl [options]

ir2idl -irep my_repository -o my_file

Description

Options

idI2java

idl2java
The ir2idl command binds to the IR and prints the contents in IDL format.

The following options are available for ir2idl.

Option Description

-irep <irep name> Specifies the name of the interface repository.

-0 <file> Specifies the name of the output file, or “-” for stdout.

-strict Specifies strict adherence to OMG-standard code generation. The
default is on.

-version Displays or prints out the version of VisiBroker for Java that you

are currently running
-h, -help, -usage, -2 Prints help information.

Syntax
Example

Description

Options

This command generates Java source code from an IDL source file.
idl2java [options] {filename.idl}

idl2java -no_tie Bank.idl
The id12java command, a Java-based preprocessor, compiles an IDL source file
and creates a directory structure containing the Java mappings for the IDL
declarations. Typically, one IDL file will be mapped to many java files because
Java allows only one public interface or class per file. IDL file names must end

with the .1dl extension.

The following options are available for idl2java.

Option Description

-D, -define foo[=bar] Defines a preprocessor macro foo, optionally with a
value bar.

-I, -include <dir> Specifies the full or relative path to the directory for

#include files. Used in searching for include files.

-P, -no_line_directives Suppresses the generation of line number information in
the generated code. The default is off.

-H, -list_includes Prints the full paths of included files on the standard
error output.

-C, -retaln_comments Retains comments from IDL file when the Java code is
generated. Otherwise, the comments will not appear in
the Java code. The default is off.

-compilerflag Specifies the flags that can be set.

-compiler options Specifies the option for the compiler.

-U, -undefine foo Undefines a preprocessor macro foo.
-[no_]idl_strict Specifies strict adherence to OMG standard

interpretation of idl source. The default is off.

Programmertools 2-3

idl2java

2-4 Reference

Option

-[no_]warn_unrecognized_pragmas
- [no_]back_compat_mapping
-[no_]boa

-[no_]comments

-[no_J]examples

-gen_included_files

-list_files
-[no_]obj_wrapper
-root_dir <path>

- [no_]servant

-tie
-[no_Jwarn_missing_define
-[no_]bind

-[no_]compile
-dynamic_marshal
-idl2package <IDL name> <pkg>
-[no_J]invoke_handler
-[no_]narrow_compliance

-[no_]Object_method

-package <pkg>

-stream_marshal

-strict

-version

-map_keyword <kwd> <replacement>

-h, -help, -usage, -?
filel [file2] ...

Description
Displays a warning that appears if a #pragma is not
recognized. The default is on.

Specifies the use of IDL mapping that is compatible with
3.x caffeine compiles.

Specifies BOA-compatible code generation. The default
is off.

Suppresses the generation of comments in the code. The
default is on.

Suppresses the generation of the _example classes. The
default is off.

Generates code for #included files. The default is off.

Lists files written during code generation. The default is
off.

Generates support for object wrappers. The default is
off.

Specifies the directory in which the generated files
reside.

Generates servant (server-side) code. The default is on.
Generates _tie classes. The default is on.

Warns if any forward declared interfaces were not
defined. The default is on.

Suppresses the generation of bind() methods in the
generated Helper class. The default is off.

When set to on, automatically compiles the java files.
The default is off.

Specifies that marshalling use DSI/DII model. The
default is off.

Overrides default package for a given IDL container
type.
Generates invocation handler class for EJB. Default is on.

Generated code for narrow is compliant. the default is
on. When this options is set to off, generated code is
backward compatible.

Overrides certain methods on java.lang. Object. The
default is on.

Specifies the root package for generated code.

Specifies that marshaling use the stream model. The
default is on.

Specifies strict adherence to OMG standard for code
generation. The default is off.

Displays the software version number of VisiBroker for
Java.

Specifies the keyword to avoid and designates its
replacement.

Prints help information.

Specifies the one or more files to be processed.

java2idi

javazidl

In addition, you can use any of the command-line options for the vbj command
as command line options for the idl12java command. For a complete list of the
vbj options, see “Options” on page 2-9.

Note

Syntax
Example

Description

Options

This command generates an IDL from a Java class file (in Java byte code). You
can enter one or more Java classes (in byte codes). If you enter more than one
class name, make sure you include spaces in between the class names.

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote
interface definition, it must have the following:

e an IDL file that contains the IDL definition for that type because the
org.omg.CORBA.IDLEntity interface is a signature interface that marks all IDL
data types mapped to Java.

¢ all related (supporting) classes according to the CORBA 2.3 IDL2Java
Specification from the Object Management Group (OMG).

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote
interface definition, use the -import <IDL files> directive in the java2idl tool’s
command line.

For more information, refer to the CORBA 2.3 IDL2]ava Specification located at
http:/ /www.omg.org/.

To use this command, you must have a virtual machine supporting JDK 1.1 or
later.

java2idl [options] {class}

java2idl Account Client Server
Use this command when you want to generate an IDL from your Java byte
code. You might want to use this when you have existing Java byte code and
want to create an IDL file from it so it can be used with some other

programming language like C++, COBOL, or Smalltalk.

The following options are available for java2idl.

Option Description

-D, -define foo[=bar] Defines a preprocessor macro foo, optionally with a value
bar.

-I, -include <dir> Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

-P, -no_line_directives Suppresses the generation of line number information in
the generated code. The default is off.

-H, -list_includes Prints the full paths of included files on the standard error
output.

Programmertools 2-5

javaz2iiop

java2iiop

Option

-C, -retain_comments

-U, -undefine foo

-[no_}idl_strict
-[no_]warn_unrecognized_pragmas
- [no_Jback_compat_mapping

-exported <pkg>
-[no_Jexport_all

-import <IDL file name>
-imported <pkg> <IDL file name>
-0 <file>

-strict
-version

-h, -help, -usage, -?

classl [class2} ...

Description

Retains comments from IDL file when the Java code is
generated. Otherwise, the comments will not appear in
the Java code. The default is off.

Undefines a preprocessor macro foo.

Specifies strict adherence to OMG standard interpretation
of idl source. The default is off.

Displays a warning that appears if a #pragma is not
recognized. The default is on.

Specifies the use of mapping that is compatible with 3.x
caffine compile.

Specifies the name of an exported package.
Exports all packages. The default is off.
Loads extra IDL definitions.

Specifies the name of an imported package.

“_ 1

Specifies the name of an output file, or “-” for stdout.

Specifies strict adherence to OMG standard for code
generation. The default is off.

Displays the software version number of VisiBroker for
Java.

Prints help information.

Specifies the one or more Java classes to be processed.

In addition, you can use any of the command line options for the vbj command
as command line options for the java2idl command. For a complete list of the
vbj options, see “Options” on page 2-9.

Note

2-6 Reference

This command allows you to use the Java language to define IDL interfaces
instead of using IDL. You can enter one or more Java class names (in Java byte
code). If you enter more than one class name, make sure you include spaces in
between the class names. Use fully scoped class names.

To use this command, you must have a virtual machine supporting JDK 1.1 or

later.

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote
interface definition, it must have the following:

* an IDL file that contains the IDL definition for that type because the
org.omg.CORBA.IDLEntity interface is a signature interface that marks all IDL
data types mapped to Java.

¢ all related (supporting) classes according to the CORBA 2.3 IDL2Java
Specification from the Object Management Group (OMG).

Syntax
Example

Description

Note

Options

javaz2iiop

If you use a class that extends org.omg.CORBA. IDLEntity in some Java remote
interface definition, use the -inport <IDL files> directive in the java2iiop tool’s
command line.

For more information, refer to the CORBA 2.3 IDL2]ava Specification located at
http:/ /www.omg.org/.

java2iiop [options] {class name}
java2iiop -no_tie Account Client Server

Use java2iiop if you have existing Java byte code that you wish to adapt to use
distributed objects or if you do not want to write IDL. By using java2iiop, you

can generate the necessary container classes, client stubs, and server skeletons
from Java byte code.

The java2iiop compiler does not support overloaded methods on CORBA
interfaces.

The following options are available for java2iiop.

Option Description

-D, define foo[=bar] Defines a preprocessor macro foo, optionally with a
value bar.

-I, -include <dir> Specifies the full or relative path to the directory for
#include files. Used in searching for include files.

-P, -no_line_directives Suppresses the generation of line number information in
the generated code. The default is off.

-H, -list_includes Prints the full paths of included files on the standard

error output.

-C, -retain_comments Retains comments from IDL file when the Java code is
generated. Otherwise, the comments will not appear in
the Java code. The default is off.

-U, -undefine foo Undefines a preprocessor macro foo.

-[no_}idl_strict Specifies strict adherence to OMG standard
interpretation of idl source. The default is off.

-[no_J]warn_unrecognized_pragmas Displays a warning that appears if a #pragma is not
recognized. The default is on.

- [no_]back_compat_mapping Specifies the use of mapping that is compatible with 3.x.

-exported <pkg> Specifies the name of an exported package.

- [no_Jexport_all Exports all packages. The default is off.

-import <IDL file name> Loads extra IDL definitions.

-imported <pkg> <IDL file name> Specifies the name of an imported package.

- [no_]boa Specifies BOA-compatible code generation. The default
is off.

- [no_] comments Suppresses the generation of comments in the code. The

default is on.

Programmertools 2-7

javaz2iiop

2-8 Reference

Option

-[no_J]examples

-gen_included_files
-list_files

-[no_]obj_wrapper
-root_dir <path>
-[no_J]servant

-tie
-[no_]warn_missing_define
-[no_]bind

-[no_]compile

-compiler

-compiler flags

-dynamic_marshal
-idl2package <IDL name> <pkg>
-[no_]invoke_handler

-[no_]narrow_compliance

-[no_]Object_method

-package <pkg>

-stream_marshal

-strict

-version

-map_keyword <kwd> <replacement>

-h, -help, -usage, -?

classl [class2] ...

Description

Suppresses the generation of the _example classes. The
default is off.

Generates code for #included files. The default is off.

Lists files written during code generation. The default is
off.

Generates support for object wrappers. The default is
off.

Specifies the directory in which the generated files
reside.

Generates servant (server-side) code. The default is on.
Generates _tie classes. The default is on.

Warns if any forward declared file names were not
defined. The default is on.

Suppresses the generation of bind() methods in the
generated Helper class. The default is off.

Automatically generates java files. When set to on, also
automatically compiles the java files. The default is off.

Specifies the java compiler to be used. This option is
ignored if the -conpile option is not set.

Specifies the java compiler flags to be passed to the java
compiler. This option is ignored if the -compile option is
not set.

Specifies that marshalling use DSI/DII model. The
default is off.

Overrides default package for a given IDL container
type.

Generates invocation handler class for EJB. Default is
on.

Generated code is compliant. the default is on.

Generates all methods defined in java.lang.0Object
methods, such as string and equals. The default is on.

Specifies the root package for generated code.

Specifies that marshaling use the stream model. The
default is on.

Specifies strict adherence to OMG standard for code
generation. The default is off.

Displays the software version number of VisiBroker for
Java.

Specifies the keyword to avoid and designates its
replacement.

Prints help information.
Specifies the one or more Java classes to be processed.

In addition, you can use any of the command line options for the vbj command
as command line options for the java2iiop command. For a complete list of the
vbj options, see “Options” on page 2-9.

vbj

vbj

Syntax

Example

Description

Note

Options

Windows

Windows

This command starts the local Java interpreter.

vbj [options] [arguments normally sent to java VM] {class} [arg1 arg2 ...]

{class} Specifies the name of the class to be executed.
largl arg2 ...] Specific arguments that are to be passed to the class.
vbj Server

Java applications have certain limitations not faced by applications written in
other languages. The vbj command provides options to work around some of
these limitations, and is the preferred method to launch VisiBroker for Java
applications. The vbj command

* Checks environment variables and Windows registry settings.

¢ Can optionally locate an osagent for those Java virtual machines that lack
UDP broadcast support.

¢ Automatically sets the CLASSPATH to work correctly with the VisiBroker
for Java runtime.

In addition, the vbj command sets two ORB properties and passes them to the
ORB runtime.

e vybroker.agent.addr is set to the value of the OSAGENT_ADDR environment
variable or registry setting.

e vbroker.agent.port is set to the value of the OSAGENT_PORT environment
variable or registry setting.

If you do not use the vbj command, you must explicitly set the values of
vbroker.agent.addr and vbroker.agent.port.

The following options are available for vbj.

Option Description

-version Displays or prints out the version of VisiBroker for Java that
you are currently running.

-VBJprop name=value Passes the property name and value pair into the Java VM
as a System Property by adding it as a -D<name> [=<value>]
parameter to the executed “java.”

-VBJjavavm vmpath Specifies the Java vm to be used.

-VBJtag tag Specifies the tag to use for the parameters being passed to
the Java VM. The default tag value is -D.

-VBJquoteSpaces 0 Turns off the automatic placement of quotation marks

around arguments that contain spaces.

Programmertools 2-9

vbjc

Option Description

Windows ~ -VBJclassPath classpath Specifies an explicit setting for classpath.
-VBJdebug Turns on debugging information.
Additional options that may be passed to this command are defined by the Java
virtual machine that is installed on your system. For example, to view all of the
options for the JavaSoft VM, enter java with no options.

prompt>java

A list of options available for the Java interpreter appears.

Windows In Windows environments, you can only use the vregedit tool to set the
following options in the registry:
¢ VBROKER_ADM
* OSAGENT_PORT

vhjc
This command is used to compile Java source code that may import VisiBroker
classes. When called, it:
1: Locates the VisiBroker library path
2: Adds the VisiBroker-standard jar files into the CLASSPATH
3: Launches javac
Syntax vbjc [arguments normally passed to javac]
Example vbjc Server.java

Specifying the classpath

2-10 Reference

Eight possible sources of information may affect the classpath:

¢ vbroker library files (SVBROKERDIR/1ib/*. jar)

* JDK library files ($JAVAHOME/1ib/*.jar, STAVAHOME/jre/lib/*.jar, classes.zip)
e Environment variable CLASSPATH (SCLASSPATH)

¢ Command line argument -VBJclasspath <path string>

* Command line argument -classpath <path string>

¢ Command line argument -Djava.class.path=<path string>

¢ Command line argument -Denv.class.path=<path string>

Unix

Windows

Note:

Specifying the JVM
¢ Command line argument -VBJaddJar <jar file name> (The jar file should
reside in vbroker/11ib directory.)

Usually, a subset of these is merged into one classpath before the JVM is started.
The classpath is generated differently on different platforms.

The following sources are merged together in the following order:

1 The classpath specified in -VBJclasspath

2 The $CLASSPATH exported in the environment

3 Visibroker-standard jar files (determined based on where vbj was found)
4

jar files added through vVBJaddJar and assumed to be located in the <vbroker>/
1ib directory.

5 The current directory
The merged classpath is exported and is not passed as parameter to the JVM.

The other classpath sources are passed to the JVM untouched, along with other
non-classpath parameters.

The merged classpath is passed using -Djava.class.path. The other classpaths
are treated as normal arguments and are passed without alteration.

Tools defined by NT as SERVICEs don't recognize -classpath. Some of these
tools ignore this argument, but some stop on it and generate errors. (e.g.
nameserv, irep)

Specifying the JVM

Unix

NT

The default JVM is java. You can specify a different JVM by including
-VBJjavavm <jvm name>

as a command line argument. No matter which JVM is specified, its actual
existence is checked and the program aborts if it fails to locate the JVM. If the
JVM you specified does not exist, no attempt is made to locate the default one.

If you do not explicitly specify the JVM , VisiBroker for Java will see if there is
path information set in the environment. If the PATH variable is set, it checks each
directory in the PATH that contains \bin to see if a JVM dll can be found there. It
aborts if PATH is set but no JVM is found.

If PATH is not set, VisiBroker for Java looks into the Windows registry for the
location of the currently installed JVM.

It uses the following names for the dll: for JVM 1.2 jvm.d11; for JVM 1.1 it uses
javai.dll.

You can specify a different JVM by including

-VBJjavavm <jvm name>

Programmertools 2-11

as a command line argument. The <jvm name> must include the full path to the
application; i.e. it should be in the form

***java*

where * means empty or non-empty string. For instance, C:\jdk\bin\java. The
program aborts with an error message if the <jvm name> is not in the proper
format or if it does not find a file with the <jvm name>.

Other tools

The other tools that get installed with are identified in the following table.
These tools are used to deploy and run the clients and servers that you develop.

Tool

osagent

locserv

irep

oad

oadutil

2-12 Reference

Description

The OSagent or Smart Agent is a service to which you register your
client programs in order to find object implementations. A Smart
Agent must be started on at least one host within your local
network. See Chapter 16, “Using the Smart Agent,” in the
VisiBroker for Java Programmer’s Guide for more information the
Smart Agent options.

The Location Service enables you to find object instances based on
particular attributes. It works with the Smart Agents to notify you
of what objects are presently accessible on the network, and where
they reside. See Chapter 17, “Using the Location Service,” in the
VisiBroker for Java Programmer’s Guide for more information on the
Location Service.

The Interface Repository (irep) contains descriptions of your
CORBA object interfaces but it is organized for runtime access by
clients. You can view the information in the repository in a browser.
See Chapter 2, “Programmer tools,” in the VisiBroker for Java
Programmer’s Guide for more information on the Interface
Repositories.

The Object Activation Daemon (OAD) allows you to register objects
that are to be started automatically when clients attempt to access
them. See Chapter 20, “Using the Object Activation Daemon,” in the
VisiBroker for Java Programmer’s Guide.

The OAD utility provides you with commands that let you
manually register, unregister, and list the object implementations
available on your system from either command line or from within
a script. See Chapter 20, “Using the Object Activation Daemon,” of
the VisiBroker for Java Programmer’s Guide for more information on
this tool and its options.

Tool Description

osfind Osfind is a command line tool that provides you with an overview
of the processes that you are currently running.
gatekeeper The Gatekeeper enables applets to communicate with object servers

across networks, while still conforming to the security restrictions
imposed by web browsers and firewalls. See the VisiBroker for Java
Visibroker Gatekeeper Guide for more information on the Gatekeeper.

Programmer tools 2-13

2-14 Reference

Names

IDL to Java mapping

This chapter describes the basics of VisiBroker for Java’s current IDL-to-Java
language mapping, as implemented by the 1dl12java compiler. VisiBroker for
Java conforms with the OMG IDL/Java Language Mapping Specification. A copy of
the OMG IDL/Java Language Mapping Specification is available from the Inprise
web site at http:/ /www.borland.com /visibroker/.

See the latest version of the OMG IDL/Java Language Mapping Specification for
complete information and, especially, for information about the following:

* Mapping pseudo-objects to Java
¢ Server-side mapping
¢ Java ORB portability interfaces

In general, IDL names and identifiers are mapped to Java names and identifiers
with no change.

If a name collision might be generated in the mapped Java code, the name
collision is resolved by prepending an underscore (_) to the mapped name.

In addition, because of the nature of the Java language, a single IDL construct
may be mapped to several (differently named) Java constructs. The
“additional” names are constructed by appending a descriptive suffix. For
example, the IDL interface AccountManager is mapped to the Java interface
AccountManager and additional Java classes AccountManagerOperations,
AccountManagerHelper, and AccountManagerHolder.

In those exceptional cases that the “additional” names could conflict with other
mapped IDL names, the resolution rule described above is applied to the other
mapped IDL names. In other words, the naming and use of required
“additional” names takes precedence.

IDL to Java mapping 3-1

Reserved names

For example, an interface whose name is fooHelper or fooHolder is mapped to
_fooHelper or _fooHolder respectively, regardless of whether an interface named
foo exists. The helper and holder classes for interface fooHelper are named
_fooHelperHelper and _fooHelperHolder.

IDL names that would normally be mapped unchanged to Java identifiers that
conflict with Java reserved words will have the collision rule applied.

Reserved names

The mapping reserves the use of several names for its own purposes. The use of
any of these names for a user-defined IDL type or interface (assuming it is also a
legal IDL name) will result in the mapped name having an underscore (_)
prepended. Reserved names are as follows:

¢ The Java class <type>Helper, where <type> is the name of an IDL user-defined
type.

¢ The Java class <type>Holder, where <type> is the name of an IDL user-defined
type (with certain exceptions such as typedef aliases).

¢ The Java classes <basicJavaType>Holder, where <basicJavaType> is one of the
Java primitive data types that is used by one of the IDL basic data types.

* The nested scope Java package name <interface>Package, where <interface> is
the name of an IDL interface.

¢ The Java classes <interface> Operations, <interfaces> POA, and
<interface>POATie, when <interface> is the name of an IDL interface type.

Reserved words

3-2 Reference

The use of any of these words for a user-defined IDL type or interface
(assuming it is also a legal IDL name) will result in the mapped name having an
underscore (_) prepended. The reserved keywords in the Java language are as
follows:

abstract abstractBase boolean break

byte case catch char

class const continue default

do double else extends
false final finally float

for goto if implements
import instanceof int interface
long native new null
package private protected public

Modules

return short static super
switch synchronized this throw
throws transient true try
void volatile while
Modules
An IDL module is mapped to a Java package with the same name. All IDL type
declarations within the module are mapped to corresponding Java class or
interface declarations within the generated package.
IDL declarations not enclosed in any modules are mapped into the (unnamed)
Java global scope.
Code sample 3.1 shows the Java code generated for a type declared within an
IDL module.
Code sample 3.1 Mapping an IDL module to a Java package
/* From Example.idl: */
module Example { };
// Generated java
package Example;
Basic types

The following table shows how the defined IDL types map to basic Java types.

Table 3.1 Basic type mappings

IDL type Java type
boolean boolean

char char

wchar char

octet byte

string java.lang.String
wstring java.lang.String
short short

unsigned short short

long int

unsigned long int

longlong long

unsigned longlong long

IDL to Java mapping 3-3

IDL type extensions

3-4 Reference

Table 3.1 Basic type mappings (continued)

IDL type Java type
float float
double double

When there is a potential mismatch between an IDL type and its mapped Java
type, a standard CORBA exception can be raised. For the most part, exceptions
are in two categories,

* Range of the Java type is larger than the IDL type. For example, Java chars
are a superset of IDL chars.

* Because there is no support in Java for unsigned types, the developer is
responsible for ensuring that large unsigned IDL type values are handled
correctly as negative integers in Java.

Additional details are described in the following sections.

IDL type extensions

This section summarizes VisiBroker’s support for IDL type extensions. The first
table provides a summary for quick look-ups. This is followed by a table
summarizing support for new types.

Table3.2 Summary of supported IDL extensions

Type Supported in VisiBroker for Java?
longlong yes
unsigned longlong yes
long double not!
wchar yes2
wstring yes2
fixed no'

1. VisiBroker for Java will support in a future release when the OMG makes a decision about how
to implement.
2. UNICODE is used “on the wire.”

Table 3.3 IDL extensions for new types

New types Description

longlong 64-bit signed 2’s complements integers

unsigned longlong 64-bit unsigned 2’s complements integers

long double IEEE Standard 754-1985 double extended floating point
wchar Wide characters

wstring Wide strings

fixed Fixed-point decimal arithmetic (31 significant digits)

Holderclasses

Holder classes

Holder classes support OUT and INOUT parameter passing modes and are
available for all the basic IDL data types in the org.omg.CORBA package. Holder
classes are generated for all named user-defined types except those defined by
typedefs. For more information about Holder classes, see Chapter 4, “Generated
interfaces and classes.”

For user-defined IDL types, the holder class name is constructed by appending
Holder to the mapped Java name of the type.

For the basic IDL data types, the holder class name is the Java type name (with
its initial letter capitalized) to which the data type is mapped with an appended
Holder, for example, IntHolder.

Each holder class has a constructor from an instance, a default constructor, and
has a public instance member, value, which is the typed value. The default
constructor sets the value field to the default value for the type as defined by
the Java language.

false for boolean

null for values

0 for numeric and char types
null for strings

null for object references

To support portable stubs and skeletons, Holder classes for user-defined types
also implement the org.omg.CORBA.portable.Streamable interface.

The holder classes for the basic types are defined in Code sample 3.2. They are
in the org.omg.CORBA package.

Code sample 3.2 Holder classes

// Java
package org.omg.CORBA;

final public class ShortHolder implements Streamable {
public short value;
public ShortHolder() {}
public ShortHolder (short initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class IntHolder implements Streamable {
public int value;
public IntHolder() {}
public IntHolder (int initial) {
value = initial;
}
...//implementation of the streamable interface

IDL to Java mapping 3-5

Holder classes

final public class LongHolder implements Streamable {
public long value;
public LongHolder() {}
public LongHolder (long initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class ByteHolder implements Streamable {
public byte value;
public ByteHolder() {}
public ByteHolder (byte initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class FloatHolder implements Streamable {
public float value;
public FloatHolder() {}
public FloatHolder (float initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class DoubleHolder implements Streamable {
public double value;
public DoubleHolder() {}
public DoubleHolder (double initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class CharHolder implements Streamable {
public char value;
public CharHolder() {}
public CharHolder (char initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class BooleanHolder implements Streamable {
public boolean value;
public BooleanHolder() {}
public BooleanHolder (boolean initial) {
value = initial;
}
...//implementation of the streamable interface
}

final public class StringHolder implements Streamable {

3-6 Reference

Holderclasses

public java.lang.String value;

public StringHolder() {}

public StringHolder(java.lang.String initial) {
value = initial;

}

...//implementation of the streamable interface

}

final public class ObjectHolder implements Streamable {
public org.omg.CORBA.Object value;
public ObjectHolder() {}
public ObjectHolder (org.omg.CORBA.Object initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class ValueBaseHolder implements Streamable {
public java.io.Serializable value;
public ValueBaseHolder() {}
public ValueBaseHolder (java.io.Serilaizable initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class AnyHolder implements Streamable {
public Any value;
public AnyHolder() {}
public AnyHolder (Any initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class TypeCodeHolder implements Streamable {
public TypeCode value;
public typeCodeHolder() {}
public TypeCodeHolder (TypeCode initial) {
value = initial;
}
...//implementation of the streamable interface

}

final public class PrincipalHolder implements Streamable {
public Principal value;
public PrincipalHolder() {}
public PrincipalHolder (Principal initial) {
value = initial;
}
...//implementation of the streamable interface

}

The Holder class for a user-defined type <foo> is shown below.

IDL to Java mapping

3-7

Boolean

3-8 Reference

Code sample 3.3 Holder class for a user-defined type

// Java
final public class <foo>Holder
implements org.omg.CORBA.portable.Streamable {
public <foo> value;
public <foo>Holder() {}
public <foo>Holder (<foo> initial) {}
public void _read(org.omg.CORBA.portable.InputStream i)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
}

Java null

The Java null may only be used to represent null CORBA object references and
valuetypes (including recursive valuetypes). For example, a zero length string,
rather than null must be used to represent the empty string. This is also true for
arrays and any constructed type, except for valuetypes. If you attempt to pass a
null for a structure, it will raise a NullPointerException.

Boolean

The IDL type boolean is mapped to the Java type boolean. The IDL constants TRUE
and FALSE are mapped to the Java constants true and false.

Char

IDL characters are 8-bit quantities representing elements of a character set
while Java characters are 16-bit unsigned quantities representing Unicode
characters. To enforce type-safety, the Java CORBA runtime asserts range
validity of all Java chars mapped from IDL chars when parameters are
marshaled during method invocation. If the char falls outside the range defined
by the character set, a CORBA: : DATA_CONVERSION exception is thrown.

The IDL wchar maps to the Java char type.

Octet

The IDL type octet, an 8-bit quantity, is mapped to the Java type byte.

String

The IDL type string, both bounded and unbounded variants, is mapped to the
Java type java.lang.String. Range checking for characters in the string as well as
bounds checking of the string is done at marshal time.

WString

WString

The IDL type wstring, used to represent Unicode strings, is mapped to the Java
type java.lang.String. Bounds checking of the string is done at marshal time.

Integer types

IDL short and unsigned short map to Java type short. IDL long and unsigned long
map to Java’s int.

Note Because there is no support in Java for unsigned types, the developer is
responsible for ensuring that negative integers in Java are handled correctly as
large unsigned values.

Floating point types

The IDL floating point types float and double map to a Java class containing the
corresponding data type.

Helper classes

All user-defined IDL types have an additional “helper” Java class with the
suffix Helper appended to the type name generated. Several static methods
needed to manipulate the type are supplied.

* 2Any insert and extract operations for the type

¢ Getting the repository id

* Getting the typecode

* Reading and writing the type from and to a stream

For any user-defined IDL type, <typenane>, the following is the Java code
generated for the type. The helper class for a mapped IDL interface has a narrow
operation defined for them.

Code sample 3.4 Helper class: Java code generated for user-defined type

// generated Java helper
public class <typename>Helper {
public static void insert(org.omg.CORBA.Any a, <typename> t);
public static <typename> extract (org.omg.CORBA.Any a);
public static org.omg.CORBA.TypeCode type();
public static String id();
public static <typename> read(org.omg.CORBA.portable.InputStream istream);

{...}
public static void write(

org.omg.CORBA.portable.OutputStream ostream, <typename> value)

{...}

IDL to Java mapping 3-9

Constants

// only for interface helpers
public static <typename> narrow(org.omg.CORBA.Object obj);

Code sample 3.5 Mapping of a named type to Java helper class

// IDL - named type
struct st {long fl1, String £2};
// generated Java
public class stHelper {
public static void insert (org.omg.CORBA.Any any,
st s) {...}
public static st extract(org.omg.CORBA.Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static st read(org.omg.CORBA.InputStream is) {...}
public static void write(org.omg.CORBA.OutputStream os,
st s) {...}
}

Code sample 3.6 Mapping of a typedef sequence to Java helper class

// IDL - typedef sequence
typedef sequence <long> IntSeq;
// generated Java helper
public class IntSegHelper {
public static void insert (org.omg.CORBA.Any any,
int[] seq);
public static int[] extract(org.omg.CORBA.Any a){...}
public static org.omg.CORBA.TypeCode type(){...}
public static String id(){...}
public static int[] read(
org.omg.CORBA.portable.InputStream is)
(...}
public static void write(
org.omg.CORBA.portable.OutputStream os,
int[] seq)

Constants

Constants are mapped depending upon the scope in which they appear.

Constants within an interface

Constants declared within an IDL interface are mapped to public static final
fields in the Java interface Operations class corresponding to the IDL interface.

Code sample 3.7 Mapping an IDL constant within a module to a Java class

/* From Example.idl: */
module Example {
interface Foo {
const long alongerOne = -321;

3-10 Reference

Constants NOT within an interface

}i
}i
// Foo.java
package Example;
public interface Foo extends com.inprise.vbroker.CORBA.Object,
Example.FooOperations,
org.omg.CORBA.portable.IDLEntity {
}
// FooOperations.java
package Example;
public interface FooOperations {
public final static int alongerOne = (int)-321;
}

Constants NOT within an interface

Constants declared within an IDL module are mapped to a public interface with
the same name as the constant and containing a public static final field named
value. This field holds the constant’s value.

Note The Java compiler normally inlines the value when the class is used in other
Java code.

Code sample 3.8 Mapping an IDL constant within a module to a Java class

/* From Example.idl: */
module Example {
const long aLongOne = -123;
}i
// Generated java
package Example;
public interface aLongOne {
public final static int value = (int) -123;

}

Constructed types

IDL constructed types include enunm, struct, union, sequence, and array. The types
sequence and array are both mapped to the Java array type. The IDL constructed
types enum, struct, and union are mapped to a Java class that implements the
semantics of the IDL type. The Java class generated will have the same name as
the original IDL type.

Enum

An IDL enun is mapped to a Java final class with the same name as the enum
type which declares a value method, two static data members per label, an
integer conversion method, and a private constructor. An example follows.

IDL to Java mapping 3-11

Enum

Code sample 3.9 IDL enum mapped to a Java final class

// Generated java

public final class <enum_name> {
//one pair for each label in the enum
public static final int _<label> = <value>;
public static final <enum_name> <label> =
new <enum_name>(_<label>);

public int value() {...}

//get enum with specified value
public static <enum_name> from_int (int value);

//constructor
protected <enum_name>(int) {...}

}

One of the members is a public static final that has the same name as the IDL
enun label. The other has an underscore (_) prepended and is intended to be
used in switch statements.

The value method returns the integer value. Values are assigned sequentially
starting with 0. If the enun has a label named value, there is no conflict with the
value () method in Java.

There will be only one instance of an enun. Since there is only one instance,
pointer equality tests will work correctly; that is, the default java.lang.Object
implementation of equals() and hash() will automatically work correctly for an
enumeration’s singleton object.

The Java class for the enum has an additional method, from_int (), which returns
the enun with the specified value.

The holder class for the enun is also generated. Its name is the enumeration’s
mapped Java classname with Holder appended to it as follows:

Code sample 3.10 Holder class for the enum

public class <enum_name>Holder implements
org.omg.CORBA.portable.Streamable {
public <enum_name> value;
public <enum_name>Holder () {}
public <enum_name>Holder (<enum_name> initial) {...}
public void _read(org.omg.CORBA.portable.InputStream 1)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
}

Code sample 3.11 IDL mapped to Java for enum

// IDL
module Example {

enum EnumType { first, second, third };
}i

3-12 Reference

Struct

// generated Java
public final class EnumType
implements org.omg.CORBA.portable.IDLEntity {

public static final int _first = 0;

public static final int _second = 1;

public static final int _third = 2;

public static final EnumType first = new EnumType(_first);
public static final EnumType second = new EnumType(_second);
public static final EnumType third = new EnumType(_third);
protected EnumType (final int _vis_value) { . . .}

public int value () { . . .}

public static EnumType from_int (final int _vis_value) { . . . }
public java.lang.String toString() { . . . }

}

public final class EnumTypeHolder
implements org.omg.CORBA.portable.Streamable {

public
public
public
public
public
public
public

Struct

OtherExample.EnumType value;

EnumTypeHolder () { . . .}

EnumTypeHolder (final OtherExample.EnumType _vis_value) { . . . }

void _read (final org.omg.CORBA.portable.InputStream input) { . . . }
void _write (final org.omg.CORBA.portable.OutputStream output) { . . . }
org.omg.CORBA.TypeCode _type () { . . . }

boolean equals (java.lang.Object o) {. . .}

An IDL struct is mapped to a final Java class with the same name that provides
instance variables for the fields in IDL member ordering and a constructor for
all values. A null constructor is also provided that allows the structure’s fields
to be initialized later. The Holder class for the struct is also generated. Its name is
the struct’s mapped Java classname with Holder appended to it as follows:

Code sample 3.12 Holder class for a struct

final public class <class>Holder implements

org
public
public
public
public
{..
publi
{..
publi

.omg.CORBA.portable.Streamable {

<class> value;

<class>Holder () {}

<class>Holder (<class> initial) {...}

void _read(org.omg.CORBA.portable.InputStream i)

.}

void _write(org.omg.CORBA.portable.OutputStream o)

-}

org.omg.CORBA.TypeCode _type() {...}

IDL to Java mapping 3-13

Union

Code sample 3.13 Mapping an IDL struct to Java

/* From Example.idl: */
module Example {
struct StructType {
long fieldl;
string field2;
}i
}i
// generated Java
public final class StructType
implements org.omg.CORBA.portable.IDLEntity {
public int fieldl;
public java.lang.String field2;
public StructType () { . . .}
public StructType (final int fieldl,
final java.lang.String field2) { . . . }
public java.lang.String toString() { . . . }
public boolean equals (java.lang.Object o) {...}

public final class StructTypeHolder implements org.omg.CORBA.portable.Streamable {
public Example.StructType value;
public StructTypeHolder () { . . . }
public StructTypeHolder (final Example.StructType _vis_value)
[
public void _read (final org.omg.CORBA.portable.InputStream input)
[
public void _write (final org.omg.CORBA.portable.OutputStream output)
[
public org.omg.CORBA.TypeCode _type () { . . .}

Union

An IDL union is given the same name as the final Java class and mapped to it; it
provides the following:

Default constructor

Accessor method for the union’s discriminator, named discriminator ()
Accessor method for each branch

Modifier method for each branch

Modifier method for each branch having more than one case label
Default modifier method, if needed

If there is a name clash with the mapped union type name or any of the field
names, the normal name conflict resolution rule is used: prepend an underscore
for the discriminator.

The branch accessor and modifier methods are overloaded and named after the
branch. Accessor methods shall raise the CORBA: :BAD_OPERATION system exception
if the expected branch has not been set.

If there is more than one case label corresponding to a branch, the simple
modifier method for that branch sets the discriminant to the value of the first

3-14 Reference

Union

case label. In addition, an extra modifier method which takes an explicit
discriminator parameter is generated.

If the branch corresponds to the default case label, then the modifier method
sets the discriminant to a value that does not match any other case labels.

It is illegal to specify a union with a default case label if the set of case labels
completely covers the possible values for the discriminant. It is the
responsibility of the Java code generator (for example, the IDL compiler, or
other tool) to detect this situation and refuse to generate illegal code.

A default method _default () is created if there is no explicit default case label,
and the set of case labels does not completely cover the possible values of the
discriminant. It will set the value of the union to be an out-of-range value.

The holder class for the union is also generated. Its name is the union’s mapped
Java classname with Holder appended to it as follows:

Code sample 3.14 Holder class for a union

final public class <union_class>Holder
implements org.omg.CORBA.portable.Streamable {
public <union_class> value;
public <union_class>Holder() {}
public <union_class>Holder (<union_class> initial) {...}
public void _read(org.omg.CORBA.portable.InputStream 1)
(...}
public void _write(org.omg.CORBA.portable.OutputStrean o)
(...}
public org.omg.CORBA.TypeCode _type() {...}
}

Code sample 3.15 Mapping an IDL union to Java

/* From Example.idl: */
module Example {
enum EnumType { first, second, third, fourth, fifth, sixth };
union UnionType switch (EnumType) {
case first: long win;
case second: short place;
case third:
case fourth: octet show;
default: boolean other;
}i
}i
// Generated java

final public class UnionType {
//constructor
public UnionType() {...}
//discriminator accessor

public int discriminator() { ... }
//win

public int win() { ...}

public void win(int value) { ... }

IDL to Java mapping 3-15

Sequence

//place

public short place() { ...}

public void place(short value) { ... }

//show

public byte show() { ... }

public void show(byte value) { ... }

public void show(int discriminator, byte value) { ... }
//other

public boolean other() {...}

public void other (boolean value) { ... }

public java.lang.String to String () { . . .}
public boolean equals (java.lang.Object o) { . . .}

}

final public class UnionTypeHolder {

implements org.omg.CORBA.portable.Streamable {

public UnionType value;

public UnionTypeHolder() {}

public UnionTypeHolder (UnionType initial) {...}

public void _read(org.omg.CORBA.portable.InputStream i)
{...}

public void _write(org.omg.CORBA.portable.OutputStream o)
(...}

public org.omg.CORBA.TypeCode_type() {...}

Sequence

An IDL sequence is mapped to a Java array with the same name. In the mapping,
anywhere the sequence type is needed, an array of the mapped type of the
sequence element is used.

The holder class for the sequence is also generated. Its name is the sequence’s
mapped Java classname with Holder appended to it as follows:

Code sample 3.16 Holder class for a sequence

final public class <sequence_class>Holder {

public <sequence_element_type>[] value;

public <sequence_class>Holder() {};

public <sequence_class>Holder (

<sequence_element_type>[] initial) {...};

public void _read(org.omg.CORBA.portable.InputStream i)
{...}

public void _write(org.omg.CORBA.portable.OutputStream o)
{...}

public org.omg.CORBA.TypeCode _type() {...}

3-16 Reference

Code sample 3.17 Mapping an IDL sequence to Java

// IDL

typedef sequence<long>UnboundedData;
typedef sequence<long, 42>BoundedData;
// generated Java
final public class UnboundedDataHolder
implements org.omg.CORBA.portable.Streamable {

public
public
public
public

{ .
public

{.
public

}

int[] value;

UnboundedDataHolder () {};

UnboundedDataHolder (final int[] initial) { . . . };
void _read(org.omg.CORBA.portable.InputStream i)

)

void _write(org.omg.CORBA.portable.OutputStream o)
R

org.omg.CORBA.TypeCode _type() { . . .}

final public class BoundedDataHolder
implements org.omg.CORBA.portable.Streamable {

public
public
public
public

{.
public

{.
public

Array

int[] value;

BoundedDataHolder () {};

BoundedDataHolder (final int[] initial) { . . . };
void _read(org.omg.CORBA.portable.InputStream i)

L)
void _write(org.omg.CORBA.portable.OutputStream o)

L)
org.omg.CORBA.TypeCode _type() { . . .}

Array

An IDL array is mapped the same way as an IDL bounded sequence. In the
mapping, anywhere the array type is needed, an array of the mapped type of
array element is used. In Java, the natural Java subscripting operator is applied
to the mapped array. The length of the array can be made available in Java, by
bounding the array with an IDL constant, which will be mapped as per the
rules for constants.

The holder class for the array is also generated. Its name is the array’s mapped
Java classname with Holder appended to it as follows:

Code sample 3.18 Holder class for an array

final public class <array_class>Holder
implements org.omg.CORBA.portable.Streamable {

public
public
public

public
{..
publi

{..

<array_element_type>[] value;
<array_class>Holder() {}
<array_class>Holder (

<array_element_type>[] initial) {...}
void _read(org.omg.CORBA.portable.InputStream i)

.}

void _write(org.omg.CORBA.portable.OutputStream o)

-}

IDL to Java mapping

3-17

Interfaces

Interfaces

public org.omg.CORBA.TypeCode _type() {...}
}

Code sample 3.19 Mapping for an array

// IDL

const long ArrayBound = 42;
typedef long larray[ArrayBound];
// generated Java

final public class larrayHolder
implements org.omg.CORBA.portable.Streamable {

public int[] value;

public larrayHolder() {}

public larrayHolder (int[] initial) {...}

public void _read(org.omg.CORBA.portable.InputStream 1)
{...}

public void _write(org.omg.CORBA.portable.OutputStream o)
{...}

public org.omg.CORBA.TypeCode_type() {...}

3-18 Reference

IDL interfaces are mapped to the two following public Java interfaces:

* Operations interface, which contains only the operations and constants
declared in the IDL interfaces.

* CORBA Object declaration that extends all base interface operations, this
interface operation, and org.omg.CORBA. object.

An additional “helper” Java class with the suffix Helper is appended to the
interface name. The Java interface extends the mapped, base
org.omg.CORBA.Object interface.

The Java interface contains the mapped operation signatures. Methods can be
invoked on an object reference to this interface.

The helper class declares a static narrow method that allows an instance of
org.omg.CORBA.Object to be narrowed to the object reference of a more specific
type. The IDL exception CORBA: :BAD_PARAM is thrown if the narrow fails because
the object reference doesn’t support the request type. A different system
exception is raised to indicate other kinds of errors. Trying to narrow a null will
always succeed with a return value of null.

There are no special “nil” object references. Java null can be passed freely
wherever an object reference is expected.

Attributes are mapped to a pair of Java accessor and modifier methods. These
methods have the same name as the IDL attribute and are overloaded. There is
no modifier method for IDL readonly attributes.

The holder class for the interface is also generated. Its name is the interface’s
mapped Java classname with Holder appended to it as follows:

Interfaces

Code sample 3.20 Holder class for an interface

final public class <interface_class>Holder
implements org.omg.CORBA.portable.Streamable {
public <interface_class> value;
public <interface_class>Holder() {}
public <interface_class>Holder (
<Interface_class> initial) {
value = initial;
public void _read(org.omg.CORBA.portable.InputStream 1)
{...}
public void _write(org.omg.CORBA.portable.OutputStream o)
{...}
public org.omg.CORBA.TypeCode _type() {...}
}

Code sample 3.21 Mapping an IDL interface to Java

/* From Example.idl: */
module Example {
interface Foo {
long method(in long arg) raises(AnException);
attribute long assignable;
readonly attribute long nonassignable;
}i
b
// Generated java
package Example;

public interface Foo extends com.inprise.vbroker.CORBA.Object,
Example.FooOperations,
org.omg.CORBA.portable.IDLEntity {
}
public interface FooOperations {
public int method (int arg) throws Example.AnException;
public int assignable ();
public void assignable (int assignable);
public int nonassignable ();

}

public final class FooHelper {
// ... other standard helper methods
public static Foo narrow(org.omg.CORBA.Object obj)
...}

public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String name,
java.lang.String host,
com.inprise.vbroker.CORBA.BindOptions _options) { . . . }

public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String fullPoaName, byte[] oid) { . . . }

public static Example.Foo bind (org.omg.CORBA.ORB orb,
java.lang.String fullPoaName, byte[] oid,
java.lang.String host,

com.inprise.vbroker.CORBA.BindOptions _options) { . . . }
public Foo read (org.omg.CORBA.portable.InputStream in) { . . . }
public void write (org.omg.CORBA.portable.OutputStream out, Foo foo) { . . . }

IDL to Java mapping 3-19

Passing parameters

public Foo extract (org.omg.CORBA.Any any) { . . . }
public void insert (org.omg.CORBA.Any any, Foo foo) { . . .
}

public final class FooHolder

implements org.omg.CORBA.portable.Streamable {

public Foo value;

public FooHolder() {}

public FooHolder (final Foo initial) { . . . }

public void _read(org.omg.CORBA.portable.InputStream i)
(...

public void _write(org.omg.CORBA.portable.OutputStream o)
(...

public org.omg.CORBA.TypeCode_type() { . . . }

Passing parameters

IDL in parameters are mapped to normal Java actual parameters. The results of
IDL operations are returned as the result of the corresponding Java method.

IDL out and inout parameters cannot be mapped directly into the Java
parameter passing mechanism. This mapping defines additional holder classes
for all the IDL basic and user-defined types which are used to implement these
parameter modes in Java. The client supplies an instance of the appropriate
holder Java class that is passed (by value) for each IDL out or inout parameter.
The contents of the holder instance (but not the instance itself) are modified by
the invocation, and the client uses the (possibly) changed contents after the

invocation returns.

Code sample 3.22 IN parameter mapping to Java actual parameters

/* From Example.idl: */
module Example {
interface Modes {

long operation(in long inArg, out long outArg, inout long inoutArg);

}i
}i
// Generated Java:
package Example;

public interface Modes extends com.inprise.vbroker.CORBA.Object,

Example.ModesOperations,
org.omg.CORBA.portable.IDLEntity {
}
public interface ModesOperations {
public int operation (int inArg,
org.omg.CORBA. IntHolder outArg,
org.omg.CORBA.IntHolder inoutArg);
}

In the above, the result comes back as an ordinary result and the actual in
parameters only an ordinary value. But for the out and inout parameters, an

3-20 Reference

Note

Note

Server implementation with inheritance

appropriate holder must be constructed. A typical use case might look as
follows:

Code sample 3.23 Holder for out and inout parameters

// user Java code
// select a target object
Example.Modes target = ...;
// get the in actual value
int inArg = 57;
// prepare to receive out
IntHolder outHolder = new IntHolder();
// set up the in side of the inout
IntHolder inoutHolder = new IntHolder(131)
// make the invocation
int result =target.operation(inArg, outHolder, inoutHolder);
// use the value of the outHolder
. outHolder.value ...
// use the value of the inoutHolder
. inoutHolder.value ...

Before the invocation, the input value of the inout parameter must be set in the
holder instance that will be the actual parameter. The inout holder can be filled
in either by constructing a new holder from a value, or by assigning to the value
of an existing holder of the appropriate type. After the invocation, the client
uses the outHolder.value to access the value of the out parameter, and the
inoutHolder.value to access the output value of the inout parameter. The return
result of the IDL operation is available as the result of the invocation.

Server implementation with inheritance

Using inheritance is the simplest way to implement a server because server
objects and object references look the same, behave the same, and can be used in
exactly the same contexts. If a server object happens to be in the same process as
its client, method invocations are an ordinary Java function call with no
transport, indirection, or delegation of any kind.

Each IDL interface is mapped to a Java POA abstract class that implements the
Java version of the IDL interface.

The Po2 class does not “truly” extend the IDL interface, meaning that POA is not
a CORBA object. It is a CORBA servant and it can be used to create a “true”
CORBA object. See Chapter 5, “Core interfaces and classes” for more
information on the PO class.

User-defined server classes are then linked to the ORB by extending the
<interface>POA class, as shown in Code sample 3.24.

The poz class itself is abstract and cannot be instantiated. To instantiate it, your
implementation must implement its declared IDL interface operations.

Code sample 3.24 Server implementation in Java using inheritance

/* From Bank.idl: */
module Bank {

IDL to Java mapping 3-21

Server implementation with delegation

3-22 Reference

interface Account {
}i
}i

// Generated java

package Bank;

public abstract class AccountPOA extends org.omg.PortableServer.Servant implements
org.omg.CORBA.portable.InvokeHandler,
Bank.AccountOperations { . . . }

// Linking an implementation to the ORB :

public class AccountImpl extends Bank.AccountPOA { . . . }

Server implementation with delegation

The use of inheritance to implement a server has one drawback: since the server
class extends the POA skeleton class, it cannot use implementation inheritance
for other purposes because Java only supports single inheritance. If the server
class needs to use the sole inheritance link available for another purpose, the
delegation approach must be used.

When server classes are implemented using delegation some extra code is
generated.

¢ Each interface is mapped to a Tie class that extends the POA skeleton and
provides the delegation code.

* Each interface is also mapped to an Operations interface that is used to
defined the type of object the Tie class is delegating.

The delegated implementation must implement the Operation’s interface and
has to be stored in a Tie class instance. Storing the instance of the Operation
interface in the Tie object is done through a constructor provided by the Tie
class. Code sample 3.25 shows an example of how delegation is used.

Code sample 3.25 Server implementation in Java using delegation

/* From Bank.idl: */
module Bank {
interface AccountManager {
Account open(in string name);
}i
}i
// Generated java
package Bank;
public interface AccountManagerOperations {
public Example.Account open(java.lang.String name);
}
// Generated java
package Bank;
public class AccountManagerPOATie extends AccountManagerPOA {
public AccountManagerPOATie (final Bank.AccountManagerOperations _delegate)
...}
public AccountManagerPOATie (final Bank.AccountManagerOperations _delegate,
final org.omg.PortableServer.POA _poa) { . . . }
public Bank.AccountManagerOperations _delegate () { . . . }

Interface scope

public void _delegate (final Bank.AccountManagerOperations delegate) { . . . }
public org.omg.PortableServer.POA _default POA () { . . . }
public float open () { . . . }
}
// Linking an implementation to the ORB :
classAccountImpl implements AccountManager Operations
public class Server {
public static main(String args) {
/..
AccountManagerPOAtie managerServant = new AccountManagerPOATie (new
AccountManagerImpl ());
/..
}

Interface scope

OMG IDL to Java mapping specification does not allow declarations to be
nested within an interface scope, nor does it allow packages and interfaces to
have the same name. Accordingly, interface scope is mapped to a package with
the same name with a “Package” suffix.

Mapping for exceptions

IDL exceptions are mapped very similarly to structs. They are mapped to a Java
class that provides instance variables for the fields of the exception and
constructors.

CORBA system exceptions are unchecked exceptions. They inherit (indirectly)
from java.lang.RuntimeException.

User defined exceptions are checked exceptions. They inherit (indirectly) from
java.lang.Exception.
java.lang.Exception

org.omg.CORBA.UserException java.lang.RuntimeException
UserEx1 UserEx2 org.omg.CORBA.SystemException

org.omg.CORBA.COMM_FAILURE, etc.

User-defined exceptions

User-defined exceptions are mapped to final Java classes that extend
org.omg.CORBA.UserException and are otherwise mapped just like the IDL struct
type, including the generation of Helper and Holder classes.

IDL to Java mapping 3-23

System except

ions

If the exception is defined within a nested IDL scope (essentially within an
interface) then its Java class name is defined within a special scope. Otherwise
its Java class name is defined within the scope of the Java package that
corresponds to the exception’s enclosing IDL module.

Code sample 3.26 Mapping user-defined exceptions

// IDL
module Example {
exception AnException {
string reason;
}i
}i
// Generated Java
package Example;
public final class AnException extends org.omg.CORBA.UserException {
public java.lang.String extra;

public AnException () { . . .}

public AnException (java.lang.String extra) { . . . }

public AnException (java.lang.String _reason, java.lang.String extra) { . . . }
public java.lang.String to String () { . . .}

public boolean equals (java.lang.Object o) { . . . }
}

public final class AnExceptionHolder implements
org.omg.CORBA.portable.Streamable {

public Example.AnException value;
public AnExceptionHolder () { }
public AnExceptionHolder (final Example.AnException _vis_value) { . . . }
public void _read (final org.omg.CORBA.portable.InputStream input) { . . . }
public void _write (final org.omg.CORBA.portable.OutputStream output) { . . . }
public org.omg.CORBA.TypeCode _type () { . . .}

System exceptions

3-24 Reference

The standard IDL system exceptions are mapped to final Java classes that
extend org.omg.CORBA. SystemExcept ion and provide access to the IDL major and
minor exception code, as well as a string describing the reason for the
exception. There are no public constructors for org.omg.CORBA. SystemException;
only classes that extend it can be instantiated.

The Java class name for each standard IDL exception is the same as its IDL
name and is declared to be in the org.omg.CORBA package. The default constructor
supplies 0 for the minor code, COMPLETED_NO for the completion code, and the
empty string (“”) for the reason string. There is also a constructor which takes
the reason and uses defaults for the other fields, as well as one which requires
all three parameters to be specified.

Mapping for the Any type

Mapping for the Any type

The IDL type Any maps to the Java class org.omng.CORBA.2ny. This class has all the
necessary methods to insert and extract instances of predefined types. If the
extraction operations have a mismatched type, the CORBA: : BAD_OPERATION
exception is thrown.

In addition, insert and extract methods which take a holder class are defined to
provide a high speed interface for use by portable stubs and skeletons. There is
an insert and extract method defined for each primitive IDL type as well as a
pair for a generic streamable to handle the case of non-primitive IDL types. For
more information about the insert and extract methods, see “Any Insertion
methods” on page 6-3 and “Any extraction methods” on page 6-2.

The insert operations set the specified value and reset the 2ny’s type if necessary.

Setting the typecode via the type () accessor wipes out the value. An attempt to
extract before the value is set will result in a CORBA: : BAD_OPERATION exception
being raised. This operation is provided primarily so that the type may be set
properly for IDL out parameters.

Mapping for certain nested types

IDL allows type declarations nested within interfaces. Java does not allow
classes to be nested within interfaces. Hence those IDL types that map to Java
classes and that are declared within the scope of an interface must appear in a
special “scope” package when mapped to Java.

IDL interfaces that contain these type declarations generate a scope package to
contain the mapped Java class declarations. The scope package name is
constructed by appending Package to the IDL type name.

Code sample 3.27 Mapping for certain nested types

// IDL
module Example {

interface Foo {

exception el {};

}i
}
// generated Java
package Example.FooPackage;
final public class el extends org.omg.CORBA.UserException {...}

Mapping for Typedef

Java does not have a typedef construct.

IDL to Java mapping 3-25

Simple IDL types

3-26 Reference

Simple IDL types

IDL types that are mapped to simple Java types may not be subclassed in Java.
Hence any typedefs that are type declarations for simple types are mapped to
the original (mapped type) everywhere the typedef type appears. For simple
types, Helper classes are generated for all typedefs.

Complex IDL types

Typedefs for non arrays and sequences are “unwound” to their original type
until a simple IDL type or user-defined IDL type (of the non typedef variety) is
encountered.

Holder classes are generated for sequence and array typedefs.

Code sample 3.28 Mapping a complex idl typedef

// IDL
struct EmpName {
string firstName;
string lastName;
}i
typedef EmpName EmpRec;
// generated Java
// regular struct mapping for EmpName
// regular helper class mapping for EmpRec

final public class EmpName {
}
public class EmpRecHelper {

}

Overview

Generated interfaces and classes

This chapter describes the classes that can be generated by the id12java
compiler.

The Helper and Holder classes are provided for most the classes in the
org.omg.CORBA package. They are also generated by the id12java compiler for
user-defined types and are given the name of the class that is generated for the
type with an additional Holder or Helper suffix. Given a user-defined type named
MyType, the 1id12java compiler will generate the following:

public class MyType

public class MyTypeOperations
public class MyTypeHelper
public class MyTypeHolder
public class MyTypePOA
public class MyTypePOATie
public class _MyTypeStub

Signature and operations classes

These two classes, MyType and MyTypeOperations, provide the complete signature
of your IDL interface when mapped to Java.

Signature class
This class defines the signature interface for each interface you declare in your
IDL file.

Generated interfaces and classes 4-1

Ancillary classes

4-2 Reference

Operations class

This class defines all of the methods that must be implemented by the object
implementation. This class acts as the delegate object for the associated tie class
when the tie mechanism is used.

Ancillary classes

For each user-defined type a Helper and a Holder class are generated.

Helper class

An abstract Helper class is generated by the idl12java compiler and contains the
utility methods for operating on the associated object. The motivation for the
Helper class is to avoid loading the methods that the class offers if they are not
needed.

For objects like mapped structures, enumerations, unions, exceptions,
valuetypes, and valueboxes, the Helper class provides methods for reading and
writing the object to a stream and returning the object’s repository identifier.
The Helper classes generated for interfaces contain additional methods, like bind
and narrow.

Holder class

Since the Java language only allows parameters to be passed by value and not
by reference, Holder classes are used to support the passing of out and inout
parameters associated with operation requests. The interface of the Holder class
is consistent for all types.

Portability stub and skeleton interfaces

The IDL to Java language mapping defines a stub class that may be used for
both the local and the remote invocation of objects. Skeleton classes may be
either stream-based or DSI-based.

Stub class
The stub class provides stub implementation for <interface_name> which the
client calls. All stubs inherit from org.omg.CORBA.portable.Object Impl.

POA class

Stream-based skeletons extend org.omg.PortableServer.Servant and DSI-based
ones extend org.omg.PortableServer.DynamicImpementation. This abstract class
provides the interface to the server-side implementation of your class.

POATie class

The POATie class extends the <interface>P0OA class and allows you to delegate
calls to any of the <interface>Operations methods to another object which
implements the same methods. You do not have to use the POATie class if you

<interface_name>Operations

do not want, but instead you may have your <interface>Inpl class directly
extend the <interface>POR abstract class.

<interface_name>Operations

abstract public interface <interface_name>Operations

An Operations class is generated by the id12java compiler and contains the
interface definitions of the methods and constants declared for <interface_name>
in the IDL file.

<type_name>Helper

abstract public class <type_name>Helper

A Helper class is provided for most classes in the org.omg.CORBA package.
Helper classes are also generated by the id12java compiler for all user-defined
types. The suffix Helper is added to the class name that is generated for the type.
A variety of static methods are provided to manipulate the class.

Methods for all Helper classes

public static <interface_name> extract(org.omg.CORBA.Any any)

This method extracts the type from the specified any object.

Parameter Description
any The Any object to contain the object.

public static String id()
This method gets the repository id for this object.
public static void insert(org.omg.CORBA.Any any, <type_name> value)

This method insert a type into the specified 2ny object.

Parameter Description
any The Any object to contain the type.
value The type to insert.

public static <type_name> read(org.omg.CORBA.portable.InputStream input)

This method reads a type from the specified input stream.

Parameter Description

input The input stream from which the object is read.

Generated interfaces and classes 4-3

Methods generated for interfaces

public static org.omg.CORBA.TypeCode type()

This method returns the TypeCode associated with this object. For a list of
possible return values see “TCKind” on page 6-30.

public static void write(org.omg.CORBA.portable.OutputStream output, <type_name> value)

This method writes a type to the specified output stream.

Parameter Description
output The output stream to which the object is written.
value The type to be written to the output stream.

Methods generated for interfaces

public static <interface_name> bind(org.omg.CORBA.ORB orb)

This method attempts to bind to any instance of an object of type
<interface_name>.

public static <interface_name> bind(org.omg.CORBA.ORB orb, String name)

This method attempts to bind to an object of type <interface_name> that has
the specified instance name.

Parameter Description

name The instance name of the desired object.

public static <interface_name> bind(org.omg.CORBA.ORB orb, String name, String host)

This method attempts to bind to an object of type <interface_name> that has
the specified instance name and which is located on the specified host.

Parameter Description
name The instance name of the desired object.
host The host name where the desired object is located.

public static <interface_name> bind(org.omg.CORBA.ORB orb, String name, String host,
org.omg.CORBA.BindOptions options)

This method attempts to bind to an object of type <interface_name> that has
the specified instance name and which is located on the specified host, using
the specified BindOptions. BindOptions are described in “public class
BindOptions” on page 5-1.

Parameter Description

name The instance name of the desired object.

host The optional host name where the desired object is located.
options The bind options for this object.

4-4 Reference

Methods generated for object wrappers

public static <interface_name> narrow(org.omg.CORBA.Object object)

This method attempts to narrow a org.omg.CORBA.Object reference to an object
of type <interface_name>. If the object reference cannot be narrowed, a null
value is returned.

Parameter Description

object The object to be narrowed to the type <interface_name>.

Methods generated for object wrappers

The following methods are generated for helper classes when you invoke the
idl2java command with the -obj_wrapper option. For complete details on using
the object wrapper feature, see the VisiBroker for Java Programmer’s Guide.

public static void addClientObjectWrapperClass(org.omg.CORBA.ORB orb, java.lang.Class c)

Adds a typed object wrapper from a client application. If more than one
typed object wrapper is installed, they are added in the order in which they
were registered.

Note This method should only be invoked by a client application.

Parameter Description
c The object wrapper that you want to add.
orb The ORB the client wishes to use, obtained by the invoking

the ORB.init method.

public static void addServerObjectWrapperClass(org.omg.CORBA.ORB orb, java.lang.Class ¢)

Adds a typed object wrapper from a server application. If more than one
typed object wrapper is installed, they are added in the order in which they
were registered.

Note This method should only be invoked by a server application.

Parameter Description
c The object wrapper that you want to add.
orb The ORB the server wishes to use, obtained by the invoking

the ORB.init method.

public static void removeClientObjectWrapperClass(org.omg.CORBA.ORB orb, java.lang.Class ¢)

Removes a typed object wrapper from a client application.

Generated interfaces and classes 4-5

<type_name>Holder

This method should only be invoked by a client application.

Description

The object wrapper that you want to remove.

The ORB the client wishes to use, obtained by the invoking the
ORB.init method.

public static void removeServerObjectWrapperClass(org.omg.CORBA.ORB orb, java.lang.Class ¢)

Removes a typed object wrapper from a server application.

Note
Parameter
C
orb

Note
Parameter
C
orb

This method should only be invoked by a server application.

Description

The object wrapper class that you want to remove.

The ORB the server wishes to use, obtained by the invoking
the ORB.init method.

<type_name>Holder

public final class <interface_name>Holder

A Holder class is provided for all basic IDL types in the org.ong.CORB2 package.
Holder classes are also generated by the id12java compiler for all user-defined
types. The suffix Holder is added to the class name that is generated for
user-defined types. Each Holder has a set of constructors and a value member,
which is the typed value.

The holder classes for the basic types are defined below. They are in the
org.omg.CORBA package.

class
class
class
class
class
class
class
class
class
class
class
class
class

public
public
public
public
public
public
public
public
public
public
public
public
public

ShortHolder
IntHolder
LongHolder
ByteHolder
FloatHolder
DoubleHolder
CharHolder
BooleanHolder
StringHolder
ObjectHolder
AnyHolder
TypeCodeHolder
PrincipalHolder

The Holder class for a user-defined type <type_nane> follows.

Code sample 4.1
// Java

Holder class

final public class <type_name>Holder
implements org.omg.CORBA.portable.Streamable {

4-6 Reference

Member data

public <type_name> value;

public <type_name>Holder() {}

public <type_name>Holder (<type_name> initial) {}

public void _read(org.omg.CORBA.portable.InputStream 1)
{...};

public void _write(org.omg.CORBA.portable.OutputStream o)
{...};

public org.omg.CORBA.TypeCode _type() {...}

}

Member data

public <type_name> value

This value represents the type contained by this object.

Methods

public <type_name>Holder()

This default constructor is useful for out parameters. The default constructor
sets the value field to the default value for the type as defined by the Java
language. The value is set to false for boolean types, 0 for integral and char
types, null for strings, and null for object references.

public <type_name>Holder(<interface_name> initial)

The value constructor is useful for inout parameters. The value field is copied
from the value field of the specified Any object.

Parameter Description

initial The other object the Holder is containing.

_<interface_name>Stub

abstract public class _<interface_name>Stub

A stub class is generated by the id12java compiler to provide a stub
implementation for <interface_name> which the client calls. This class provides
the implementation for transparently acting on an object implementation.

<interface_name>POA

abstract public class <interface_name>POA

This class provides the POA skeleton (servant) class for your interface. It does
not provide any implementation for the <interface>Operations interface. You
extend this class when implementing your <interface>Impl class.

Generated interfaces and classes 4-7

<interface_name>POATie

<interface_name>POATie

abstract public class <interface_name>POATie

A tie class is generated by the id12java compiler for creating a delegator class for
<interface_name>POA.

Methods

public <interface>POATie (final <interface>Operations _delegate)

This method is the constructor. You pass it an object which implements the
<interface>Operations interface and which will be used as the delegate object.

public <interface>POATie (final <interface>Operations _delegate,
final org.omg.PortableServer.POA _poa)

This method is the constructor which initializes the delegate object and the
default POA servant.

4-8 Reference

Core interfaces and classes

This chapter describes the core interfaces and classes.

BindOptions

Note

Deprecated in VisiBroker 4.x
public class BindOptions

The BindOptions class represents the options to be used when a client is binding
to a server. These parameters are passed to the bind method provided by an
interface’s Helper class.

The defer_bind parameter, when set to true, allows the client to delay the
establishment of a connect to the object implementation until the first operation
request is issued for that object. If set to false, the connection establishment is
attempted immediately.

The enable_rebind parameter determines if any attempt is to be made to
reconnect to an object implementation if the connection is unexpectedly broken
due to a network failure or other error. If set to true, an attempt is to be made to
locate and bind to another server offering an object of the same type and name
as the original.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they provide.

IDL definition

struct BindOptions {
boolean defer_bind;
boolean enable_rebind;
}i

Core interfaces and classes 5-1

BindOptions constructors

BindOptions constructors

public BindOptions(boolean defer_bind, boolean enable_rebind)

This method creates a BindOptions object, setting the defer_bind and
enable_rebind properties as specified.

Parameter Description

defer_bind If set to true, connection establishment is delayed until the first
operation request is invoked on the object. The default value is
false.

enable_rebind If set to true and the connection is broken to the server, the client

attempts to bind to another server. The default value is true.

BOA

Note Deprecated in VisiBroker 4.x
public abstract class BOA extends Object

The Basic Object Adapter is used by object implementations to activate and
deactivate the objects they offer to clients. An object implementation invokes
the obj_is_ready method to make the implementation visible to clients on the
network. The deactivate_obj method is used to make an object implementation
unavailable to clients.

The BOA also provides methods for obtaining the Principal associated with a
client request and entering an event loop to wait for the receipt of client
requests.

An instance of a BOA is obtained by using the ORB.BOA_init () method. For
example,

Code sample 5.1 Using BOA_init() with no arguments

// Initialize the ORB.

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args,null);

// Initialize the BOA.

com.inprise.vbroker.CORBA.BOA boa =
((com.inprise.vbroker.orb.CORBA.ORB)orb) .BOA_init ();

// Create the account manager object.

Bank.AccountManager manager = new AccountManagerImpl ("BankManager");

// Export the newly created object.

boa.obj_is_ready (manager) ;

System.out.println(manager + " is ready.");

// Wait for incoming requests

boa.impl_is_ready();

The method shown above, orb.BOA_init (), initializes a BOA and returns a
reference to the BOA. If you use this method, rather than BOA_init (String
boaType, java.util.Properties properties), the thread policy will be TPool. The

5-2 Reference

IDL definition

BOA_init (String boaType, java.util.Properties properties) method initializes a

particular type of BOA with optional properties. It returns the adapter

corresponding to the boaType. For an example of usage, see Code sample 5.2. For

more information about these methods, see “public static
org.omg.CORBA.BOA BOA_init()” on page 5-23.

Code sample 5.2 Using BOA_init() with arguments to set thread policy and properties

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.1init (args,null);
java.util.Properties props = new java.util.Properties();

props.put ("OAthreadMax", "40");

org.omg.CORBA.BOA boa = orb.BOA_init ("TPool", props);

// create a new implementation object
Bank.AccountManager manager =

new AccountManagerImpl ("BankManager");

// make the implementation Net visible
boa.obj_is_ready (manager) ;
// wait for incoming requests...
boa.impl_is_ready();

IDL definition

interface BOA {
void obj_is_ready(in CORBA::0bject object);
void obj_is_ready(
in CORBA::Object object
in string service_name
in byte ref_datal]);
void deactivate_obj(in CORBA::0bject object);
void impl_is_ready();
void impl_is_ready (
in string service_name,
in Activator activator);
void impl_is_ready (
in string service_name,
in Activator activator,
in boolean block);
CORBA: :Principal get_principal (in CORBA::Object object);
}i

BOA methods

public void deactivate_obj(Object object)

Core interfaces and classes

5-3

BOA methods

This method makes a server’s implementation object invisible to the network.
After invoking this method, requests received for this object will cause a
CORBA.OBJECT_NOT_EXIST exception to be raised.

Parameter Description

object The server’s implementation object to be deactivated.

public Principal get_principal(Object object)

This method returns the Principal object associated with the current
operation request or null if the specified object is not the target of the current

invocation.
Parameter Description
object The server object on which the current operation request is

being called. Normally, this object reference is to this object.

public void impl_is_ready()

This method is typically called by a server after all the objects that it
implements have been activated using obj_is_ready method. This method
enters a loop waiting for client operation requests to arrive and does not
return. Calling this method is not required if the server has some other non-
daemon thread running. For example, if there is a GUI running, the GUI will
control the lifetime of the program and this method need not be used.

public abstract void impl_is_ready(java.lang.String service_name, Activator activator)

This method registers an Activator and associates a service name with it.

Parameter Description
service_name The service name that the object implementation is associated with.
activator The activator that is controlling the object’s activation.

public abstract void impl_is_ready(java.lang.String service_name, Activator activator, boolean block)

This method registers an Activator and associates a service name with it.

Parameter Description

service_name The service name that the object implementation is associated with.
activator The activator that is controlling the object’s activation.

block Indicates whether the call completes or blocks waiting for requests.

5-4 Reference

CompletionStatus

public void obj_is_ready(Object object)

This method makes an object implementation provided by a server visible on
the network. Servers that implement more than one object must make a
separate call to this method for each object that they offer.

Parameter Description

object The server’s implementation object to be activated.

public abstract void obj_is_ready(Object object, java.lang.String service_name, byte ref_data[])

This method makes an object implementation provided by a server visible on
the network. This method is used when you are activating objects which are
also associated with an Activator.

Parameter Description

object The server’s implementation object to be activated.

service_name The service name associated with the object implementation to be
activated.

ref_data The reference data associated with the object to be activated.

CompletionStatus

public final class CompletionStatus extends Object

This class works with SystemException and indicates whether the operation
completed or not before the exception was raised.

IDL definition

enum CompletionStatus {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

}i

CompletionStatus methods

For more information about these methods, see “Enum” on page 3-11.

public final static int _COMPLETED_YES

public final static int _COMPLETED_NO

public final static int _COMPLETED_MAYBE

public final static CompletionStatus COMPLETED_YES
public final static CompletionStatus COMPLETED_NO
public final static CompletionStatus COMPLETED_MAYBE
public int value()

public static CompletionStatus from_int(int value)

Core interfaces and classes 5-5

Context

Context

5-6 Reference

public interface Context

The Context interface contains a property list for a client. This property list is
propagated to the server when a client makes a request. The CORBA
specification does not define the contents of a Context so the use of these
properties are left to the user and implementor to define. Context objects are
organized as a tree with each containing a pointer to its parent context. The root
context is the global default context, whose parent is null. The default context is
obtained by using the ORB.get_default_context method, described in “abstract
public org.omg.CORBA.Context get_default_context()” on page 5-19.

IDL definition

interface Context {

CORBA: :Identifier context_name();
CORBA: :Context parent();

void set_one_value(
in CORBA::Identifier prop_name,
in any value

)i

void set_values |
in CORBA::NVList values

)i

CORBA: :NVList get_values (
in CORBA::Identifier start_scope,
in boolean restrict_scope,
in CORBA::Identifier prop_name

)i

void delete_values(
in CORBA::Identifier prop_name

)i

CORBA: :Context create_child(
in CORBA::Identifier context_name

)i

}i

Context methods

public java.lang.String context_name()

This method returns the name of this Context.

Context methods

public Context create_child(java.lang.String context_name)
This method creates a child (leaf) Context with the specified parent Context.
This method returns the newly created child context.

Parameter Description

context_name The name of the child Context to be created.

public void delete_values(java.lang.String prop_name)

This method removes all properties with the specified name from the current
Context. You can use an asterisk as a wildcard character at the end of the
prop_name.

Parameter Description

prop_name The name of the property to be removed.

public org.omg.CORBA.NVList get_values(java.lang.String start_scope, boolean restrict_scope,
java.lang.String prop_name)

This method returns the properties associated with the current Context as an
NVList of name-value pairs. Scope of the Context search may be limited using
the start_scope and restrict_scope parameters. You can use an asterisk as a
wildcard at the end of the prop_name.

This method returns a name value list for the specified search. If the
start_scope is not null and the corresponding Context is not found, this
method throws BAD_PARAM.

Parameter Description

start_scope The name of the Context where the search is to begin.

restrict_scope True indicates that the search is only for the current context or the
scope matching start_scope, if not null. False indicates that the search
includes the current context as well as its ancestors.

prop_name The name of the property to be returned.

public org.omg.CORBA.Context parent()

This method returns the parent Context for this object. If this object is the
default global context, NULL is returned.

public void set_one_value(java.lang.String prop_name, org.omg.CORBA.Any value)

This method adds a new property to the current Context. The value of the
property is represented by the Any class, described in “Any” on page 6-1.

Parameter Description
prop_name The name of the new property.
value An Any object that contains the value of the new property.

Core interfaces and classes 5-7

InvalidName

public void set_values(org.omg.CORBA.NVList values)
This method sets the properties of the current Context using the supplied
NVList, containing one or more name-value pairs. See “NVList” on page 6-22.

Parameter Description

values The list of properties for the Context.

InvalidName

public class org.omg.CORBA.ORBPackage.InvalidName extends org.omg.CORBA.UserException

The exception is raised by the ORB.resolve_initial_reference method, described
in “abstract public org.omg.CORBA.Object
resolve_initial_references(java.lang.String identifier) throws
org.omg.CORBA._ORB.InvalidName” on page 5-20.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

Object

public interface Object

The Object interface is the root of the CORBA inheritance hierarchy. All
interfaces defined in IDL inherit from this interface. This interface provides
platform independent runtime type information and object reference
equivalence testing.

VisiBroker extends the standard org.omg.CORBA.Object with a few more
methods. The hierarchy is:

org.omg.CORBA.Object

com.inprise.eroker.CORBA.Object

Both of these classes are described in the following information.

org.omg.CORBA Object definition

package org.omg.CORBA;
public interface Object {
Request _create_request (
Context ctx,
String operation,
NVList arg_list,
NamedValue result
)i

Request _create_request (

5-8 Reference

org.omg.Object methods

Context ctx,String operation,

NVList arg_list,

NamedValue result,

ExceptionList exclist,

ContextList ctxlist
)i
org.omg.CORBA.Object _duplicate();
DomainManager[] _get_domain_managers();
org.omg.CORBA.Object _get_interface_def();
Policy _get_policy(int policy_type);
int _hash(int maximum);
boolean _is_a(String repositoryIdentifier);
boolean _is_equivalent (org.omg.CORBA.Object other);
boolean _non_existent();
void _release();
Request _request (String operation);
org.omg.CORBA.Object _set_policy_override(

Policy[] policies,

SetOverrideType set_add
)i

org.omg.Object methods

public org.omg.CORBA.Request _create_request(org.omg.CORBA.Context ctx,
java.lang.String operation, org.omg.CORBA.NVList arg_list, org.omg.CORBA.NamedValue result)

This method creates an dynamic invocation request initialized with the
specified parameters. For information on obtaining the default context, see
get_default_context in “abstract public org.omg.CORBA.Context
get_default_context()” on page 5-19.

Parameter Description

ctx The Context to use for the dynamic invocation request.
operation The name of the operation to be invoked.
arg_list A list of NamedValue items. There is one NamedValue for each argument

that is to be passed to the operation.

result The type of the return value.

public org.omg.CORBA.Request _create_request(org.omg.CORBA.Context ctx,
java.lang.String operation, org.omg.CORBA.NVList arg_list, org.omg.CORBA.NamedValue result,
org.omg.CORBA.Typecode[] exceptions, java.lang.String[] contexts)

This method creates an dynamic invocation request initialized with the
specified parameters, including a list of exceptions that the request may
raise. For information on obtaining the default context, see

Core interfaces and classes 5-9

org.omg.Object methods

Note

5-10 Reference

get_default_context in “abstract public org.omg.CORBA.Context
get_default_context()” on page 5-19.

Parameter Description

ctx The Context to use for the dynamic invocation request.
operation The name of the operation to be invoked.
arg_list A list of NamedValue items. There is one NamedValue for each

argument that is to be passed to the operation.

exceptions A list of Typecode objects representing the exceptions that this request
might raise.

contexts A list of Context objects. The list of Context objects supports type
checking on context names.

public int _hash(int maximum)

This method computes a hash value for this object in the range of
[0 - maximum]. The value returned is always positive.

Parameter Description

maximum The maximum hash value to return.

public boolean _is_a(java.lang.String repid)

This method queries an object to see if it implements the specified interface.
This method returns true if the implementation object supports the interface.
Otherwise, false is returned.

Parameter Description

repld A String containing the repository identifier of the desired interface.

Invoking this method may result in a call to the implementation object, since
it is possible for a given server to simultaneously implement multiple
interfaces via multiple inheritance, as shown in the following IDL code
example.

module M {
interface A {
void opA();
}i
interface B {
void opB();
}i
interface C : A, B {
}i
}i

Given an interface A in module M, (that is, M::A) the corresponding
repository identifier will generally be “IDL:M/A:1.0” (omitting the quotation
marks). The repository identifier can also be set to an arbitrary string, using
#pragmas in the IDL file.

VisiBroker extension to Object

public boolean _is_equivalent(org.omg.CORBA.Object other_object)

This method compares this object’s IOR (Interoperable Object Reference)
with the specified object’s IOR and returns true if the IOR’s are equivalent.
Otherwise, false is returned. Under certain circumstances, you may get a
false negative if the same implementation object can be reached by both
(distinct) IOR’s.

Parameter Description

other_object A reference to the object to be compared with this object.

public boolean _non_existent()

This method attempts to ping the implementation object to determine if it is
active. This method returns false if the implementation object is currently
active (possibly after causing the server to be activated). Otherwise, true is
returned. This method does not cause a client’s proxy object to rebind to
another server. In other words, it does force a bind, but it does not force a
rebind.

public org.omg.CORBA.Request _request(java.lang.String operation)

This method creates an empty dynamic invocation request. Both IN and INOUT
parameters must be initialized prior to sending the request. The types must
also be initialized for out parameters and return values. See “Request” on
page 6-25 for more information initializing and sending dynamic invocation
requests.

Parameter Description

operation The name of the operation to be invoked.

VisiBroker extension to Object

Package com.inprise.vbroker.CORBA;

public interface Object extends org.omg.CORBA.Object {
public void _bind();
public BOA _boa();
public org.omg.CORBA.Policy _get_client_policy(int policy_type);
public org.omg.CORBA.Policy[] _get_policy_overrides(int[] types);
public com.inprise.vbroker.IOP.IOR _ior();
public com.inprise.vbroker.IOP.I0ORValue _ior_value();
public boolean _is_bound();
public boolean _is_local();
public boolean _is_persistent();
public boolean _is_remote();
public java.lang.String _object_name();
public org.omg.CORBA.ORB _orb();
public java.lang.String _repository_id();
public org.omg.CORBA.Object _resolve_reference(java.lang.String id);
public boolean _validate_connection(

Core interfaces and classes 5-11

VisiBroker extension to Object methods

5-12 Reference

org.omg.CORBA.PolicyListHolder inconsistent_policies
)i

VisiBroker extension to Object methods

public org.omg.CORBA.BOA _boa()

This method returns either the BOA associated with a particular request or
the default BOA if you are not in a request. If the B0A has not been initialized,
a CORBA.INITIALIZE exception is raised.

public boolean _is_bound()

This method returns true if a TCP connection has been established with the
implementation object. Otherwise, false is returned.

public boolean _is_local()

This method returns true if this object refers to an object implemented in the
local address space. Otherwise, false is returned.

public boolean _is_persistent()

This method returns true if this object reference is valid beyond the lifetime
of the process that implements the object. Otherwise, false is returned.

public boolean _is_remote()

This method returns true if this object refers to an object implemented in a
remote address space. Otherwise, false is returned.

public java.lang.String _object_name()
This method is deprecated, and should only be used with BOA based objects.

This method returns the name of the object implementation. If the object is
created by POA and is not named, the method returns NULL. Transient objects
and foreign objects are not named.

public java.lang.String _repository_id()

This method returns the repository identifier of the object implementation’s
most derived interface.

public org.omg.CORBA.Object _resolve_reference(java.lang.String id)

Your client application can invoke this method on an object reference to
resolve the server-side interface with the specified service identifier. This
method causes the ORB.resolve_initial_references method, described in
“abstract public org.omg.CORBA.Object
resolve_initial_references(java.lang.String identifier) throws
org.omg.CORBA._ORB.InvalidName” on page 5-20, to be invoked on the
server-side to resolve the specified service, either the ServerManager or

ORB

ORB

ORBManager. An object reference is returned which your client can narrow to
the appropriate server type.

Parameter Description

id The name of the interface to be resolved on the server-side,
either the ServerManager or ORBManager.

abstract public class ORB

This class provides a method for initializing the CORBA infrastructure, as
shown in Code sample 5.3. The Object Request Broker, provides a variety of
methods used by both clients and servers.

The JDK bundles an org.omg.CORBA.ORB class that is slightly older than the
ORB specified in the CORBA 2.3 specification. VisiBroker extends the CORBA
2.3 ORB and adds a few more methods to the class. The hierarchy is:

org.omg.CORBA.ORB
org.omg.CORBA_2_3.0RB

com. inprise.vbroker.CORBA.ORB

Code sample 5.3 Example client usage of the ORB class

public class SimpleClientProgram {
public static void main(String args[]) {

try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, null);
org.omg.CORBA.Object object = orb.string_to_object(args[0]);
System.out.println("Contacted object: " + object);

1

catch(org.omg.CORBA. SystemException se) {
System.out.println("Failure: " + se);

}

JDK’s ORB definition

abstract public class ORB {

public void connect (org.omg.CORBA.Object obj);

public org.omg.CORBA.TypeCode create_abstract_interface_tc(
String id,
String name

)i

abstract public TypeCode create_alias_tc(
String id,
String name,
TypeCode original_type

Core interfaces and classes 5-13

JDK’'s ORB definition

5-14 Reference

)i
abstract public Any create_any();
abstract public TypeCode create_array_tc(int length, TypeCode element_type);
abstract public ContextList create_context_list();
abstract public TypeCode create_enum_tc(String id, String name, String[] members);
abstract public Environment create_environment();
abstract public ExceptionList create_exception_list();
abstract public TypeCode create_exception_tc(
String id,
String name,
StructMember[] members
)i
public org.omg.CORBA.TypeCode create_fixed_tc(short digits, short scale);
abstract public TypeCode create_interface_tc(String id, String name);
abstract public NVList create_list(int count);
abstract public NamedValue create_named_value(String s, Any any, int flags);
public org.omg.CORBA.TypeCode create_native_tc(
String id,
String name
)i
public NVList create_operation_list (org.omg.CORBA.Object oper);
abstract public org.omg.CORBA.portable.OutputStream create_output_stream();
public org.omg.CORBA.Policy create_policy(int type, org.omg.CORBA.Any val)
throws org.omg.CORBA.PolicyError;
abstract public TypeCode create_recursive_sequence_tc(int bound, int offset);
public org.omg.CORBA.TypeCode create_recursive_tc(String id);
abstract public TypeCode create_sequence_tc(int bound, TypeCode element_type);
abstract public TypeCode create_string_tc(int bound);
abstract public TypeCode create_struct_tc(
String id,
String name,
StructMember[] members
)i
abstract public TypeCode create_union_tc(
String id,
String name,
TypeCode discriminator_type,
UnionMember[] members
)
public org.omg.CORBA.TypeCode create_value_box_tc(String id,
String name,
TypeCode boxed_type
)i
public org.omg.CORBA.TypeCode create_value_tc(String id,
String name,
short type_modifier,
TypeCode concrete_base,
ValueMember[] members
)i
abstract public TypeCode create_wstring_tc(int bound);
public void disconnect (org.omg.CORBA.Object obj);
public org.omg.CORBA.Current get_current();
abstract public Context get_default_context();
abstract public Request get_next_response() throws WrongTransaction;

JDK ORB methods

abstract public TypeCode get_primitive_tc(TCKind tcKind);
public boolean get_service_information(
short service_type,
ServiceInformationHolder service_info
)i
public static ORB init(String[] args, Properties props);
public static ORB init (Applet app, Properties props);
abstract public String[] list_initial_services();
abstract public String object_to_string(org.omg.CORBA.Object obj);
public void perform_work();
abstract public boolean poll_next_response();
abstract public org.omg.CORBA.Object resolve_initial_references(String object_name)
throws InvalidName;
public void run();
abstract public void send_multiple_requests_oneway (Request[] req);
abstract public void send_multiple_requests_deferred(Request[] req);
abstract protected void set_parameters(Applet app, Properties props);
abstract protected void set_parameters(String[] args, Properties props);
public void shutdown(boolean wait_for_completion);
abstract public org.omg.CORBA.Object string_to_object (String str);
public boolean work_pending();

JDK ORB methods

abstract public org.omg.CORBA.TypeCode create_alias_tc(
java.lang.String repository_id,
java.lang.String type_name,
org.omg.CORBA.TypeCode original_type)

This method creates and returns a TypeCode describing an IDL alias.

Parameter Description

repository_id The repository identifier that specifies the type in IDL.
type_name The unscoped type name of the type.

original_type The aliased type.

abstract public org.omg.CORBA.Any create_any()
This method creates an empty Any object with a NULL type code.

public static org.omg. CORBA.TypeCode create_array_tc(CORBA::Ulong bound,
TypeCode element_type);

This static method dynamically creates a TypeCode for an array.

Parameter Description
bound The maximum number of array elements.
element _type The type of elements stored in this array.

Core interfaces and classes 5-15

JDK ORB methods

abstract public org.omg.CORBA.TypeCode create_array_tc(int length,

Note

5-16 Reference

org.omg.CORBA.TypeCode element_type)

This method creates and returns a TypeCode describing an IDL array.

Parameter Description
length The length of the array.
element_type The type of the elements contained in the array.

public abstract ContextList create_context_list()
This method creates and returns an empty ContextList.

public org.omg.CORBA.DynAny create_dyn_any(org.omg.CORBA.Any value)
Creates a Dyniny object initializing it with the specified value.

DynAny objects cannot be used as parameters on operation requests or DII
requests nor can they be externalized using the ORB.object_to_string method.
See “DynAny” on page 6-6 for complete details.

Parameter Description

value An Any object used to initialize this object.

abstract public org.omg.CORBA.TypeCode create_enum_tc(
java.lang.String repository _id,
java.lang.String type_name, java.lang.String members[])

This method creates and returns a TypeCode describing an IDL enumeration.

Parameter Description

repository_id The repository identifier that specifies the type in IDL.
type_name The unscoped type name of the type.

members An array of strings defining the members of the type.

abstract public org.omg.CORBA.Environment create_environment()

This method creates and returns an empty Environment.

abstract public org.omg.CORBA.TypeCode create_exception_tc(
java.lang.String repository _id,
java.lang.String type_name, org.omg.CORBA.StructMember members[])

This method creates and returns a TypeCode describing an IDL exception.

Parameter Description

repository_id The repository identifier that specifies the type in IDL.
type_name The unscoped type name of the type.

members An array of structures defining the members of the type.

JDK ORB methods

abstract public org.omg.CORBA.TypeCode create_interface_tc(
java.lang.String repository _id,
java.lang.String type_name)

This method creates and returns a TypeCode describing an IDL interface.

Parameter Description
repository_id The repository identifier that specifies the type in IDL.
type_name The unscoped type name of the type.

abstract public org.omg.CORBA.NVList create_list(int length)

This method creates and returns an NvList of the specified length. For
information on this method, see “NVList” on page 6-22.

Parameter Description
length The length of the list to be created.

abstract public org.omg.CORBA.NamedValue create_named_value(
java.lang.String name
org.omg.CORBA.Any value, int flags)

This method creates and returns a new NamedValue for the Dynamic
Invocation Interface.

Parameter Description

name The name for the NamedValue.

value The value for the NamedValue.

flags The flags for the NamedValue: IN, OUT, or INOUT.

abstract public org.omg.CORBA.NVList create_operation_list(
org.omg.CORBA.OperationDef operationDef)

This method creates and returns a new NVList for use with a Dynamic
Invocation Interface request.

Parameter Description
operationDef The operation description that must be specified.

abstract public org.omg.CORBA.TypeCode create_recursive_sequence_tc(
int length, int offset)

This method creates and returns a TypeCode describing an IDL sequence.

Parameter Description

length The length of the sequence to be created. A length of zero
indicates an unbounded sequence is desired.

offset The offset into the type code’s (recursive) definition.

Core interfaces and classes 5-17

JDK ORB methods
abstract public org.omg.CORBA.TypeCode create_sequence_tc(
int length, org.omg.CORBA.TypeCode element_type)

This method creates and returns a TypeCode describing an IDL sequence.

Parameter Description

length The length of the sequence to be created. A length of zero
indicates an unbounded sequence is desired.

element_type The type of the elements contained by the sequence.

abstract public org.omg.CORBA.TypeCode create_string_tc(int length)

This method creates and returns a TypeCode describing an IDL String.

Parameter Description

length The length of the String to be created. A length of zero
indicates an unbounded string is desired.

abstract public org.omg.CORBA.TypeCode create_struct_tc(
java.lang.String repository_id,
java.lang.String type_name, org.omg.CORBA.StructMember members])

This method creates and returns a TypeCode describing an IDL struct.

Parameter Description

repository_id The repository identifier that specifies the type in IDL.
type_name The unscoped type name of the type.

members An array of structures defining the members of the type.

abstract public org.omg.CORBA.TypeCode create_union_tc(
java.lang.String repository_id,
java.lang.String type_name, org.omg.CORBA.TypeCode discriminator_type,
org.omg.CORBA.UnionMembers members[])

This method creates and returns a TypeCode describing an IDL union.

Parameter Description

repository_id The repository identifier that specifies the type in IDL.
type_name The unscoped type name of the type.

discriminator_type The type of the discriminator. The discriminator is the type

used in the switch statement.

members An array of structures defining the members of the type.

5-18 Reference

JDK ORB methods

abstract public org.omg.CORBA.TypeCode create_wstring_tc(int length)

This method creates and returns a TypeCode describing an IDL wString, or
Unicode string.

Parameter Description

length The length of the String to be created. A length of zero
indicates an unbounded string is desired.

abstract public org.omg.CORBA.Context get_default_context()

This method returns the global default Context. Because the default context is
a shared resource, any updates to it should be synchronized.

abstract public org.omg.CORBA.Request get_next_response()

This blocking method waits until a response to a deferred operation request
in available. The completed Request is returned. See also
send_multiple_requests_deferred in “abstract public void
send_multiple_requests_oneway(org.omg.CORBA.Request reqs[])” on
page 5-22.

abstract public org.omg.CORBA.TypeCode get_primitive_tc(TCKind kind)

This method returns the primitive type code associated with the kind. A
org.omg.CORBA.BAD_PARAM exception is raised if kind is out of range or
is not for a primitive data type.

Parameter Description
kind The kind of type code kind, as defined in TCKind.

public static ORB init(Strings[] args, Properties props)

This method initializes the ORB for use by an application and returns a new
instance of the ORB.

Parameter Description
args The command-line arguments to pass to the program.
props The properties you can set to customize the ORB’s behavior.

public static ORB init(Applet app, Properties props)

This method initializes the ORB for use by an applet and returns a new
instance of the ORB.

Parameter Description
app The applet to associate with this instance of the ORB.
props The properties you can set to customize the ORB’s behavior.

Core interfaces and classes 5-19

JDK ORB methods

5-20 Reference

abstract public java.lang.String[] list_initial_services()

This method returns a list of names of any object services initially available to
the process. Some of the services include Location Service, Interface
Repository, Name Service, or Event Service.

abstract public java.lang.String object_to_string(org.omg.CORBA.Object obj)

This method converts an object reference to a String, which is returned. The
String is valid for the lifetime of the server or, if the implementation is
registered with the activation daemon, for the lifetime of the registration and
activation daemons. This method returns a stringified Internet Object
Reference.

Parameter Description

obj The object reference to be converted.

void perform_work();

This method requests the ORB to perform some work.

abstract public boolean poll_next_response()

This method returns true if a response to a deferred operation request is
available. Otherwise, false is returned. See also,
send_multiple_requests_deferred in “abstract public void
send_multiple_requests_oneway(org.omg.CORBA Request reqs[])” on
page 5-22.

abstract public org.omg.CORBA.Object resolve_initial_references(java.lang.String identifier)

throws org.omg.CORBA._ORB.InvalidName

This method resolves one of the names returned by the list_initial_services
method to its corresponding implementation object. It returns the resolved
object, which can be narrowed to the appropriate server type. If the specified
name is not found, an org.omg.CORBA. InvalidName exception is raised.

Parameter Description

identifier The identifier is the name of the service which is used to
resolve an initial object reference; it is not the name of the
object (as would be specified in the Helper.bind method).

There are a list of initial services provided by the ORB. These services enable
your program to access the ORB’s internal functions. You can use those
functions via resolve_initial_references. See also, Object._resolve_reference in
“public org.omg.CORBA.Object _resolve_reference(java.lang.String id)” on
page 5-13.

The initial services provided by the ORB as add-ons are the Interface
Repository, the Handler Registry, three interceptor services, two untyped

JDK ORB methods

object wrapper services, and URL naming (also known as Web Naming). The
following table provides information about the add-on services:

Value of the string’s identifier
ChainUntypedObjectWrapperFactory
DistributedService
DynAnyFactory
InterfaceRepository
LocationService

NameService
ORBPolicyManager
PolicyCurrent

POACurrent

RootPOA
URLNamingResolver
VBRootPOA
VisiBrokerInterceptorControl

abstract public void run();

This method orders the ORB to receive requests and dispatch them to start
processing work. This call blocks this process until the ORB is shut down.

abstract public void send_multiple_requests_deferred(org.omg.CORBA.Request reqs[])

This non-blocking method sends a number of operation requests. Return
values may then be obtained using the poll_next_response and
get_next_response methods.

Parameter Description

reqgs The operation requests.

abstract public void send_multiple_requests_oneway(org.omg.CORBA.Request reqs[])
This method sends a number of oneway operation requests. Return values are
not provided for oneway requests.

Parameter Description

reqs The server’s implementation object to be activated.

abstract public org.omg.CORBA.Object string_to_object(java.lang.String ior)

This method converts a String to an object reference. The Object that is
returned can be narrowed to a specific interface. If the ior parameter refers to
an implementation object in the local address space, the resulting object will
be a direct pointer reference to the implementation object. An

Core interfaces and classes 5-21

OMG ORB definition

org.omg.CORBA.INV_OBJREF exception will be raised if the ior parameter is

invalid.
Parameter Description
ior An Internet Object Reference that was previously created

with the object_to_string method.

public boolean_work_pending

This method returns true if the ORB needs the main thread to perform some
work. It returns false if the ORB does not need the main thread.

OMG ORB definition

package org.omg.CORBA_2_3;

abstract public class ORB extends org.omg.CORBA.ORB {
public org.omg.CORBA.portable.ValueFactory lookup_value_factory(String id);
public org.omg.CORBA.portable.ValueFactory register_value_factory(
String id,
org.omg.CORBA.portable.ValueFactory factory
)i
public void set_delegate(java.lang.Object object);
public void unregister_value_factory(String id);

VisiBroker ORB extensions

package com.inprise.vbroker.CORBA;
public abstract class ORB extends org.omg.CORBA_2_3.0RB {
public org.omg.CORBA.Object bind(
String fullPoaName,
byte[] oid,
String host_name,
BindOptions bind_options
)i
public org.omg.CORBA.Object bind(
String repository_id,
String object_name,
String host_name,
BindOptions bind_options
)i
public BOA BOA_init();
public BOA BOA_init (
String boaType,
java.util.Properties properties
)i
public com.inprise.vbroker.CORBA.portable.InputStream create_input_stream(
byte[] bytes
)i
public com.inprise.vbroker.CORBA.portable.OutputStream create_output_stream(

5-22 Reference

VisiBroker ORB methods

byte[] bytes
)i
public BindOptions default_bind_options();
public void default_bind_options(BindOptions options);
}

VisiBroker ORB methods

public org.omg.CORBA.Object bind(java.lang.String repository _id,
java.lang.String object_name,
java.lang.String host_name,
org.omg.CORBA.BindOptions bind_options)

This method attempts a bind on the ORB object and obtains a generic object

reference.
Parameter Description
repository_id String identifying the repository id.
object_name String identifying the ORB object’s name.
host_name String identifying the host’s name where the ORB object is located.
bind_options Bind options for this object.

Note This method is deprecated in VisiBroker 4.x.
public static org.omg.CORBA.BOA BOA _init()

This method initializes a BOA and returns a reference to the BOA. If you use
this method rather than

BOA_init (java.lang.String boaType, java.util.Properties properties)
the thread policy will be TPool.

Like the init method, BOA_init can be called repeatedly and at anytime to
obtain a reference to the BOA.

Note This method is deprecated in VisiBroker 4.x.
public org.omg.CORBA.BOA BOA _init(java.lang.String boaType, java.util.Properties properties)

This method initializes a particular type of BOA with optional properties. It
returns the adapter corresponding to the boaType. Adapter types include one
of the following;:

Tpool—Thread pooling

TSession—Thread per session
8SLTPool—SSL with thread pooling
SSLTSession—SSL with thread per session

See Appendix A, “Using command-line options,” in the VisiBroker for Java
Reference for a listing of properties that can be set with BOA_init and ORB_init.

For more information, see “BOA” on page 5-2.

Core interfaces and classes 5-23

VisiBroker ORB methods

This method can be called repeatedly and at any time to obtain a reference to

the BOA.
Parameter Description
boaType A string identifying the type of BOA to be created.
properties Properties to be passed to the BOA when it is created.

abstract public org.omg.CORBA.InputStream create_input_stream
(org.omg.CORBA.OutputStream ostream)

This method creates an IIOP input stream from an IIOP output stream. All
bytes written to the output stream will be available to be read from the input

stream.
Parameter Description
ostream The output stream from which the input stream is created.

abstract public org.omg.CORBA.OutputStream create_output_stream()

This method creates an IIOP output stream. An array of bytes constituting an
IIOP buffer can be extracted from the stream.

abstract public org.omg.CORBA.BindOptions default_bind_options()

This method returns the global default bind options, if set; otherwise it
returns NULL. The bind options are stored by reference—be careful when
modifying the value.

abstract public void default_bind_options(org.omg.CORBA.BindOptions options)
This method sets the global, default bind options.

Caution The global, default bind options are stored by reference. Use care when
modifying the value.

Parameter Description

options The new bind options that are being specified.

abstract public Principal default_principal ()
This method returns the global, default Principal.
abstract public void default_principal(Principal principal)

This method sets the global default Principal. The bind options are stored by
reference—be careful when modifying the value.

Caution The global, default Principal is stored by reference. Use care when modifying
the value.
Parameter Description
principal The new principal that is being specified.

5-24 Reference

PortableServer.AdapterActivator

public static ORB init()

This method returns the ORB singleton.
public static CORBA::ORB_ptr _nil();

This static method returns a NULL ORB pointer suitable for initialization
purposes.

PortableServer.AdapterActivator

Adapter activators are associated with Portable Object Adapters (POAs) which
they supply with the ability to create child POAs on demand, as a side-effect of
receiving a request which names the child POA (or one of its children), or when
the find_PO2 method is called with an activate parameter set to True.

PortableServer.AdapterActivator methods

boolean unknown_adapter(org.omg.PortableServer.POA parent,java.lang.String name);(POA_ptr
parent,const char* name)

This method is called when the ORB receives a request for an object reference
which identifies a target POA that does not exist. The ORB invokes this
method once for each POA that must be created in order for the POA to exist
(starting with the ancestor POA closest to the root POA).

Parameter Description

parent The parent POA associated with the adapter activator on which the
method is to be invoked.

name The name of the POA to be created (relative to the parent).

PortableServer.Current

public class PortableServer.Current extends CORBA.Current

This class provides method with access to the identity of the object on which the
method was called. The Current class is provided to support servants which
implement multiple objects but can be used within the context of
POA-dispatched method invocations on any servant.

PortableServer.Current methods

PortableServer.Objectld get_object_id();

This method returns the Objectld which identifies the object in whose
context is called. If called outside the context of a POA-dispatched method, a
NoContext exception is raised.

Core interfaces and classes 5-25

PortableServer.POA

PortableServer.POA get_POA();

This method returns a reference to the POA which implements the object in
whose context it is called. If called outside the context of a POA-dispatched
method, a NoContext exception is raised.

PortableServer.POA

5-26 Reference

public interface POA extends org.omg.CORBA.Object, org.omg.PortableServer.POA,
org.omg.CORBA.portable.IDLEntity

Objects of the POA class manage the implementation of a collection of objects.
The POA supports a name space for these objects which are identified by Object
Ids. A POA also provides a name space for other POAs in that a POA must be
created as a child of an existing POA, which then forms a hierarchy starting
with the root POA.

A POA object must not be exported to other processes or be stringified. A
MARSHAL exception is raised if this is attempted.

PortableServer.POA methods

byte[] activate_object(org.omg.PortableServer.Servarnt p_servant);

This method generates an object id, which is an array of bytes, and returns it.
The object id and the specified p_servant are entered into the Active Object
Map. If the UNIQUE_ID policy is present with the POA and the specified
p_servant is already in the Active Object Map, then a ServantAlreadyActive
exception is raised.

This method requires that the SYSTEM_ID and RETAIN policies be present with
the POA; otherwise, a lirongPolicy exception is raised.

Parameter Description
p_servant The Servant to be entered into the Active Object Map.

void activate_object_with_id(byte[] id, org.omg.PortableServer.Servant p_servant);

This method attempts to activate the specified id and to associate it with the
specified p_servant in the Active Object Map. If the id already has a servant
bound to it in the Active Object Map, then an Object2lreadyActive exception is
raised. If the POA has the UNIQUE_ID policy present and the p_servant is
already in the Active Object map, then a ServantAlreadyActive exception is
raised.

PortableServer.POA methods

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

Parameter Description
id The Objectld of the object to be activated.
p_servant The Servant to be entered into the Active Object Map.

org.omg.PortableServer.ImplicitActivationPolicy create_implicit_activation_policy(
org.omg.PortableServer.ImplicitActivationPolicyValue value);

This method returns an ImplicitActivationPolicy object with the specified
value.

If no ImplicitActivationPolicy is specified at POA creation, then the default is
NO_IMPLICIT_ACTIVATION.

Parameter Description

value If set to IMPLICIT_ACTIVATION, the POA will support implicit
activation of servants: also requires SYSTEM_ID and RETAIN
policies. If set to NO_IMPLICIT_ACTIVATION, the POA will not
support the implicit activation of servants.

org.omg.CORBA.Object create_reference(String intf);

This method creates and returns an object reference that encapsulates a
POA-generated Objectld and the specified intf values. The intf, which may
be a null string, becomes the type_id of the generated object reference. This
method will not cause an activation to take place. An intf value that does not
identify the most derived interface of the object or one of its base interfaces
will result in undefined behavior.

This method requires that the SYSTEM_ID policy be present with the POA,;
otherwise, a WrongPolicy exception is raised.

Parameter Description
intf The repository interface id of the class of the object to be
created.

org.omg.CORBA.Object create_reference_with_id(byte[Joid, String intf);

This method creates and returns an object reference that encapsulates the
specified oid and intf values. The intf, which may be a null string, becomes
the type_id of the generated object reference. An intf value that does not
identify the most derived interface of the object or one of its base interfaces
will result in undefined behavior. This method does not cause an activation
to take place. The returned object reference may be passed to clients, so that
subsequent requests on those references will cause the object to be activated

Core interfaces and classes 5-27

PortableServer.POA methods

if necessary, or the default servant used, depending on the applicable

policies.
Parameter Description
oid The object id for which a reference is to be created.
intf The repository interface id of the class of the object to be

created.

org.omg.PortableServer.IdAssignmentPolicy create_id_assignment_policy(
org.omg.PortableServer.ldAssignmentPolicyValue value);

This method returns an IdAssignmentPolicy object with the specified value.

If no IdassignmentPolicy is specified at POA creation, then the default is

SYSTEM_ID.
Parameter Description
value If set to USER_ID, then objects created the POA are assigned

object ids only by the application. If set to SYSTEM_ID, then
objects created with the POA are assigned object ids only by
the POA.

org.omg.PortableServer.ldUniquenessPolicy create_id_uniqueness_policy(
org.omg.PortableServer.ldUniquenessPolicyValue value);

This method returns an IdUniquenessPolicy object with the specified value.

If no IduniquenessPolicy is specified at POA creation, then the default is

UNIQUE_ID.
Parameter Description
value If set to UNIQUE_ID, then servants which are activated with the

POA support exactly one object id. If set to MULTIPLE_ID, then a
servant which is activated with the POA may support one or
more object ids.

org.omg.PortableServer.LifespanPolicy
create_lifespan_policy(org.omg.PortableServer.LifespanPolicyValue value);

This method returns a LifespanPolicy object with the specified value.

If no LifespanPolicy is specified at POA creation, then the default is TRANSIENT.

Parameter Description

value If set to TRANSIENT, then objects implemented in the POA
cannot outlive the POA instance in which they were first
created. Once a transient POA is deactivated, the use of any
object references generated from it will result in an
OBJECT_NOT_EXIST exception being raised. If set to
PERSISTENT, then the objects implemented in the POA can
outlive any process in which they are first created.

5-28 Reference

PortableServer.POA methods

org.omg.PortableServer.POA create_POA(String adapter_name,
org.omg.PortableServer.POAManager a_POAManager, org.omg.CORBA.PolicyList[] policies);

This method creates a new POA with the specified adapter_name. The new POA
is a child of the POA object on which create_POA was called. If a child POA with
the same name already exists for the parent POA, a
PortableServer.AdapterAlreadyExists exception is raised.

The specified policies are associated with the new POA and used to control
its behavior.

Parameter Description

adapter_name The name which specifies the new POA.
a_POAManager The manager of the new POA.

policies A list of policies which are to apply to the new POA.

The last two parameters may be NULL. If no PortableServer.POAManager is
specified, one is created and associated with the new POA. If no policies are
specified, the default set of policies is used.

org.omg.PortableServer.RequestProcessingPolicy
create_request_processing_policy(org.omg.PortableServer.RequestProcessingPolicyValue
value);

This method returns a RequestProcessingPolicy object with the specified value.

If no RequestProcessingPolicy is specified at POA creation, then the default
is USE_ACTIVE_OBJECT _MAP_ONLY.

Parameter Description

value If set to USE_ACTIVE_OBJECT_MAP_ONLY and the object id is not found in the
Active Object Map, then an 0BJECT_NOT_EXIST exception is returned to the
client. (The RETAIN policy is also required.)

If set to USE_DEFAULT_SERVANT and the object id is not found in the Active
Object Map or the NON_RETAIN policy is present, and a default servant has
been registered with the POA using the set_servant method, then the
request is dispatched to the default servant. If no default servant has
been registered, then an OBJ_ADAPTER exception is returned to the client.
(The MULTIPLE_ID policy is also required.)

If set to USE_SERVANT_MANAGER and the object id is not found in the Active
Object Map or the NON_RETAIN policy is present, and a servant manager
has been registered with the POA using the set_servant_manager
method, then the servant manager is given the opportunity to locate a
servant or raise an exception. If no servant manager has been registered,
then an OBJ_ADAPTER is returned to the client.

org.omg.PortableServer.ServantRetentionPolicy create_servant_retention_policy(
org.omg.PortableServer.ServantRetentionPolicyValue value);

This method returns a ServantRetentionPolicy object with the specified value.

Core interfaces and classes 5-29

PortableServer.POA methods

5-30 Reference

If no ServantRetentionPolicy is specified at POA creation, then the default is
RETAIN.

Parameter Description

value If set to RETAIN, then the POA will retain active servants in
its Active Object Map. If set to NON_RETAIN, then servants
are not retained by the POA.

org.omg.PortableServer.ThreadPolicy

create_thread_policy(org.omg.PortableServer.ThreadPolicyValue value);
This method returns a ThreadPolicy object with the specified value.

If no ThreadPolicy is specified at POA creation, then the default is
ORB_CTRL_MODEL.

Parameter Description

value If set to ORB_CTRL_MODEL, the ORB is responsible for assigning
requests for an ORB-controlled POA to threads. In a multi-threaded
environment, concurrent requests may be delivered using multiple
threads. If set to SINGLE_THREAD_MODEL, then requests to the POA
are processed sequentially. In a multi-threaded environment, all
upcalls made by the POA to servants and servant managers are made
in a manner that is safe for code that is multi-thread unaware.

void deactivate_object(byte[] oid);

This method causes the specified oid to be deactivated. An Objectld which
has been deactivated continues to process requests until there are no more
active requests for that Objectld. An Objectld is removed from the Active

Object Map when all requests executing for that Objectld have completed.

If a ServantManager is associated with the POA, then the
ServantActivator.etheralize method is invoked with the Objectld and the
associated servant after the Objectld has been removed from the Active
Object map. Reactivization for the Objectld blocks until etherealization, if
necessary, has completed. However, the method does not wait for requests
or etherealization to complete and always returns immediately after
deactivating the specified oid.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

Parameter Description
oid The Objectld of the object to be deactivated.

PortableServer.POA methods

void destroy(boolean etherealize_objects, boolean wait_for_completion);

This method destroys this POA object and all of its descendant POAs. First
the children are destroyed and finally the current container POA. If desired,
later a POA with that same name in the same process can be created.

Parameter

etherealize_objects

wailt_for_completion

Description

If True, the POA has the RETAIN policy, and a servant manager
has registered with the POA, then the etherealize method is
called on each active object in the Active Object Map. The
apparent destruction of the POA occurs before the etherealize
method is called, and thus any etherealize method which
attempts to invoke methods on the POA raises a
OBJECT_NOT_EXIST exception.

If True and the current thread is not in an invocation context
dispatched from some POA belonging to the same ORB as this
POA, the destroy method only returns after all active requests
and all invocations of etherealize have completed.

If True and the current thread is in an invocation context
dispatched from some POA belonging to the same ORB as this
POA, the BAD_INV_ORDER exception is raised and POA
destruction does not occur.

org.omg.PortableServer.POA find_POA(String adapter_name, boolean activate_it);

If the POA object on which this method is called is the parent of the POA
with the specified adapter_name, the child POA is returned.

Parameter

adapter_name

activate_it

Description

The name of the AdapterActivator associated with the POA.

If set to True and no child POA of the POA specified by
adapter_name exists, then the POA’s AdapterActivator, if not
null, is invoked, and, if it successfully activates the child POA,
then that POA is returned. Otherwise an AdapterNonExistent
exception is raised.

org.omg.PortableServer.Servant get_servant();Servant get_servant();

This method returns the default Servant associated with the POA. If no
Servant has been associated, then a NoServant exception is raised.

If neither the RETAIN policy nor the USE_DEFAULT_SERVANT policy is present, a
WrongPolicy exception is raised.

org.omg.PortableServer.ServantManager get_servant_manager();

This method returns the ServantManager object associated with the POA. The
result is null if no ServantManager is associated with the POA.

This method requires that the USE_SERVANT_MANAGER policy be present with the
POA; otherwise, a WirongPolicy exception is raised.

Core interfaces and classes 5-31

PortableServer.POA methods

5-32 Reference

org.omg.CORBA.Object id_to_reference(byte[] oid);

This method returns an object reference if the specified oid value is currently
active. If the 0id is not active, then an ObjectNotActive exception is raised.

This method requires that the RETAIN policy be present with the POA;
otherwise, a WrongPolicy exception is raised.

Parameter Description
oid The Objectld of the object for which a reference is to be
returned.

org.omg.PortableServer.Servant id_to_servant(byte[] oid);

This method has three behaviors:

¢ If the POA has the RETAIN policy present and the specified oid is in the
Active Object Map, then it returns the servant associated with that object
in the Active Object Map.

¢ If the POA has the USE_DEFAULT_SERVANT policy present and a default servant
has been registered with the POA, it returns the default servant.

* Otherwise, an ObjectNotActive exception is raised.

This method requires that the RETAIN or USE_DEFAULT_SERVANT policy be present
with the POA; if neither policy is present, a WrongPolicy exception is raised.

Parameter Description
oid The Objectld of the object for which a servant is to be returned.

org.omg.PortableServer.Servant reference_to_servant(org.omg.CORBA.Object reference);

This method has three behaviors:

e If the POA has the RETAIN policy and the specified reference is present in
the Active Object Map, then it returns the servant associated with that
object in the Active Object Map.

¢ If the POA has the USE_DEFAULT_SERVANT policy present and a default servant
has been registered with the POA, then it returns the default servant.

¢ Otherwise, it raises an ObjectNotActive exception.

This method requires the RETAIN or USE_DEFAULT_SERVANT policies to be present;
otherwise, a WirongPolicy exception is raised.

If the reference was not created by the same POA, reference_to_servant raises
as lirongAdapter exception.

Parameter Description

reference The object for which a servant is to be returned.

PortableServer.POA methods

byte[] reference_to_id(org.omg.CORBA.Object reference);

This method returns the Objectld value encapsulated by the specified
reference. The invocation is valid only if the reference was created by the
POA on which the method is called. If the reference was not created by the
POA, a Wirongadapter exception is raised. The object denoted by the reference
parameter does not have to be active for this method to succeed.

Though the IDL specifies that a WrongPolicy exception may e raised by this
method, it is simply declared for possible future extension.

Parameter Description

reference The object for which an Objectld is to be returned.

byte[] servant_to_id(org.omg.PortableServer.Servant p_servant);
This method has four possible behaviors:

¢ If the POA has the UNIQUE_ID policy present and the specified p_servant is
active, then the Objectld associated with the p_servant is returned.

e If the POA has the IMPLICIT_ACTIVATION policy present and either the POA
has the MULTIPLE_ID policy present or the specified p_servant is not active,
then the p_servant is activated using the POA-generated Objectld and the
repository interface id associated with the p_servant, and that Objectld is
returned.

e If the POA has the USE_DEFAULT_SERVANT policy present, the specified
p_servant is the default servant, then the Objectld associated with the
current invocation is returned.

* Otherwise, a ServantNotActive exception is raised.

This method requires that the USE_DEFAULT_SERVANT policy or a combination of
the RETAIN policy and either the UNIQUE_ID or IMPLICIT_ACTIVATION policies be
present; otherwise, a lirongPolicy exception is raised.

Parameter Description
p_servant The Servant for which the Objectld to be returned is desired.

org.omg.CORBA.Object servant_to_reference(org.omg.PortableServer.Servant p_servant);
This method has four possible behaviors:

¢ If the POA has both the RETAIN and the UNIQUE_ID policies present and the
specified p_servant is active, then an object reference encapsulating the
information used to activate the servant is returned.

e [f the POA has both the RETAIN and the IMPLICIT_ACTIVATION policies present
and either the POA has the MUTLIPLE_ID policy or the specified p_servant is
not active, then the p_servant is activated using a POA-generated Objectld
and repository interface id associated with the p_servant, and a
corresponding object reference is returned.

Core interfaces and classes 5-33

PortableServer.POA methods

¢ If this method was invoked in the context of executing a request on the
specified p_servant, the reference associated with the current invocation is

returned.
¢ Otherwise, a ServantNotActive exception is raised.

This method requires the presence of the RETAIN policy and either the
UNIQUE_ID or IMPLICIT_ACTIVATION policies if invoked outside the context of a
method dispatched by the POA. If this method is not invoked in the context
of executing a request on the specified p_servant and the policies specified
previously are not present, then a WrongPolicy exception is raised.

Parameter Description

p_servant The Servant for which a reference is to be returned.

void set_servant(org.omg.PortableServer.Servant p_servant);

5-34 Reference

This method sets the default Servant associated with the POA. The specified
Servant will be used for all requests for which no servant is found in the
Active Object Map.

This method requires that the USE_DEFAULT_SERVANT policy be present with the
POA; otherwise, a WrongPolicy exception is raised.

Parameter Description
p_servant The Servant to be used as the default associated with the POA.

void set_servant_manager(org.omg.PortableServer.ServantManager imagr)

This method sets the default ServantManager associated with the POA. This
method may only be invoked after a POA has been created. Attempting to
set the ServantlManager after one has already been set raises a BAD_INV_ORDER
exception.

This method requires that the USE_SERVANT_MANAGER policy be present with the
POA; otherwise, a WrongPolicy exception is raised.

Parameter Description
imgr The ServantManager to be used as the default used with the
POA.

org.omg.PortableServer.AdapterActivator the_activator();

This method returns the Adapteractivator associated with the POA. Upon
creation, a POA does not have an AdapterActivator (i.e., the attribute is null).
It is system-dependent whether a root POA has an activator and the
application can assign one as it wishes.

PortableServer.POAManager

void the_activator(org.omg.PortableServer.AdapterActivator the_activator);
This method sets the AdapterActivator object associated with the POA to the
one specified. The application can assign an activator to the rootPOA.

Parameter Description

the_activator The ActivatorAdapter to be associated with the POA.

String the_name();

This method returns the read-only attribute which identifies the POA
relative to its parent.This attribute is assigned at POA creation. The name of
the root POA is system dependent and should not be relied upon by the
application.

org.omg.PortableServer.POA the_parent();

This method returns the POA’s parent POA. The parent of the root POA is
null.

org.omg.Portableserver.POAManager the_POAManager();

This method returns the POAManager associated with the POA.
org.omg.CORBA.Policy[] the_policies ()

This method returns an array of the policies active for this POA.

Inprise added this method to its implementation of POA. This method may
be included by the OMG to POA in a future version of the CORBA
specification.

PortableServer.POAManager

public interface PortableServer.POAManager

Each POA has an associated POA manager which in turn may be associated
with one or more POA objects. A POA manager encapsulates the processing
state of the POAs with which it is associated.

There are four possible states which a POA manager can be in:

active
inactive
holding
discarding

Core interfaces and classes 5-35

PortableServer.POAManager methods

5-36 Reference

A POA manager is created in the holding state. The following diagram
illustrates the states to which a POA manager transitions based on the method
called.

?

destroy
inactive deactivate
deactivate
deactivat
sACvALS dizcard_requests —
active | | dizcarding
g | S

activate

.

activate hold_requests
hald_requests

halding 1
dizcard_requests

create_POA,

PortableServer.POAManager methods

void activate();

This method changes the state of the POA manager to active, which enables
the associated POAs to process requests. If invoked while the POA manager
is in the inactive state, the AdapterInactive exception is raised.

void deactivate(
CORBA.boolean etherealize_objects,
CORBA.boolean wait_for_completion);

This method changes the state of the POA manager to inactive, which causes
the associated POAs to reject requests that have not begun to be executed, as
well as any new requests. If invoked while the POA manager is in the
inactive state, the AdapterInactive exception is raised.

void discard_requests(boolean wait_for_completion);

This method changes the state of the POA manager to discarding, which
causes the associated POAs to discard incoming requests. In addition, any
requests that have been queued but have not started executing are discarded.
When a request is discarded, a TRANSIENT system exception is returned to the
client. If invoked while the POA manager is in the inactive state, the
AdapterInactive exception is raised.

void hold_requests();

PortableServer.ServantActivator

This method changes the state of the POA manager to holding, which causes
the associated POAs to queue incoming requests. Any requests that have
been queued but are not executing will continue to be queued while in the
holding state. If invoked while the POA manager is in the inactive state, the
AdapterInactive exception is raised.

PortableServer.ServantActivator

public interface ServantActivator extends org.omg.PortableServer.ServantManager

If the POA has the RETAIN policy present, then it uses servant managers that are
PortableServer.ServantActivator objects.

PortableServer.ServantActivator methods

void etherealize(
byte[] oid,
org.omg.PortableServer.POA adapter,
org.omg.PortableServer.Servant serv,
boolean cleanup_in_progress,
boolean remaining_activations);

This method is called by the specified adapter whenever a servant for an
object (the specified 0id) is deactivated, assuming that the RETAIN and
USE_SERVANT_MANAGER policies are present.

Parameter Description

oid The object id of the object whose servant is to be deactivated.
adapter The POA in whose scope the object was active.

serv The servant which is to be deactivated.

cleanup_in_progress If set to True, the reason for the invocation of the method is

either that the deactivate or destroy method was called with
the etherealize_objects parameter set to True; otherwise, the
method was called for other reasons.

remaining_activations If the specified serv is associated with other objects in the
specified adapter it is set to True; otherwise it is FALSE.

org.omg.PortableServer.Servant incarnate(
byte[] oid,
org.omg.PortableServer.POA adapter);

This method is called by the POA whenever the POA receives a request for
an inactive object (the specified 0id) assuming that the RETAIN and
USE_SERVANT_MANAGER policies are present.

The user supplies a servant manager implementation which is responsible
for locating and creating an appropriate servant that corresponds to the
specified oid value. The method returns a servant, which is also entered into

Core interfaces and classes 5-37

PortableServer.ServantLocator

the Active Object map. Any further requests for the active object are passed
directly to the servant associated with it without invoking the servant
manager.

If this method returns a servant that is already active for a different object id
and if the POA also has the UNIQUE_ID policy present, then it raises the
OBJ_ADAPTER exception.

Parameter Description
oid The object id of the object whose servant is to be activated.
adapter The POA in whose scope the object is to be activated.

PortableServer.ServantLocator

5-38 Reference

public interface PortableServer.ServantLocator extends org.omg.PortableServer.ServantManager

When the POA has the NON_RETAIN policy present, it uses servant managers
which are PortableServer.ServantLocator objects. Because the POA knows that
the servant returned by the servant manager will be used only for a single
request, it can supply extra information for the servant manager’s methods and
the servant manager’s pair of methods may do something different than a
PortableServer.ServantLocator servant manager.

PortableServer.ServantLocator methods

org.omg.PortableServer.Servant preinvoke(
byte[] oid,
org.omg.PortableServer.POA adapter,
String operation,
org.omg.PortableServer.ServantLocatorPackage.CookieHolder the_cookie);

This method is called by the POA whenever the POA receives a request for
an object that is not currently active, assuming that the NON_RETAIN and
USE_SERVANT_MANAGER policies are present.

The user-supplied implementation of the servant manager is responsible for
locating or creating an appropriate servant that corresponds to the specified
oid value if possible.

Parameter Description

oid The Object1d value that is associated with the incoming request.
adapter The POA in which the object is to be activated.

operation The name of the operation which will be called by the POA when the

servant is returned.

the_cookie An opaque value which can be set by the servant manager to be used
later in the postinvoke method.

PortableServer.ServantManager

void postinvoke(
byte[] oid,
org.omg.PortableServer.POA adapter,
String operation,
Object the_cookie,
org.omg.PortableServer.Servant the_servant);

This method is called whenever a servant completes a request, assuming that
the POA has the NON_RETAIN and USE_SERVANT_MANAGER policies present. This
method is considered to be part of the request on an object, (that is, if the
method finishes normally, but postinvoke raises a system exception, then the
method’s normal return is overridden; the request completes with the
exception).

Destroying a servant that is known to a POA can lead to undefined results.

Parameter Description

oid The ObjectId value that is associated with the incoming request.
adapter The POA in which the object is to be activated.

operation The name of the operation which will be called by the POA when the

servant is returned.

the_cookie An opaque value which can be set by the servant manager in the
preinvoke method for use in this method.

the_servant The servant associated with the object.

PortableServer.ServantManager

Principal

public class PortableServer.ServantManager

Servant managers are associated with Portable Object Adapters (POAs). A
servant manager allows a POA to activate objects on demand when the POA
receives a request targeted for an inactive object.

The PortableServer.ServantManager class has no methods, rather it is the base
class for two other classes: the PortableServer.ServantActivator and the
Portableserver.ServantLocator classes. For more details, see
“PortableServer.ServantActivator” on page 5-37 and
“PortableServer.ServantLocator” on page 5-38. The use of these two classes
depends on the POA'’s policies: RETAIN for the PortableServer.ServantActivator
and NON_RETAIN for the Portableserver.ServantLocator.

Note

This feature is deprecated in VisiBroker 4.x.
abstract public class Principal

The Principal contains a sequence of bytes that a client application may
associate with an operation request. Client applications can set a default

Core interfaces and classes 5-39

IDL definition

5-40 Reference

principal for a proxy object by using the orb.default_principal method described
in “abstract public Principal default_principal()” on page 5-25. The principal
may also be retrieved using the boa.get _principal method described in “public
Principal get_principal(Object object)” on page 5-4.

IDL definition

pseudo interface Principal {
attribute sequence<octet> name;

}

Principal methods

abstract public void name(byte[] name)

This method sets the value of the Principal.

Parameter Description

name The name to be set.

abstract public byte[] name()

This method returns the value of the Principal.

Principal methods

Core interfaces and classes 5-41

5-42 Reference

Any

Dynamic interfaces and classes

This chapter describes the dynamic interfaces and classes most of which are in
the org.omg.CORBA package. InputStream and OutputStream are in the
org.omg.CORBA.portable package. All of these interfaces or classes are used in the
creation of client requests and object implementations at runtime.

public interface Any extends org.omg.CORBA.Any

The 2ny interface is used to store a value of any type in a type-safe manner and
is used in the Dynamic Invocation Interface. The type stored in an Any is defined
by a TypeCode. An Any can store a String, an interface object, or even another 2ny.
Methods are provided to set and retrieve the contained value. VisiBroker 4.x
does not support the Fixed and Value types. Using these two types will raise a
NO_IMPLEMENT exception.

To create an Any, use org.omg.CORBA.ORB.create_any (). For more information, see
the methods provided by “ORB” on page 5-13.

A Holder version of this interface is also provided, described in Chapter 4,
“Generated interfaces and classes.”

Any methods

public org.omg.CORBA .portable.InputStream create_input_stream()
This method creates an input stream containing the Any’s value.
public org.omg.CORBA.portable.OutputStream create_output_stream|)

This method creates an empty output stream.

Dynamic interfaces and classes 6-1

Any extraction methods

public boolean equal(Any anAny)

This method returns true if the value contained by the Any is the same as the
value contained by the argument Any.a. Otherwise, false is returned.

Parameter Description

anAny The Any whose value is compared with the value of this Any.

public void read_value(org.omg.CORBA.portable.InputStream input, org.omg.CORBA.Typecode type)

This method reads an Any’s value from an input stream given a type code.
Only the 2ny’s value is read. To read the complete Any definition, including
the type code, use org.omg.CORBA.portable. InputStrean.read_any.

Parameter Description
input A GIOP input stream from which the specified type’s value will be read.

type The type to be read from the input stream. See “TypeCode” on page 6-31
for the possible values for this parameter.

public org.omg.CORBA.TypeCode type()

This method returns the TypeCode representing the type contained in this Any.
public void type(org.omg.CORBA.TypeCode type)

This method sets the TypeCode representing the type contained in this 2ny.

Parameter Description

type The type to be set for this Any object. See “TypeCode” on
page 6-31 for the possible values for this parameter.

public void write_value(org.omg.CORBA.portable.OutputStream output)

This method writes an Any’s value to an output stream. Only the 2ny’s value is
written. To write the complete 2ny definition, including the type code, use
org.omg.CORBA.portable.OutputStream.write_any.

Parameter Description
output A GIOP output stream into which the specified Any’s value
is written.

Any extraction methods

A set of methods is provided which return the type contained in this Any.

Code sample 6.1 shows the name of each of the extraction methods. A BAD_PARAM
exception is raised if the value contained in this Any does not match the expected
return type for the extraction method used.

6-2 Reference

Code sample 6.1

public short
public int
public long
public short
public int
public long
public float
public double
public boolean
public char
public char
public byte
public Any

Any Insertion methods

Extraction methods offered by the Any interface

extract_short (
extract_long ()
extract_longlong ()
extract_ushort ()
extract_ulong ()
extract_ulonglong|()
extract_float ()
extract_double()
extract_boolean()
extract_char ()
extract_wchar (
extract_octet ()
extract_any()

public org.omg.CORBA.Object extract_Object()

public java.lang.String
public java.lang.String

extract_string()
extract_wstring()

public org.omg.CORBA.TypeCode extract_TypeCode (

Any Insertion methods

A set of methods is provided that copies a particular type of value to this any.
Code sample 6.2 shows the list of methods provided for inserting various types.
With one exception, all of the methods accept a single parameter that represents

the type to be inserted.

The first insert_Object method inserts an Object.

The second insert_Object method inserts an Object with a particular TypeCode,

effectively narrowing the object to a more specialized type. The second method
will raise a BAD_PARAM exception if the TypeCode kind is not TCKind. tk_objref.

Code sample 6.2

public void
public void
public void
public void
public void
public void
public void
public void
public void

public void
public void
public void
public void
public void
public void
public void
public void

Insertion methods offered by the Any interface

insert_short (short s);

insert_long(int 1);

insert_longlong(long 1);

insert_ushort (short s);

insert_ulong(int 1i);

insert_ulonglong(long 1);

insert_float (float f);

insert_fixed(java.math.BigDecimal value)

insert_fixed(java.math.BigDecimal value,
org.omg.CORBA.Typecode type)

insert_double (double d);

insert_boolean (boolean b);

insert_char(char c)

insert_wchar (char c);

insert_octet (byte b);

insert_any(2Any a);

insert_Object (org.omg.CORBA.Object o);

insert_Object (org.omg.CORBA.Object o,

org.omg.CORBA.TypeCode t)

Dynamic interfaces and classes

6-3

ARG_IN

ARG_IN

public void insert_string(java.lang.String s)

public void insert_wstring(java.lang.String s)

void insert Value(java.io.Serializable v)

void insert Value(java.io.Serializable v, org.omg.CORBA.
Typecode t)

public void insert_TypeCode (org.omg.CORBA.TypeCode t);

public void insert_Streamable (org.omg.CORBA.portable.Streamable s);

See also

public interface org.omg.CORBA.ARG_IN

ARG_IN is used to designate parameters for dynamic invocation interface
requests that are only used for input purposes and will not be modified by the
server.

“Request” and “NVList.”

Variables

public static int value = (int) 1;

ARG_INOUT

See also

ARG_OUT

public interface org.omg.CORBA.ARG_INOUT

ARG_INOUT is used to designate parameters for dynamic invocation interface
requests that are used for input and output purposes, but may also be modified
by the server upon return to the client.

“Request” and “NVList.”

Variables

final public static int value = (int) 3;

See also

6-4 Reference

public interface org.omg.CORBA.ARG_OUT

ARG_OUT is used to designate parameters for dynamic invocation interface
requests that are used for output purposes, but may only be set by the server
upon return to the client.

“Request” and “NVList.”

Variables

Variables

final public static int value = (int) 2;

ContextList

public interface ContextList extends org.omg.CORBA.Object
A ContextList maintains a modifiable list of context strings used.

To create an instance of ContextList, use the create_context_list method
provided by org.omg.CORBA.ORB. For more information, see “ORB” on
page 5-13.

IDL definition

interface ContextList {
readonly attribute unsigned long count;
void add(in string ctx);
string item(in unsigned long index)
raises (CORBA: :Bounds) ;
void remove(in unsigned long index)
raises (CORBA: :Bounds) ;
}i

ContextList methods

public void add(String ctx)
This method adds a string to the context list.

Parameter Description

ctx The name of the string to add to the context list.

public int count()
This method returns the number of elements in the context list.
public String item(int index) throws org.omg.CORBA.Bounds

This method returns an item in the context list. Bounds is raised if index
number is not valid.

Parameter Description

index The index number of the item.

Dynamic interfaces and classes 6-5

DynAny

DynAny

public void remove(int index) throws org.omg.CORBA.Bounds

This method deletes an item from the context list. Bounds is raised if index
number is not valid.

Parameter Description

index The index number of the item.

6-6 Reference

public interface DynAny extends org.omg.CORBA

A DynAny object is used by a client application or server to create and interpret
data types at runtime which were not defined at compile-time. A DynAny may
contain a basic type (such as a boolean, int, or float) or a complex type (such as s
struct or union). The type contained by a Dynany is defined when it is created and
may not be changed during the lifetime of the object.

Helper and Holder versions of this interface are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these interfaces
and the methods they offer.

A DynAny object may represent a data type as one or more components, each
with its own value. The next, rewind, and current_component methods are
provided to help you navigate through the components.

The following interfaces are derived from Dynamiciny.DynAny and provide
support for constructed types that are dynamically managed.

Constructed type Interface

Array “DynArray” on page 6-9
Enumeration “DynEnum” on page 6-11
Sequence “DynSequence” on page 6-12
Structure “DynStruct” on page 6-13
Union “DynUnion” on page 6-14

Important usage restrictions

DynAny objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB.object_to_string method.
However, you may use the Dynany.to_any method to convert a Dynany object to an
Any, which can be used as a parameter. We do not support insert exctract_val
and fixed types. Those operations raise no_implement exceptions.

DynAny methods

DynAny methods

public void assign(org.omg.DynamicAny.DynAny dyn_any) throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Initializes the current component in this object from the specified Dynany.

An org.omg. DynamicAny.DynAnyPackage. Invalid exception is raised if the type
contained in the Any does not match the type contained by this object.

public org.omg.DynamicAny.DynAny copy()
Returns a copy of this object.
pubilc org.omg.DynamicAny.DynAny current_component()
Returns the current component in this object.
public void destroy()
Destroys this object.

public void from_any(any value) throws org.omg.DynamicAny.DynAnyPackage.Invalid. TypeMismatch,
org.omg.DymanicAny.DynAnyPackage.InvalidValue

Initializes the current component of this object from the specified 2ny object.

An org.omg.DynamicAny.DynAnyPackage. Invalid exception is raised if the TypeCode
of value contained in the Any does not match the TypeCode defined for this
object when it was created.

Parameter Description

value An 2Any object containing the value to set for this object.

public boolean next()

Advances to the next component, if one exists, and returns true. If there are
no more components, false is returned.

public void rewind)

Returns to the first component contained in this object’s sequence. A
subsequent invocation of the current_component method will return the first
component in the sequence.

If this object contains only one component, invoking this method will have
no effect.

public boolean seek(int index)

If this object contains multiple components, this method advances to the
component with the specified index and returns true. A subsequent
invocation of the current_component method will return the component with
the specified index.

Dynamic interfaces and classes 6-7

DynAny Extraction methods

If there is no component at the specified index, false is returned.

Parameter Description

index The zero-base index of the desired component.

public org.omg.CORBA.Any to_any()
Returns an Any object containing the value of the current component.
public org.omg.CORBA.TypeCode type();

Returns the TypeCode for the value stored in the current component of this
object.

DynAny Extraction methods

A set of methods is provided which return the type contained in this Dynany
object’s current component. Code sample 6.3 shows the name of each of the
extraction methods.

An org.omg. DynamicAny.DynAnyPackage. Invalid exception is raised if the value
contained in this DynAny does not match the expected return type for the
extraction method used.

Code sample 6.3 Extraction methods offered by the DynAny interface

public org.omg.CORBA.Any get_any()

public org.omg.DynamicAny.DynAny get_dyn_any ()
public boolean get_boolean()

public char get_char()

public double get_double()

public float get_float()

public int get_long()

public long get_longlong()

public byte get_octet()

public org.omg.CORBA.Object get_reference()
public short get_short()

public java.lang.String get_string()

public org.omg.CORBA.TypeCode get_typecode ()
public int get_ulong()

public long get_ulonglong ()

public short get_ushort()

public java.io.Serializable get_val()
public char get_wchar()

public java.lang.String get_wstring()

DynAny Insertion methods

A set of methods is provided that copies a particular type of value to this Dynany
object’s current component. Code sample 6.4 shows the list of methods
provided for inserting various types.

6-8 Reference

DynArray

DynArray

These methods will raise a org.omg.DynamicAny.DynAnyPackage. Invalidvalue
exception if the inserted object’s type does not match the Dynany object’s type.

Code sample 6.4 Insertion methods offered by the DynAny interface

public void insert_any(org.omg.CORBA.Any value)

public void insert_dyn_any(org.omg.DynamicAny.DynAny value)
public void insert_boolean(boolean value)

public void insert_char(char value)

public void insert_double (double value)

public void insert_float(float value)

public void insert_long(int value)

public void insert_longlong(long value)

public void insert_octet (byte value)

public void insert_reference(org.omg.CORBA.Object value)
public void insert_short (short value)

public void insert_string(java.lang.String value)

public void insert_typecode (org.omg.CORBA.TypeCode value)
public void insert_ulong(int value)

public void insert_ulonglong(long value)

public void insert_ushort (short value)

public void insert_val(java.io.Serializable value)

public void insert_wchar (char value)

public void insert_wstring(java.lang.String value)

public interface DynArray extends , org.omg.DynamicAny.DynAny

This interface is used by a client application or server to create and interpret
array data types at runtime which were not defined at compile-time. A DynArray
may contain a a sequence of basic type (such as a boolean, int, or float) or a
constructed type (such as struct or union). The type contained by a Dynarray is
defined when it is created and may not be changed during the lifetime of the
object.

The next, rewind, seek, and current_component methods, inherited from DynamicAny,
may be used to navigate through the components.

Helper and Holder versions of this interface are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these interfaces
and the methods they offer.

Important usage restrictions

DynArray objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB.object_to_string method.
However, you may use the Dynany.to_any method to convert a DynArray object to a
sequence of Any objects, which can be used as a parameter.

Dynamic interfaces and classes 6-9

DynArray methods

DynArray methods

public org.omg.CORBA.Any[] get_elements()
Returns a sequence of Any objects containing the values stored in this object.

public void set_elements(org.omg.CORBA.Any[] value) throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch
org.omg.DynamicAny.DynAnyPackage.InvalidValue

Sets the contained in this object from the specified sequence of Any objects.

An org.omg.CORBA. DynAnyPackage. InvalidSeq exception will be raised if the
number of elements in value is not equal to the number of elements in this

DynArray.
Parameter Description
value An array of Any objects whose values will be set in this

DynArray.

DynAnyFactory

public interface DynAnyFactory extends org.omg.CORBA.Object

A DynanyFactory object is used to create a new Dyniny object from an any value by
invoking an operation on this object.

Important usage restrictions

DynAnyFactory objects are intended to be local to the process in which they are
created and used. Consequently, references to DynAnyFactory objects cannot be
exported to other processes or externalized.

DynAnyFactory methods

public org.omg.DynamicAny.DynAny create_dyn_any (org.omg.CORBA.Any value) throws
org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode;

Creates a Dynany object. of the specified value

Parameter Description

value A new Dynany object of a specified value.

6-10 Reference

DynEnum

DynEnum

public org.omg.DynamicAny.DynAny create_dyn_any_from_type_code (org.omg.CORBA.Typecode
type) throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode;

Creates a Dynany object of the specified type.

Parameter Description
type A new Dynany object of a specified type.

public interface DynEnum extends org.omg.DynamicAny.DynAny

This interface is used by a client application or server to create and interpret
enumeration values at runtime which were not defined at compile-time.

Since this type contains a single component, invoking the Dynany.rewind and
DynAny.next methods on a DynEnun object will always return false.

Helper and Holder versions of this interface are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these interfaces
and the methods they offer.

Important usage restrictions

DynEnun objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB.object_to_string method.
However, you may use the DynAny.to_any method to convert a DynEnun object to an
Any, which can be used as a parameter.

DynEnum methods

public java.lang.String get_as_string();
Returns the DynEnum object’s value as a string.
public void set_as_string(java.lang.String value()

Sets the value contained in this DynEnun from the specified string.

Parameter Description

value A string that will be used to set the value in this DynEnun.

public int get_as_ulong()

Returns a int containing the DynEnum object’s value.

Dynamic interfaces and classes 6-11

DynFixed

DynFixed

public void set_as_ulong(int value)

Sets the value contained in this DynEnun from the specified int.

Parameter Description

value An integer that will be used to set the value in this DynEnum.

public interface DynFixed extends org.omg.DynamicAny.DynAny

This interface is used by a client application or server to create objects with
values of the IDL fixed type.

DynFixed methods

public java.lang.String get_value()
Returns a value of a DynFixed object.
public boolean set_value (java.lang.String val)

Sets the value of a DynFixed object.

DynSequence

6-12 Reference

public interface DynSequence extends org.omg.DynamicAny.DynAny

This interface is used by a client application or server to create and interpret
array data types at runtime which were not defined at compile-time. A
DynSequence may contain a sequence of basic type (such as a boolean, int, or float)
or a constructed type (such as a struct or union). The type contained by a
DynSequence is defined when it is created and may not be changed during the
lifetime of the object.

The next, rewind, seek, and current_component methods, inherited from Dyn2ny, may
be used to navigate through the components.

Helper and Holder versions of this interface are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these interfaces
and the methods they offer.

Important usage restrictions

DynSequence objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB.object_to_string method.
However, you may use the Dyniny.to_any method to convert a DynSequence object
to a sequence of Any objects, which can be used as a parameter.

DynStruct

DynSequence methods

DynSequence methods

public org.omg.CORBA.Any[] get_elements()

Returns a sequence of Any objects containing the values stored in this object.
public int get_length()

Returns the number of components contained in this DynSequence.
public void set_length(int len)

Sets the number of components contained in this DynSequence.

If you specify a length that is less than the current number of components,
the sequence will be truncated and are the extra components.

Parameter Description

length The number of components to be contained in this DynSequence.

public void set_elements(org.omg.CORBA.Any[] value) throws
org.omg.DynamicAny.DynAnyPAckage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Sets the contained in this object from the specified sequence of 2ny objects.

An org.omg.CORBA. DynAnyPackage. InvalidSeq exception will be raised if the
number of elements in value is not equal to the number of elements in this
DynSequence.

Parameter Description

value An array of Any objects whose values will be set in this DynArray.

public interface DynStruct extends org.omg.DynamicAny.DynAny

This interface is used by a client application or server to create and interpret
structures at runtime which were not defined at compile-time.

The next, rewind, seek, and current_component methods, inherited from Dyn2ny, may
be used to navigate through the structure members.

You create an DynStruct object by invoking the ORB.create_dyn_struct method.

Helper and Holder versions of this interface are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these interfaces
and the methods they offer.

Dynamic interfaces and classes 6-13

Important usage restrictions

DynUnion

Important usage restrictions

DynStruct objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB.object_to_string method.
However, you may use the Dynany.to_any method to convert a DynStruct object to
an Any objects, which can be used as a parameter.

DynStruct methods

public java.lang.String current_member_name() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Returns a string containing the member name of the current component.

public org.omg.CORBA.TCKind current_member_kind() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Returns the TypeCode associated with the current component.
public org.omg.DynamicAny.NameValuePair[] get_members()
Returns the members of the structure as an array of NameValuePair objects.

public void set_members(org.omg.DynamicAny.NameValuePair[] value) throws
org.omg.DynamicAny.DynAnyaAckage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Sets the structure members from the array of NaneValuePair objects.
public org.omg.DynamicAny.NameDynAnyPair[] get_members_as_dyn_any();
Returns Dynany objects containing the values stored in this object.

public void set_members as_dyn_any (org.omg.DynamicAny.NameDynAnyPair[] throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Sets the contained in this object of the Dynany objects.

An org.omg. DynamicAny.DynAnyPackage. Invalidvalue exception will be raised if
the order of the of elements in value is not identical to the order of the
members in this DynStruct.

6-14 Reference

public interface DynUnion extends org.omg.DynamicAny.DynAny

This interface is used by a client application or server to create and interpret
unions at runtime which were not defined at compile-time. The DynUnion
contains a sequence of two elements; the union discriminator and the actual
member.

Important usage restrictions
The next, rewind, seek, and current_component methods, inherited from Dyn2ny, may
be used to navigate through the components.
You create a DynUnion object by invoking the ORB.create_dyn_union method.

Helper and Holder versions of this interface are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these interfaces
and the methods they offer.

Important usage restrictions

DynUnion objects cannot be used as parameters on operation requests or DII
requests, nor can they be externalized using the ORB.object_to_string method.
However, you may use the Dyn&ny.to_any method to convert a DynUnion object to
an Any objects, which can be used as a parameter.

DynUnion methods

public org.omg.DynamicAny.DynAny get_discriminator()
Returns a Dyniny object containing the discriminator for the union.

public void set_discriminator (org.omg.DynamicAny.DynAny d) throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Sets the discriminator of the DynUnion to the specified value.
public org.omg.CORBA.TCKind discriminator_kind()
Returns the type code of the discriminator kind for the union.

public org.omg.DynamicAny.DynAny member() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Returns a Dynany object for the current component which represents a
member in the union.

public org.omg.CORBA.TCKind member_kind() throws
org.omg.DynamicAny.DynAnyPackage.InvalidValue;

Returns the type code for the current component, which represents a
member in the union.

public java.lang.String member_name() throws org.omg.DynamicAny.DynAnyPackage.InvalidValue;
Returns the member name of the current component.
public void set_to_default_member(throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Sets the default member name of the current component to the specified
name.

Parameter Description

member_name The member name to set for the current component.

Dynamic interfaces and classes 6-15

DynValue

public boolean has_no_active_member()
Returns true if the current component is the default member.
public void set_to_no_active__member() throws org.omg.DynamicAny.DynAnyPackage.TypeMismatch;

Enables or disables the current component as the default member, based on
the value of the set_to_default_member parameter.

Parameter Description

set_to_no_active_member If set to true, the current component will become the
default member.

DynValue

public interface DynValue extendsorg.omg.DynamicAny.DynAny

This interface is used by a client application or server to associate Dynvalue
objects with value types.

DynValue methods

public java.lang.String current_member_name() throws
org.omg.DynamicAny.DynAnyPackage. TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Returns a string containing the member name of the current component.

public org.omg.CORBA.TCKind current_member_kind() throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Returns the TypeCode associated with the current component.
public org.omg.DynamicAny.NameValuePair[] get_members()
Returns the members of the structure as an array of NameValuePair objects.

public void set_members(org.omg.DynamicAny.NameValuePair[] value) raises
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Sets the structure members from the array of NaneValuePair objects.
public org.omg.DynamicAny.NameDynAnyPair[] get_members_as_dyn_any();
Returns Dynany objects containing the values stored in this object.

public void set_members as_dyn_any (org.omg.DynamicAny.NameDynAnyPair{]throws
org.omg.DynamicAny.DynAnyPackage.TypeMismatch,
org.omg.org.omg.DynamicAny.DynAnyDynAnyPackage.InvalidValue

Sets the contained in this object of the Dynany objects.

6-16 Reference

Dynamiclmplementation
An org.omg. DynamicAny.DynAnyPackage. Invalidvalue exception will be raised if

the order of the of elements in value is not identical to the order of the
members in this Dynvalue.

Dynamiclmplementation

public interface Dynamiclmplementation extends org.omg.CORBA.portable.Objectimpl

The DynamicImplementation is an interface that provides a way to deliver
requests from an ORB to any object implementation—even object
implementations that do not have compile-time knowledge of the type of the
objects they are implementing. This differs with the type-specific, IDL-based
skeletons; however, they both serve the same function. The
DynamicImplementation implements all requests on a particular object by
having the ORB invoke an upcall to the implementation via the invoke method.

The ORB upcalls to the DynamicImplementation, passing a ServerRequest
object. The ServerRequest pseudo object captures the explicit state of a request
for the DynamicImplementation. For more information, see “ServerRequest” on
page 6-29.

For more information about using dynamic skeletons, see Chapter 23, “Using
the Dynamic Skeleton Interface,” in the VisiBroker for Java Programmer’s Guide.

Constructors

protected Dynamiclmplementation(String object_name, String repository_id)

This constructor assumes that the interface has no other derived interfaces. If
the interface has base interfaces, use the other constructor.

Parameter Description

object name The name of the instance. If null, the instance is transient (anonymous).

repository_id The interface’s repository identifier.

Dynamiclmplementation methods

public void invoke(org.omg.CORBA.ServerRequest request)

This method provides the functionality of the server.

Parameter Description

request A description of the request which the server is to perform.

Dynamic interfaces and classes 6-17

Environment

Environment

public interface org.omg.CORBA.Environment

The Environment interface encapsulates an exception. It is used in conjunction
with the dynamic invocation interface to provide a place for exceptions raised
by asynchronous DII requests.

To create an instance of Environment, use create_environment () provided by
org.omg.CORBA.ORB. For more information, see “ORB” on page 5-13.

Environment methods

public void clear()

This method clears any Exception that may have been raised in the current
Environment. This is the same as setting the exception to null.

public void exception(java.lang.Exception except)

This method sets the current exception. When setting, any previously stored
exception will be lost.

Parameter Description

exception The exception to be set for the current Environment.

public java.lang.Exception exception()

This method returns the current Exception set for this Environment. If no
Exception has been set, NULL is returned.

ExceptionList

public interface ExceptionList

An ExceptionList is used in the DII (Dynamic Invocation Interface) to describe
exceptions that can be raised by IDL operations. It maintains a modifiable list of
type codes.

To create an instance of ExceptionList, use create_exception_list () provided by
org.omg.CORBA.ORB. For more information, see “ORB” on page 5-13.

IDL definition

interface ExceptionList {
readonly attribute unsigned long count;
void add(in CORBA::TypeCode exc);
CORBA: :TypeCode item(in unsigned long index) raises(CORBA::Bounds);
void remove(in unsigned long index) raises(CORBA::Bounds);

6-18 Reference

ExceptionList methods

ExceptionList methods

public void add(TypeCode exc)
This method adds a type code to the exception list.

Parameter Description

exc The exception to add to the list.

public int count()
This method returns the number of items in the exception list.
public TypeCode item(int index) throws org.omg.CORBA.Bounds

This method returns an item from the list. Bounds is raised if the index
number is not valid.

Parameter Description

index The index number of the item to be returned.

public void remove(int index) throws org.omg.CORBA.Bounds
This method removes an item from the exception list. Bounds is raised if the
index number specified is not valid.

Parameter Description

index The index number of the item to be removed from the list.

InputStream

public interface InputStream

The interface represents a General Inter-ORB Protocol (GIOP) input stream.
Objects of this type are created with the ORB.create_input_stream method. All
bytes written to an output stream can be read using the input stream methods.
Several methods are provided for reading various data types.

See also ORB.create_input_stream and ORB.create_output_stream in the
Methods section of ORB in Chapter 5, “Core interfaces and classes.”

InputStream methods

The methods shown below are provided for reading data from an InputStream.
Each method returns a particular data type.

Code sample 6.5 Methods provided for reading data from an InputStream

public boolean read_boolean();
public char read_char();

Dynamic interfaces and classes 6-19

Invalid

Invalid

public
public
public
public
public
public
public
public
public
public
public
public
public

public
public
public
public
public
public
public
public
public
public
public
public
public
public

public
public

1

char read_wchar()
byte read_octet();
short read_short()
short read_ushort (
int read_long();
int read_ulong();
long read_longlong();
long read_ulonglong();
float read_float();
double read_double();
String read_string();
String read_wstring();
void read_boolean_array(boolean|[] value,

int offset, int
void read_char_array(char[] value,

int offset, int
void read_wchar_array(char[] value,

int offset, int
void read_octet_array(byte[] value,

int offset, int
void read_short_array(short[] value,

int offset, int
void read_ushort_array(short[] value,

int offset, int
void read_long_array(int[] value,

int offset, int
void read_ulong_array(int[] value,

int offset, int
void read_longlong_array(long[] value,

int offset, int
void read_ulonglong_array(long[] value,

int offset, int
void read_float_array(float[] value,

int offset, int
void read_double_array(double[] value,

int offset, int
Object read_estruct (String expected_type)
org.omg.CORBA.Object read_Object();
org.omg.CORBA.TypeCode read_TypeCode();
org.omg.CORBA.Any read_any();
org.omg.CORBA.Principal read_Principal();

)i

length) ;
length);
length);
length);
length);
length);
length) ;
length) ;
length);
length) ;
length) ;

length) ;

6-20 Reference

public interface Invalid extends org.omg.CORBA.UserException

An object of this interface is thrown if you attempt to assign an Any object to a
DynAny object with an incompatible type.

InvalidSeq

InvalidSeq

public interface InvalidSeq extends org.omg.CORBA.UserException

An object of this interface is thrown if you attempt to use an inconsistent value.
For example, attempting to set a DynSequence with a sequence of 2ny objects that
contains more elements that the DynSequence.

NamedValue

public interface NamedValue

The Namedvalue interface is used by a client to specify parameters and return
values for a Dynamic Invocation Interface request. It includes a name, a value
(an Any), and an integer representing a set of flags.

To create an instance of NamedValue, use create_named_value (String name, Any
value, int flags) provided by org.omg.CORBA.ORB. For more information, see
“ORB” on page 5-13 or the “NVList” on page 6-22.

IDL definition

interface NamedValue {
readonly attribute CORBA::Identifier name;
readonly attribute any value;
readonly attribute CORBA::Flags flags;

}i

NameValue methods

public int flags()

This method returns the flags for this Nanedvalue. See ARG_IN, ARG_INOUT
and ARG_OUT in this chapter for more information.

public String name()

This method returns the name of this Namedvalue. If no name has been set, NULL
is returned.

public org.omg.CORBA.Any value()

This method returns an Any representing the current value set for this
NamedValue. The value may be modified in place.

Dynamic interfaces and classes 6-21

NameValuePair

NameValuePair

public interface NameValuePair

This interface is used to represent a structure member contained in a DynStruct
object.

NameValuePair variables

public java.lang.String id
Represents the name of the structure member.
public org.omg.CORBA.Any value

Represents the value and type of the structure member.

NameValuePair constructors

public NameValuePair()

Creates an empty NameValuePair.

public NameValuePair(java.lang.String id, org.omg.CORBA.Any value)

Creates an NameValuePair initialized with the specified member name and

value.
Parameter Description
id The name for the member.
value The value for the member.

NVList

public interface NVList

The NVList interface contains a set of Namedvalue objects. It is used by client
applications to pass the parameters associated with a Dynamic Invocation
Interface request and in the context routines to describe context values. It
maintains a modifiable list of NamedValues.

To create an instance of NVList, use create_list provided by
org.omg.CORBA.ORB. For more information, see “ORB” on page 5-13.

IDL definition

interface NVList {
unsigned long count ();
void add(in CORBA::Flags flags);
void add_item(in CORBA::Identifier name,in CORBA::Flags flags);

6-22 Reference

NVList methods

void add_value(in CORBA::Identifier name,in any value,
in CORBA::Flags flags);

CORBA: :NamedValue item(in unsigned long index);
void remove(in unsigned long index);

}i

NVList methods

public org.omg.CORBA.NamedValue add(int flags)

This method adds a Namedvalue item to this list without initializing the name
or the value associated with the item.

Parameter Description
flags The mode of the parameter to be added. Allowed values are

org.omg.CORBA.ARG_IN.value,
org.omg.CORBA.ARG_OUT.value,
org.omg.CORBA.ARG_INOUT.value.

public org.omg.CORBA.NamedValue add_item(String item_name, int flags)

This method adds a Namedvalue item to this list without initializing the value
associated with the item.

Parameter Description
item_name The name of the item to be added.
flags The mode of the parameter to be added. Allowed values are

org.omg.CORBA.ARG_IN.value,
org.omg.CORBA.ARG_OUT.value,
org.omg.CORBA.ARG_INOUT.value.

public org.omg.CORBA.NamedValue add_value(String item_name,
org.omg.CORBA.Any value, int flags)

This method adds a NamedValue item to this NVList that has the specified
name, value and flags.

Parameter Description

item_name The name of the NamedValue to be added.

value The value of the NamedValue, represented as an Any. The
Any interface is described on page 6-1.

flags The mode of the parameter to be added.

public int count()
This method returns the number of Namedvalue items in this NVList.

Dynamic interfaces and classes 6-23

OQutputStream

public org.omg.CORBA.NamedValue item(int index) throws org.omg.CORBA.Bounds
This method returns the Namedvalue item from this list that has the specified
index. If the index is out of range, Bounds is raised.

Parameter Description

index The index of the NamedValue to be returned from this list.

public void remove(int index) throws org.omg.CORBA.Bounds
This method removes the NamedValue with the specified index from this
list. If the index is out of range, Bounds is raised.

Parameter Description

index The index of the NamedValue item to be removed from this list.

OutputStream

See also

6-24 Reference

public interface OutputStream

The interface represents a General Inter-ORB Protocol (GIOP) output stream.
Objects of this type are created by using the ORB.create_output_stream method.
All bytes written to an output stream will be available to be read using the input
stream. Several methods are provided for writing various data types.

ORB.create_input_streamand ORB.create_output_stream.

OutputStream methods

The methods shown below are provided to write a particular type to this
OutputStream. Each of these methods accept a single parameter that represents
the type to be written.

Code sample 6.6 Methods provided for writing a particular type to OutputStream

public inputStream create_input_stream();
public void write_boolean (boolean value);

public void write_char char value);
public void write_wchar char value);
public void write_octet byte value);

public void write_short
public void write_ushort short value
public void write_long int value);

(

(

(

(short value);

()

(
public void write_ulong (int value);

(

(

(

(

(

(

i

public void write_longlong (long value);
public void write_ulonglong (long value);
public void write_float

public void write_double
public void write_string
public void write_wstring

float value);
double value);
String value);
String value);

Request

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

public
public

void write_boolean_array(boolean[] value,

int offset, int length);
void write_char_array(char[] value,

int offset, int length);
void write_wchar_array(char[] value,

int offset, int length);
void write_octet_array(byte[] value,

int offset, int length);
void write_short_array(short[] value,

int offset, int length);
void write_ushort_array(short[] value,

int offset, int length);
void write_long_array(int[] value,

int offset, int length);
void write_ulong_array(int[] value,

int offset, int length);
void write_longlong_array(long[] value,

int offset, int length);
void write_ulonglong_array(long[] value,

int offset, int length);
void write_float_array(float[] value,

int offset, int length);
void write_double_array(double[] value,

int offset, int length);

org.omg.CORBA.Object write_estruct (org.omg.CORBA.Object value,

String expected_type)
void write_Object (org.omg.CORBA.Object value);

void write_TypeCode (org.omg.CORBA.TypeCode value);

void write_any (org.omg.CORBA.Any value);

void write_Principal (org.omg.CORBA.Principal value);

Request

public interface Request

The Request interface represents a dynamic invocation request and provides
methods for initializing and sending the request as well as receiving the
response. An operation request may be sent synchronously, asynchronously, or
as a oneway request for which no response is expected. Replies to invocations
can be polled or obtained synchronously. The ORB interface can also be used to
perform multiple simultaneous invocations, allowing for higher parallelism
and reduced latency.

This object includes the following state information:

Target object

Operation name

Argument types and values
Return type and value

Environment, described in “Environment” on page 6-18

Context, described in “Context” on page 5-6

Dynamic interfaces and classes 6-25

IDL definition

See the Object methods _create_request and _request for information on creating
a Request.

IDL definition

interface Request {

readonly attribute CORBA::Object target;
readonly attribute CORBA::Identifier operation;
readonly attribute CORBA::NVList arguments;
readonly attribute CORBA::NamedValue result;
readonly attribute CORBA::Environment env;
readonly attribute CORBA::ExceptionList exceptions;
readonly attribute CORBA::ContextList contexts;

attribute CORBA::Context ctx;

any add_in_arg();

any add_named_in_arg(in string name);
any add_inout_arg();

any add_named_inout_arg(in string name);

any add_out_arg();

any add_named_out_arg(in string name);

void set_return_type(in ::CORBA::TypeCode tc);
any return_value();

void invoke();

void send_oneway () ;

void send_deferred();

void get_response();

boolean poll_response();
}i

Request methods

public Any add_in_arg()

Adds an IN argument to the request.
public Any add_inout_arg()

Adds an INOUT argument to the request.
public Any add_named_in_arg(String name)

Adds a named IN argument to the request.

Parameter Description

name The name of the argument associated with this request.

6-26 Reference

See also

Request methods
public Any add_named_inout_arg(String name)

Adds a named INOUT argument to the request.

Parameter Description

name The name of the argument associated with this request.

public Any add_named_out_arg(String name)

Adds a named OUT argument to the request.

Parameter Description

name The name of the argument associated with this request.

public Any add_out_arg()
Adds an OUT argument to the request.
public org.omg.CORBA.NVList arguments()

This method returns the list of arguments for this request. These arguments
must be initialized prior to sending the request.

public String[] contexts()

This method returns the context list. The list will be empty if the operation
does not specify any contexts.

public org.omg.CORBA.Context ctx()

This method returns the context list associated with this request. See
“ContextList” on page 6-5 for more information.

public void ctx(org.omg.CORBA.Context ctx)
This method sets the context for this request.
ORB.get_default_context

Parameter Description
ctx The Context.

public org.omg.CORBA.Environment env()

This method returns the Environment in which the request is invoked.
Exceptions raised by the server will be put into the request’s Environment. For
more information, see “Environment” on page 6-18.

public org.omg.CORBA.ExceptionList exceptions()

This method returns the list of user exception type codes. The list will be
empty if no user exceptions can be raised by the operation.

Dynamic interfaces and classes 6-27

Request methods

See also

See also

See also

6-28 Reference

public void get_response()

This blocking method waits for the results of a dynamic invocation request
that was sent with the send_deferred method. All inout, out, and return values
are updated by this method.

The non-blocking poll_response method can be used to determine if a
response is available prior to invoking this method.

public void invoke()

This method sends the request and blocks waiting for a response. If the client
does not wish to block waiting for a response, the send_deferred method may
be used instead.

public String operation()

This method returns the name of the operation, or method name, associated
with this request.

public boolean poll_response()

This method returns true if a response for an request is currently available.
Otherwise, false is returned. This method is used after the send_deferred
method has been invoked and prior to invoking the get_response method,
which actually reads in the result values.

ORB.poll_next_response

public org.omg.CORBA.NamedValue result()

This method returns the results, or return value, of the request. If the type of
the result is not specified, the type defaults to void. If the return type is not
void, the type must be initialized prior to sending the request.

public Any return_value()
This method gets the return value of the operation as an Any.
public void send_deferred()

This method sends this request, but does not block waiting for a response.
The poll_response and get_response methods are then used to determine when
a response is available and to receive the results.

send_multiple_requests_deferred in “public void send_deferred()” on
page 6-28.

public void send_oneway()

This non-blocking method sends this request as a oneway request. Oneway
requests do not result in a response from the server to which they are sent.

ORB.send_multiple_requests_oneway

ServerRequest

public void set_return_type(TypeCode tc)
This method sets the type expected to be returned prior to invoking the

operation.
Parameter Description
tc The type code to set.

public org.omg.CORBA.Object target()

This method returns the target Object to which this request will be sent. The
target Object is specified when the Request is created, using the Object
methods _create_request.

ServerRequest

public interface ServerRequest

The ServerRequest interface, an important element when using dynamic
skeletons, represents a request received by a server from a client. It provides
methods for obtaining the Context, operation name, and operation parameters
as well as a method for reflecting any Exception that may be raised during the
processing of the request. This interface works with DynamicImplementation to
provide dynamic skeletons. For more information about
DynamicImplementation, see “DynamicImplementation” on page 6-17.

For more information about using dynamic skeletons, see Chapter 23, “Using
the Dynamic Skeleton Interface,” in the VisiBroker for Java Programmer’s Guide.

IDL definition

interface ServerRequest {
readonly attribute ::CORBA::Identifier op_name;
readonly attribute ::CORBA::Context ctx;
void params(in CORBA::NVList params);
void result(in any result);
void except(in any except);
}i

ServerRequest methods

public org.omg.CORBA.Context ctx()

This method returns the current Context associated with this ServerRequest.

Dynamic interfaces and classes 6-29

TCKind

public void except(org.omg.CORBA.Any except)
This method is used by the server to set an Exception that occurred during the
processing of the request so that it may be reflected to the client.

Parameter Description

exception The Exception that was raised.

public String op_name()
This method returns the operation name associated with this request.
public void params(org.omg.CORBA.NVList params)

This method sets the parameters for this operation request. For more
information about using this method, see Chapter 23, “Using the Dynamic
Skeleton Interface,” in the VisiBroker for Java Programmer’s Guide.

Parameter Description

params The NVList where the parameters are to be stored.

public void result(org.omg.CORBA.Any result)

This method sets the result for this operation request.

Parameter Description

result The result to be set for the operation request.

TCKind

public interface TCKind extends org.omg.CORBA.Object

The TCXind class contains the constants used in conjunction with TypeCode objects,
which define the TypeCode. There are a set of integer constants, prefixed with
tk_, that correspond to all the possible type codes. For example, the type code
for float is TCKind.tk_float.

Helper and Holder versions of this interface are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these interfaces
and the methods they offer.

IDL definition

enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,

6-30 Reference

TypeCode

TCKind methods

tk_longlong, tk_ulonglong, tk_longdouble,
tk_wchar, tk_wstring, tk_fixed
tk_value, tk_value_box,
tk_native
tk, _interface
}i

TCKind methods

public int value()

This method returns an integral value representing the constant.
public static TCKind from_int(int value)

This method returns an enum instance for the value you specify. For more
information about enum mapping, see the “Enum” section.

Parameter Description

value The enum value.

public interface TypeCode

The TypeCode interface describes the various types that are defined in IDL and
allows them to be created and examined at run time. Type codes are most often
used to describe the type of value being stored in an Any object, described in
the “Any” section. Type codes may also be passed as parameters to method
invocations.

Type codes are created using the various ORB.create_<type>_tc methods,
described in Chapter 5, “Core interfaces and classes.” Type codes for all built-in
types are provided by the TCXind interface, also described on Chapter 5.

A Holder version of this interface is also provided, described on Chapter 4,
“Generated interfaces and classes.”

IDL definition

interface TypeCode {
exception Bounds {
}i
exception BadKind {
)i
boolean equal (in CORBA::TypeCode tc);
CORBA: :TCKind kind();
CORBA: :RepositoryId id() raises(CORBA::TypeCode::Badkind);
CORBA::Identifier name() raises(CORBA::TypeCode::BadKind);
unsigned long member_count ()raises(CORBA::TypeCode: :BadKind) ;

Dynamic interfaces and classes 6-31

TypeCode methods

6-32 Reference

CORBA: :Tdentifier member_name(in unsigned long index)

raises (CORBA: :TypeCode: :Badkind, CORBA::TypeCode::Bounds);
CORBA: : TypeCode member_type(in unsigned long index)

raises (CORBA: :TypeCode: :BadKkind, CORBA::TypeCode::Bounds);
any member_label (in unsigned long index)

raises (CORBA: : TypeCode: :BadKind, CORBA::TypeCode: :Bounds) ;
CORBA: : TypeCode discriminator_type() raises(CORBA::TypeCode::BadKind);
long default_index() raises(CORBA::TypeCode::BadKind);
unsigned long length() raises(CORBA::TypeCode::BadKind);
CORBA: : TypeCode content_type() raises(CORBA::TypeCode::Badkind);
long param_count () ;
any parameter (in long index) raises(CORBA::TypeCode::Bounds);

}i

TypeCode methods

public org.omg.CORBA.TypeCode content_type() throws
org.omg.CORBA._TypeCodePackage.BadKind

This method returns the type code of the element contained in container

types or an aliased type. This method is only valid for the following type
codes:

® tk_sequence
® tk array
e tk_alias

A BAD_PARAM exception will be raised if the type code is not one of these types.
public int default_index() throws org.omg.CORBA._TypeCodePackage.BadKind

This method returns the default index of a union. This method is only valid
for type codes tk_union, otherwise a BAD_PARAM exception will be raised.

public TypeCode discriminator_type() throws org.omg.CORBA._TypeCodePackage.BadKind

This method returns the type code of the discriminator of a union. This
method is only valid when invoked on object with the type code of tk_union,
otherwise a BAD_PARAM exception will be raised.

public boolean equal(org.omg.CORBA.TypeCode tc)

This method returns true if this object is equivalent to tc. Otherwise, false is
returned. Type equivalence is determined by the structure of the types, not
by their names. Two structures with the same fields, declared in the same
order, are considered type equivalent.

Parameter Description

tc The TypeCode to be compared to this object’s type.

public String id() throws org.omg.CORBA._TypeCodePackage.BadKind

This method returns the repository identifier of the type code. This string is
used by IDL to define the type.

TypeCode methods
public TCKind kind()

This method returns the kind of type associated with this type code. Type

codes kind constants are defined by TCKind, described in the “TCKind”
section.

public int length() throws org.omg.CORBA._TypeCodePackage.BadKind

This method returns the number of elements contained by the type. Zero is
returned if the number of elements is unbounded, such as for strings and
sequences. This method is only valid for the following type codes:

e tk_string
® tk_sequence
® tk array

A BAD_PARAM exception will be raised if the type code is not one of these types.
public int member_count() throws org.omg.CORBA._TypeCodePackage.BadKind

This method returns the number of members contained by the type. This
method is only valid for the following type codes:

tk_struct
tk_union
tk_enum
tk_except

A BAD_PARAM exception will be raised if the type code is not one of these types.

public Any member_label(int index) throws org.omg.CORBA._TypeCodePackage.BadKind,
org.omg.CORBA._TypeCodePackage.Bounds

This method returns the label of the case statement associated with the
member that has the specified index. This method is only valid for the type
code tk_union, otherwise a BAD_PARAM exception will be raised. If the index is
out of the bounds of the String, a Bounds exception will be raised.

Parameter Description

index The index of the member whose label is to be returned.

public String member_name(int index) throws org.omg.CORBA._TypeCodePackage.BadKind,
org.omg.CORBA._TypeCodePackage.Bounds

This method returns the name of the member that has the specified index.
This method is only valid for the following type codes:

tk_struct
tk_union
tk_enum
tk_except

Dynamic interfaces and classes 6-33

UnknownUserException

A BAD_PARAM exception will be raised if the type code is not one of these types.
If the index is out of the bounds of the String, a Bounds exception will be

raised.
Parameter Description
index The index of the member whose name is to be returned.

public org.omg.CORBA.TypeCode member_type(int index) throws
org.omg.CORBA._TypeCodePackage.BadKind, org.omg.CORBA._TypeCodePackage.Bounds

This method returns the type code of the member that has the specified
index. This method is only valid for the following type codes:

® tk struct
e tk union
® tk except

A BAD_PARAM exception will be raised if the type code is not one of these types.
If the index is out of the bounds of the String, a Bounds exception will be

raised.
Parameter Description
index The index of the member whose type code is to be returned.

public String name() throws org.omg.CORBA._TypeCodePackage.BadKind

This method returns the unscoped type name. This method is only valid for
the following type codes:

tk_objref
tk_struct
tk_union
tk_enum
tk_alais
tk_except

A BAD_PARAM exception will be raised if the type code is not one of these types.

UnknownUserException

public interface UnknownUserException extends org.omg.CORBA.UserException

When a client issues a DII request and a user exception is raised, the specific
exception cannot be reflected to the client. This exception is used instead.

6-34 Reference

Interface repository
interfaces and classes

This chapter describes the interfaces and classes in the org.omg.CORBA package
that are used with the interface repository.

AbstractinterfaceDef

public interface AbstractinterfaceDef extends org.omg.CORBA.AbstractinterfaceDefOperations,
org.omg.CORBA.Container, org.omg.CORBA.Contained,
org.omg.CORBA.IDLType, org.omg.CORBA.portable.|DLEntity

The 2bstractInterfaceDef is similar to the InterfaceDef interface, except that
abstract interfaces can only inherit from abstract interfaces; they cannot use
concrete interfaces as a base. It is used to represent an IDL abstract interface that
is stored in the Interface Repository. This interface provides methods for setting
and retrieving the base interfaces as well as creating attributes, operations and
an interface description.

For more information about the InterfaceDef interface, see “InterfaceDef” on
page 7-26.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

AbstractinterfaceDef methods

public org.omg.CORBA.AbstractInterfaceDef[] base_interfaces()

This method returns the list of base interfaces of this object.

Interface repository interfaces and classes 7-1

AbstractinterfaceDef methods
public void base_interfaces(org.omg.CORBA.InterfaceDef[] base_interfaces)

This method sets the base interface list for this object.

Parameter Description

base_interfaces The list of base interfaces to be set.

public org.omg.CORBA.InterfaceDef create_abstract_interface(java.lang.String id,
java.lang.String name,
java.lang.String version, org.omg.CORBA.AbstractinterfaceDef[] base_interfaces)

This method creates an AbstractInterfaceDef object in this Container with the
specified attributes and returns a reference to the newly created object.
Unlike a concrete InterfaceDef, this interface cannot contain definitions of
both abstract and concrete interfaces. It can inherit only abstract interfaces.

Parameter Description

id The interface’s repository id.

name The interface’s name.

version The interface’s version.

base_interfaces A list of all interfaces from which this interface inherits.

public org.omg.CORBA.AttributeDef create_attribute(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType type,
org.omg.CORBA.AttributeMode mode)

This method adds an attribute to an interface definition.

Parameter Description

id The attribute’s identifier.

name The attribute’s name.

version The attribute’s version.

type The attribute’s IDL type.

mode The attribute’s mode. See AttributeMode in the section, “AttributeMode”

on page 7-7, for possible values.

public org.omg.CORBA.OperationDef create_operation(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType result,
org.omg.CORBA.OperationMode mode, org.omg.CORBA.ParameterDescription[] params,
org.omg.CORBA.ExceptionDef[] exceptions, java.lang.String[] contexts)

This method adds an operation to an interface definition.

Parameter Description

id The operation’s identifier.
name The operation’s name.
version The operation’s version.

7-2 Reference

AliasDef

AliasDef

Parameter Description

result The operation’s IDL result type.

mode The operation’s mode. See “OperationMode” on page 7-35.
params The list of parameters for this operation.

exceptions The list of exceptions that can be raised by this operation.
contexts The list of contexts.

public org.omg.CORBA.InterfaceDefPackage.FullinterfaceDescription describe_interface()

This method returns an interface description for this object.
public boolean is_a(java.lang.String interface_id)

This method returns true if this object represents an interface definition that
is compatible with a given interface_id.

Parameter Description

interface_id The interface identifier to compare with this object.

public boolean is_abstract ();

If set to true, this method specifies that the represented interface is abstract.

Parameter Description

is_abstract Specifies the creation of an abstract interface.

public void is_abstract (boolean is_abstract);

This method sets the interface to abstract.

Parameter Description

boolean is_abstract Sets the object to abstract.

public interface AliasDef extends org.omg.CORBA.AliasDefOperations
org.omg.CORBA.IDLType
org.omg.CORBA.portable.IDLEntity

This interface is used to represent a typedef that is stored in the Interface
Repository. This interface provides methods for setting and obtaining the
IDLType of the original typedef.

For more information on the TypedefDef interface, see “IDLType” on page 7-25.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

Interface repository interfaces and classes 7-3

AliasDef methods

ArrayDef

AliasDef methods

public void original_type_def(org.omg.CORBA.IDLType original_type_def)
This method sets the IDLType of this object.

Parameter Description
original_type_def The IDLType of this object.

public org.omg.CORBA.IDLType original_type_def()

This method returns the IDLType of the original typedef for which this object is
an alias.

7-4 Reference

public interface ArrayDef extends org.omg.ArrayDefOperations, org.omg.CORBA.IDLType,
org.omg.CORBA.portable.IDLEntity

This interface is used to represent an array that is stored in the Interface
Repository. This interface provides methods for setting and obtaining the type
of elements in the array as well as the length of the array.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ArrayDef methods

public int length()
This method returns the number of elements in the array.
public void length(int length)

This method sets the number of elements in the array.

Parameter Description

length The number of elements in the array.

public org.omg.CORBA.TypeCode element_type()
This method returns the TypeCode of the array’s elements.

public void element_type_def(org.omg.CORBA.IDLType element_type_def)

This method sets the IDLType of the elements stored in the array.

Parameter Description
element_type_def The IDLType of the elements in the array.

AttributeDef

public org.omg.CORBA.IDLType element_type_def()

This method returns the IDLType of the elements stored in this array.

AttributeDef

public interface AttributeDef extends org.omg.CORBA.AttributeDefOperations,
org.omg.CORBA.Contained, org.omg.CORBA.portable.|DLEntity

This interface is used to represent an interface attribute that is stored in the
Interface Repository. This interface provides methods for setting and obtaining
the attribute’s mode, and type.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

AttributeDef methods

public org.omg.CORBA.TypeCode type()

This method returns the TypeCode representing the attribute’s type.
public void type_def(org.omg.CORBA.IDLType type_def)

This method sets the IDLType of the attribute.

Parameter Description
type_def The IDLType of this object.

public org.omg.CORBA.IDLType type_def()
This method returns the attribute’s IDLType.
public org.omg.CORBA.AttributeMode mode()

This method returns the mode of the attribute. It might be either
AttributeMode ATTR_READONLY for read-only attributes or
AttributeMode ATTR_NORMAL for read-write attributes. See
“AttributeMode” on page 7-7 for more information.

org.omg.CORBA . AttributeDef mode()
This method returns a value for the mode attribute.

public void mode (org.omg.CORBA.AttributeMode mode)

This method sets a value for mode attribute.

Interface repository interfaces and classes 7-5

AttributeDescription

AttributeDescription

public final class AttributeDescription

The AttributeDescription class describes an attribute that is stored in the
interface repository. The AttributeDescription struct is used to fully describe
Interfaces and Values. These are the only IDL types that can hold attributes.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

AttributeDescription variables

public java.lang.String name;

This variable represents the name of the attribute.
public java.name.String id;

This variable represents the repository id for the attribute.
public java.lang.String defined_in;

This variable represents the repository id or value type of the interface in
which the attribute is defined.

public java.lang.String version

This variable represents the attribute’s version.

public org.omg.CORBA.Typecode type;

This variable represents the attributes IDL type.
public org.omg.CORBA.AttributeMode mode;

This variable represents the mode of the attribute.

AttributeDescription methods

public AttributeDescription()

This method is the default constructor for an AttributeDescription.

7-6 Reference

AttributeMode

public AttributeDescription(java.lang.String name, java.lang.String id, java.lang.String defined_in,
java.lang.String version, org.omg.CORBA.TypeCode type,
org.omg.CORBA.AttributeMode mode)

This method constructs an AttributeDescription, using the supplied

parameters.
Parameter Description
name The name of this attribute.
id The repository id for this attribute.
defined_in The interface or value type in which this attribute is defined.
version The object’s version.
type The attribute’s IDL type code.
mode The mode of this attribute; read-only or read-write. See

“AttributeMode” on page 7-7.

AttributeMode

public final class AttributeMode

This class (the IDL’s enumeration) is used to represent the mode of an attribute;
either read-only or normal (read-write). Parameters may be used in one of the
following two ways:

* NORMAL This mode specifies read and write access for this attribute.

e READONLY The mode specifies read only access for this attribute.
Helper and Holder versions of this class are also provided. See Chapter 4,

“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

AttributeMode enumeration elements

org.omg.CORBA.AttributeMode. ATTR_NORMAL

This variable is an attribute definition as Normal.
org.omg.CORBA.AttributeMode. ATTR_READONLY

This variable is an attribute definition as read-only.

Interface repository interfaces and classes 7-7

ConstantDef

ConstantDef

public interface ConstantDef extends org.omg.CORBA.ConstantDefOperations, org.omg.Contained,
org.omg.CORBA.portable.IDLEntity

The interface is used to represent a constant definition that is stored in the
interface repository. This interface provides methods for setting and obtaining
the constant’s type and value.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ConstantDef methods

public org.omg.CORBA.TypeCode type()

This method returns the TypeCode representing the object’s type.
public org.omg.CORBA.IDLType type_def()

This method returns the constant’s IDLType.
public void type_def(org.omg.CORBA.IDLType type_def)

This method sets the IDLType of the constant.

Parameter Description
type_def The IDLType of this constant.

public org.omg.CORBA.Any value()
This method returns an Any object representing the constant’s value.
public void value(org.omg.CORBA.Any value)

This method sets the value for this constant.

Parameter Description

value An Any object that represents this object’s value.

ConstantDescription

public final class ConstantDescription

The ConstantDescription class describes a constant that is stored in the interface
repository.

7-8 Reference

ConstantDescriptionvariables

ConstantDescription variables

public java.lang.String name

This variable represents the name of the constant.
public java.lang.String id

This variable represents the repository id of the constant.
public java.lang.String defined_in

This variable represents the repository id of the module or interface in which
this constant is defined.

public org.omg.CORBA.VersionSpec version

This variable represents the constant’s version.
public org.omg.CORBA.TypeCode type

This variable represents the constant’s IDL type.
public org.omg.CORBA.Any value

This variable represents the value of this constant.

Constant Description methods

public ConstantDescription()
This method is the default constructor for a ConstantDescription.

public ConstantDescription(java.lang.String name, java.lang.String id, java.lang.String defined_in,
org.omg.CORBA.VersionSpec version, org.omg.CORBA.TypeCode type,
org.omg.CORBA.Any value)

This method constructs an ConstantDescription, using the supplied
parameters.

Parameter Description

name The name of this constant.

id The repository id for this constant.

defined_in The module or interface in which this constant is defined.
version The object’s version.

type The constant’s IDL type code.

value The value of this constant.

Interface repository interfaces and classes 7-9

Contained

Contained

public interface Contained extends org.omg.CORBA.ContainedOperations, org.omg.CORBA.IRObject,
org.omg.CORBA.portable.|DLEntity;

The interface is used to represent Interface Repository objects that are,
themselves, contained within another Interface Repository object. This interface
provides methods for:

¢ Setting and retrieving the object’s name and version.

¢ Determining the Container that contains this object.

¢ Obtaining the object’s absolute name, containing repository, and description.
* Moving an object from one container to another.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer. All interfaces that correspond to the IDL’s constructs
are inherited from Contained.

IDL definition

interface Contained: IRObject {
attribute RepositoryId id;
attribute Identifier name;
attribute VersionSpec version;

readonly attribute Container defined_in;
readonly attribute ScopedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
DefinitionKind kind;
any value;

}i

Description describe();
void move(in Container new_container,
in Identifier new_name,

in VersionSpec new_version);

}i

Contained methods

public java.lang.String absolute_name()
This method returns this object’s absolute name.
public org.omg.CORBA.Repository containing_repository()

This method returns the repository that contains this object.

7-10 Reference

Contained methods

public org.omg.CORBA.Container defined_in()

This method returns the Container where this object is defined.
public org.omg.CORBA.ContainedPackage.Description describe()

This method returns this object’s description.
public java.lang.String id()

This method returns this object’s repository identifier.

public void id(java.lang.String id)

This method sets the repository identifier that uniquely identifies this object.

Parameter Description
id The repository identifier for this object.

public java.lang.string name()
This method returns this object’s name.
public void name(java.lang.String name)

This method sets the name for this object.

Parameter Description

name The object’s name.

public java.lang.String version()
This method returns this object’s version.

public void version(java.lang.String version)

This method sets the version for this object.

Parameter Description

version The object’s version.

public void move(org.omg.CORBA.Container new_container, String new_name,
java.lang.String new_version)

This method moves this object to another container.

Parameter Description

new_container The Container to which the object is to be moved.
new_name The new name for the object.

new_version The new version specification for the object.

Interface repository interfaces and classes

7-11

ContainedPackage.Description

ContainedPackage.Description

Container

public class Description

This class provides a generic description for items in the interface repository
that are derived from the Contained interface.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ContainedPackage.Description variables

public org.omg.CORBA.DefinitionKind kind
This variable represents kind of the item.
public org.omg.CORBA.Any value

This variable represents value of the item.

ContainedPackage.Description methods

public Description()
This method is the default constructor for a Description.
public Description(org.omg.CORBA.DefinitionKind kind, org.omg.CORBA.Any value)

This method constructs a Description, using the supplied parameters.

Parameter Description

kind This item’s kind. See “ContainerPackage.Description” on
page 7-19 for more information.

value An Any object that represents the value for this item.

7-12 Reference

public interface Container extends org.omg.CORBA.ContainerOperations, org.omg.CORBA.IRObject,
org.omg.CORBA.portable.IDLEntity;

The Container interface is used to create a containment hierarchy in the Interface
Repository. A Container object holds object definitions derived from the
Contained class. All object definitions derived from the Container class, with the
exception of the Repository class, also inherit from the Contained class.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

IDL definition

IDL definition

interface Container: IRObject {

Contained lookup(in ScopedName search_name);
ContainedSeq contents(
in DefinitionKind limit_type,
in boolean exclude_inherited);
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in DefinitionKind limit_type,
in boolean exclude_inherited
)i
struct Description {
Contained contained_object;
DefinitionKind kind;
any value;
}i
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (
in DefinitionKind limit_type,
in boolean exclude_inherited,
in long max_returned_objs);

ModuleDef create_module,
in RepositoryId id,
in Identifier name,
in VersionSpec version);

ConstantDef create_constant (
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value);
StructDef create_struct (

in RepositoryId id,
in Identifier name,

in VersionSpec version,

in StructMemberSeq members) ;

NativeDef create_native(
in RepositoryId id,
in Identifier name,
in VersionSpec version);

UnionDef create_union(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType discriminator_type,
in UnionMemberSeq members);

Interface repository interfaces and classes 7-13

Container methods

EnumDef create_enum(
in RepositoryIld id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members) ;

AliasDef create_alias|(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in IDLType original_type);

ExceptionDef create_exception(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members) ;

InterfaceDef create_interface(
in RepositoryId id,
in Identifier name,
in VersionSpec version,
in InterfaceDefSeq base_interfaces
in boolean is_abstract);

ValueDef create_value(

in RepositoryIld id,
in Identifier name,
in VersionSpec version
in boolean is_custom,
in boolean is_abstract,
in ValueDef base_value,
in boolean is_truncatable,
in ValueDefSeq abstract_base_values,
in InterfaceDefSeq supported_interfaces,
in InitializerSeq initializers);

}i

Container methods

public org.omg.CORBA.Contained[] contents(org.omg.CORBA.DefinitionKind limit_type,
boolean exclude_inherited)

This method sets the repository identification that uniquely identifies this

object.

Parameter Description

limit_type The interface object types to be returned.
exclude_inherited If set to true, inherited objects will not be returned.

7-14 Reference

Containermethods

public org.omg.CORBA.InterfaceDef create_abstract_interface(java.lang.String id, java.lang.String
name, java.lang.String version, org.omg.CORBA.AbstractinterfaceDef[] base_interfaces)

This method creates an AbstractInterfaceDef object in this Container with the
specified attributes and returns a reference to the newly created object. The
interface that is created can only definitions of abstract interfaces.

Parameter Description

id The interface’s repository id.

name The interface’s name.

version The interface’s version.

base_interfaces A list of all interfaces from which this interface inherits.

public org.omg.CORBA. AliasDef create_alias (java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType original_type)

This method creates an AliasDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description

id The alias’ repository id.

name The alias’ name.

version The alias’ version.

original_type The IDL type of the original object for which this is an alias.

public org.omg.CORBA.ConstantDef create_constant(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType type, org.omg.CORBA.Any value)

This method creates a ConstantDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description

id The constant’s repository id.

name The constant’s name.

version The constant’s version.

type The constant’s IDL type.

value The constant’s value, represented by an Any object.

public org.omg.CORBA.EnumDef create_enum(java.lang.String id, java.lang.String name,
java.lang.String version, java.lang.String members][])

This method creates an EnumDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description
id The enumeration’s repository id.
name The enumeration’s name.

Interface repository interfaces and classes 7-15

Container methods

7-16 Reference

Parameter
version

members

Description
The enumeration’s version.
A list of the enumeration’s values.

public org.omg.CORBA.ExceptionDef create_exception(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.StructMember[] members)

This method creates an ExceptionDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter
id

name
version

members

Description

The exception’s repository id.

The exception’s name.

The exception’s version.

A list of all the types of the members of the exception, if any.

public org.omg.CORBA.InterfaceDef create_interface(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.InterfaceDef[] base_interfaces)

This method creates a concrete InterfaceDef object in this Container with the
specified attributes and returns a reference to the newly created object.
Unlike an AbstractInterfaceDef, this interface can contain definitions of both
abstract and concrete interfaces.

Parameter
id

name
version

base_interfaces

Description

The interface’s repository id.

The interface’s name.

The interface’s version.

A list of all interfaces from which this interface inherits.

public org.omg.CORBA.ModuleDef create_module(java.lang.String id, java.lang.String name,

java.lang.String version)

This method creates a ModuleDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter
id
name

version

Description
The module’s repository id.
The module’s name.

The module’s version.

Containermethods

public org.omg.CORBA.NativeDef create_native(java.lang.String id, java.lang.String name,
java.lang.String version)

This method creates a NativeDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description

id The structure’s repository id.
name The structure’s name.
version The structure’s version.

public org.omg.CORBA.StructDef create_struct(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.StructMember members[])

This method creates a StructDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description

id The structure’s repository id.

name The structure’s name.

version The structure’s version.

members The values for the structure’s fields.

public org.omg.CORBA.UnionDef create_union(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType discriminator_type,
org.omg.CORBA.UnionMember[] members)

This method creates a UnionDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description

id The union’s repository id.

name The union’s name.

version The union’s version.

discriminator_type The IDL type of the union’s discriminant value.
members A list of the types of each of the union’s fields.

public org.omg.CORBA.ContainerPackage.Description[] describe_contents(
org.omg.CORBA.DefinitionKind limit_type, boolean exclude_inherited, int max_returned_objs)

This method returns a description for all definitions directly contained by, or
inherited into this container.

Parameter Description
limit_type The interface object types to be returned.

Interface repository interfaces and classes 7-17

Container methods

Parameter Description
exclude_inherited If set to true, inherited objects will not be returned.
max_returned_objs The maximum number of object to be returned. Setting this

parameter to —1 will return all objects.

public org.omg.CORBA.Contained lookup(java.lang.String search_name)

This method locates a definition relative to this container, given a scoped
name. An absolute scoped name, one beginning with “::”, may be specified
to locate a definition within the enclosing repository. If no object is found, a
NULL value is returned.

Parameter Description

search_name The name of the object to be located.

public org.omg.CORBA.Contained[] lookup_name(java.lang.String search_name, int
levels_to_search,org.omg.CORBA.DefinitionKind limit_type, boolean exclude_inherited)

This method locates an object by name within a particular object. The search
can be constrained by the number of levels in the hierarchy to be searched,
the type of object, and whether or not inherited objects should be returned.

Parameter Description
search_name The name of the object or objects to be located.
levels_to_search The number of levels in the hierarchy to search. Setting this

parameter to a value of -1 will cause all levels to be searched.
Setting this parameter to 1 will search only this object.

limit_type The interface object types to be returned.
exclude_inherited If set to true, inherited objects will not be returned.

public org.omg.CORBA.ValueDef create_value(java.lang.String id, java.lang.String name,
java.lang.String version, boolean is_custom, boolean is_abstract, org.omg.CORBA .ValueDef
base_value, boolean is_truncatable, org.omg.CORBA.ValueDef[] abstract_base_values,
org.omg.CORBA.InterfaceDef supported_interfaces, org.omg.CORBA.Initializer)

This method creates a ValueDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description

id The structure’s repository id.

name The structure’s name.

version The structure’s version.

is_custom If set to true, creates a custom value type.
is_abstract If set to true, creates and abstract value type.
base_value The base value definition.

is_trucatable If set to true, creates a truncatable interface.
abstract_base_values The array of the abstract base definitions.

7-18 Reference

ContainerPackage.Description

Parameter Description
supported_interfaces The array of the supported interface definitions.
initializer The list of initializers this value type supports

public org.omg.CORBA.ValueBoxDef create_value_box(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType original_type)

This method creates a ValueBoxDef object in this Container with the specified
attributes and returns a reference to the newly created object.

Parameter Description

id The structure’s repository id.

name The structure’s name.

version The structure’s version.

original_type The IDL type of the original object for which this is an alias.

ContainerPackage.Description

public final class Description

This class provides a generic description for items in the interface repository
that are derived from the Contained interface.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ContainerPackage.Description variables

public org.omg.CORBA.Contained contained_object

The contained item.

public org.omg.CORBA.DefinitionKind kind
The kind of this item.

public org.omg.CORBA.Any value

The value of the item.

ContainerPackage.Description methods

public Description()

This method is the default constructor for a Description.

Interface repository interfaces and classes 7-19

DefinitionKind

public Description(org.omg.CORBA.Contained contained_object,
org.omg.CORBA.DefinitionKind kind, org.omg.CORBA.Any value)

This method constructs a Description using the supplied parameters.

Parameter

contained_object

kind

value

Description

The contained item.

This item’s kind.

An Any object that represents the value for this item.

DefinitionKind

public class DefinitionKind

The Definitionkind class enumerates the types of objects a Repository can
contain. Each value in the enumeration mirrors a similar data type in IDL.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and

the methods they offer.

DefinitionKind methods

public int value()

This method returns the integer value of the DefinitionKind.

DefinitionKind enumeration values

Table 7.1 DefinitionKind constant values

Java Object

dk_AbstractInterface
dk_all
dk_Alias
dk_Array
dk_Attribute
dk_Constant
dk_Enum
dk_Exception
dk_Fixed
dk_Interface
dk_Module
dk_Native
dk_none

dk_Operation

7-20 Reference

Integer Constant

_dk_AbstractInterface

_dk_all
_dk_Alias
_dk_Array
_dk_Attribute
_dk_Constant
_dk_Enum
_dk_Exception
_dk_Fixed
_dk_Interface
_dk_Module
_dk_Native
_dk_none

_dk_Operation

Value

Abstract Interface

All possible types (used in repository lookup methods)
Alias

Array

Attribute

Constant

Enum

Exception

Fixed

Concrete Interface

Module

Native

Exclude all types (used in repository lookup methods)
Interface Operation

EnumDef

Table 7.1 DefinitionKind constant values (continued)

Java Object Integer Constant Value
dk_Primitive _dk_Primitive Primitive type (such as int or long)
dk_Repository _dk_Repository Repository
dk_Sequence _dk_Sequence Sequence
dk_String _dk_String String
dk_Struct _dk_Struct Struct
dk_Typedef _dk_Typedef Typedef
dk_Union _dk_Union Union

dk_value _dk_value Value
dk_ValueBox _dk_ValueBox ValueBox
dk_ValueMember _dk_ValueMember ValueMember
dk_Wstring _dk_Wstring Unicode string
EnumDef

public interface EnumDef extends org.omg.CORBA.EnumDefOperations, org.omg.IDLType,
org.omg.CORBA.portable.IDLEntity

The interface is used to represent an enumeration that is stored in the
Interface Repository. This interface provides methods for setting and
retrieving the enumeration’s list of members.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes
and the methods they offer.

EnumDef methods

public java.lang.String[] members()
This method returns the enumeration’s list of members.
public void members(java.lang.String members[])

This method sets the enumeration’s list of members.

Parameter Description

members The list of members.

ExceptionDef

public interface ExceptionDef extends org.omg.CORBA.ExceptionDefOperations,
org.omg.CORBAContained, org.omg.CORBA.Container, org.omg.CORBA.portable.|DLEntity

The interface is used to represent an exception that is stored in the Interface
Repository. This interface provides methods for setting and retrieving the

Interface repository interfaces and classes 7-21

ExceptionDef methods

exception’s list of members as well as a method for retrieving the exception’s
TypeCode.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ExceptionDef methods

public org.omg.CORBA.StructMember[] members()

This method returns this exception’s list of members.
public void members(org.omg.CORBA.StructMember members])

This method sets the exception’s list of members.

Parameter Description

members The list of members.

public org.omg.CORBA.TypeCode type()

This method returns the TypeCode that represents this exception’s type.

ExceptionDescription

7-22 Reference

public final class ExceptionDescription

The ExceptionDescription class describes an exception that is stored in the
interface repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ExceptionDescription variables

public java.lang.String name

The name of the exception.
public java.lang.String id

The repository id of the exception.
public java.lang.String defined_in

The repository id of the module or interface in which this exception is
defined.

public org.omg.CORBA.VersionSpec version

The exception’s version.

FixedDef

ExceptionDescription methods

public org.omg.CORBA.TypeCode type
The exception’s IDL type.

ExceptionDescription methods

public ExceptionDescription()
This method is the default constructor for an ExceptionDescription.

public ExceptionDescription(java.lang.String name, java.lang.String id, java.lang.String defined_in,
org.omg.CORBA.VersionSpec version, org.omg.CORBA.TypeCode type,
org.omg.CORBA.Any value)

This method constructs an ExceptionDescription, using the supplied
parameters.

Parameter Description

name The name of this exception.

id The repository id for this exception.

defined_in The module or interface in which this exception is defined.
version The object’s version.

type The exception’s IDL type code.

public interface FixedDef extends org.omg.CORBA.FixedDefOperations, org.omg.CORBA.IDLType,
org.omg.CORBA.portable.IDLEntity

This interface is used to represent a fixed definition that is stored in the
Interface Repository.

FixedDef methods

public short digits();

This method returns the number of digits in the fixed type.
pubic void digits (short digits);

This method sets the number of digits in this fixed type.
public short scale ();

The scale is the number of digits to the right of the decimal point in the fixed
type. This method returns the scale of the fixed type.

public void scale (short scale);

This method sets the scale of the fixed type.

Interface repository interfaces and classes 7-23

FullValueDescription

FullValueDescription

public final class FullValueDescription

This class is used to represent a full value definition that is stored in the
Interface Repository. See “ValueDef” on page 7-46 for additional information.

FullValueDescription variables

public java.lang.String name

The name of the value type.
public java.lang.String id

The repository id of the value type.
public boolean is_abstract

If true, this value type is abstract. If false, this is a concrete value type.
public boolean is_custom

If true, there is custom marshalling for the value type.
public java.lang.String defined_in

The repository id of the module in which this value type is defined.
public java.lang.String version

The value type’s version.
public org.omg.CORBA.OperationDescription[] operations

The list of operations offered by the value type.
public org.omg.CORBA.AttributeDescription[] attributes

The value type’s list of attributes.
public org.omg.CORBA.ValueMember[] members

The array of the value type’s members.
public org.omg.CORBA.Initializer[] initializers

The array of initializers.
public java.lang.String[] supported_interfaces

The list of interfaces supported by this value type.
public java.lang.String[] abstract_base_values

The list of reporting IDs of all the abstract base values from which this value
type inherits.

public boolean is_truncatable

If true, the value can safely be truncated to its base value type.

7-24 Reference

IDLType

FullValueDescription methods

public java.lang.String base_value

The reporting ID for the concrete base value if one exists for this type.
public org.omg.CORBA.TypeCode type

The value type’s IDL typecode.

FullValueDescription methods

public org.omg.CORBA.FullValueDescription(java.lang.String name, java.lang.String id,
boolean is_abstract, boolean is_custom, java.lang.String defined_in,

java.lang.String version, org.omg.CORBA.OperationDescription[] operations,
org.omg.CORBA.AttributeDescription[] attributes, org.omg.CORBA.ValueMember[] members,
org.omg.CORBA.Initializer[] initializers, java.lang.String[] supported_interface,
java.lang.String[] abstract_base_values, boolean is_truncatable, java.lang.String base_value,
org.omg.CORBA.TypeCode type)

This method constructs the FullValueDescription.

Parameter

id

name

is_abstract
is_custom

version

operations

attributes

members

initializers
supported_interfaces
abstract_base_values
is_truncatable
base_value

type

Description

The value type’s identifier.

The value type’s name.

The value type is abstract.

The value type is custom.

The value type’s version.

The list of operations.

The list of attributes.

The list of value member descriptors.
The list of initializers.

The list of supported interfaces.

The list of abstract base value types.
The value type is truncatable.

The real (non-abstract) base value, if any.

The value type’s typecode.

public interface IDLType extends org.omg.CORBA.IRObject

The IDLType interface is defined as a marker interface used to mark those
Repository Objects that form IDL types. For example, EnunDef inherits from
IDLType because it represents the IDL type construct, but OperationDef does not,
because it is the regular Repository object and not IDL type. Every IDLType object
has an associated TypeCode. The TypeCode uniquely identifies the object’s type and
is described in the section, “TypeCode” on page 6-31.

Interface repository interfaces and classes 7-25

IDL definition
Helper and Holder versions of this class are also provided. See Chapter 4,

“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

IDL definition

interface IDLType : CORBA::IRObject {
readonly attribute TypeCode type;
}i

IDLType methods

public org.omg.CORBA.TypeCode type()

This method returns the TypeCode object associated with the IRObject that
represents an IDL type definition in the Interface Repository.

InterfaceDef

public interface InterfaceDef extends org.omg.CORBA.InterfaceDefOperations,
org.omg.CORBA.Container, org.omg.CORBA.Contained,
org.omg.CORBA.IDLType, org.omg.CORBA.portable.IDLEntity

The interface is used to represent the concrete interface that is stored in the
Interface Repository. This interface provides methods for setting and retrieving
the base interfaces as well as creating attributes, operations and an interface
description.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

IDL definition

interface InterfaceDef: Container, Contained, IDLType {
attribute InterfaceDefSeq base_interfaces;
boolean is_a(in RepositoryId interface_id);

struct FulllInterfaceDescription {
Identifier name;
RepositoryId id;
RepositoryId defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryIdSeq base_interfaces;
TypeCode type;

}i

FullInterfaceDescription describe_interface();

7-26 Reference

InterfaceDef methods

AttributeDef create_attribute(
in RepositoryIld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode);

OperationDef create_operation |

in CORBA::RepositoryId id,
in Identifier name,
in VersionSpec version,

in IDLType result,
in OperationMode mode,
in ParDescriptionSeq params,
in ExceptionDefSeq exceptions,
in ContextIdSeq contexts);

}i

InterfaceDef methods

public org.omg.CORBA.InterfaceDef[] base_interfaces()
This method returns the base interface list for this object.

public void base_interfaces(org.omg.CORBA.InterfaceDef[] base_interfaces)

This method sets the base interface list for this object.

Parameter Description

base_interfaces The list of base interfaces to be set.

public org.omg.CORBA .AttributeDef create_attribute(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType type,
org.omg.CORBA.AttributeMode mode)

This method adds an attribute to an interface definition.

Parameter ~ Description

id The attribute’s identifier.

name The attribute’s name.

version The attribute’s version.

type The attribute’s IDL type.

mode The attribute’s mode. See AttributeMode in the section, “ AttributeMode”

on page 7-7, for possible values.

public org.omg.CORBA.OperationDef create_operation(java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType result,

Interface repository interfaces and classes 7-27

InterfaceDefPackage.FulllnterfaceDescription

org.omg.CORBA.OperationMode mode, org.omg.CORBA.ParameterDescription[] params,
org.omg.CORBA.ExceptionDef[] exceptions, java.lang.String[] contexts)

This method adds an operation to an interface definition.

Parameter Description

id The operation’s identifier.

name The operation’s name.

version The operation’s version.

result The operation’s IDL result type.

mode The operation’s mode. See “OperationMode” on page 7-35.
params The list of parameters for this operation.

exceptions The list of exceptions that can be raised by this operation.
contexts The list of contexts.

public org.omg.CORBA.InterfaceDefPackage.FullinterfaceDescription describe_interface()
This method returns an interface description for this object.
public boolean is_a(java.lang.String interface_id)

This method returns true if this object represents an interface definition that
is compatible with a given interface_id.

Parameter Description

interface_id The interface identifier to compare with this object.

InterfaceDefPackage.FullinterfaceDescription

7-28 Reference

public final class FullinterfaceDescription

This class provides a full description of an interface that is stored in the
interface repository.

InterfaceDefPackage.FullinterfaceDescription variables

public java.lang.String name
The name of the interface.
public java.lang.String id
The repository id of the interface.
public java.lang.String defined_in
The repository id of the module in which this interface is defined.
public java.lang.String version

The interface’s version.

InterfaceDefPackage.FulllnterfaceDescription methods

public org.omg.CORBA.OperationDescription[] operations
The list of operations supported by the interface.
public org.omg.CORBA.AttributeDescription[] attributes
The interface’s list of attributes.
public java.lang.String[] base_interfaces
The list of base interfaces from which this interface inherits.
public org.omg.CORBA.TypeCode type

This variable represents the interface’s IDL typecode.

InterfaceDefPackage.FullinterfaceDescription methods

public FullinterfaceDescription()

This method is the default constructor for a FullInterfaceDescription.

public FullinterfaceDescription(final java.lang.String name, final java.lang.String id
final java.lang.String defined_in, final java.lang.String version,
final org.omg.CORBA.OperationDescription[] operations,
final org.omg.CORBA.AttributeDescription[] attributes, final java.lang.String[] base_interfaces,
final org.omg.CORBA.TypeCode type)

This method constructs an FullInterfaceDescription, using the supplied

parameters.
Parameter Description
name The name of this interface.
id The repository id for this interface.
defined_in The module’s repository id in which this attribute is defined.
version The interface’s version.
operations The list of operation offered by this interface.
attributes The list of this interface’s attributes.
base_interfaces This variable represents a list of base interfaces for this
interface.
type The interface’s IDL type code.

InterfaceDescription

public final class InterfaceDescription

The InterfaceDescription class provides a description of the interface that is
stored in the interface repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

Interface repository interfaces and classes 7-29

InterfaceDescription variables

InterfaceDescription variables

public java.lang.String Name
The name of the interface.
public java.lang.String id
The repository id of the interface.
public java.lang.String defined_in
The repository id of the module in which this interface is defined.
public java.lang.String version
The interface’s version.
public String[] base_interfaces

The list of base interfaces for this interface.

InterfaceDescription methods

public InterfaceDescription()
This method is the default constructor for an InterfaceDescription.

public InterfaceDescription(java.lang.String name, java.lang.String id, java.lang.String defined_in,
java.lang.String version, java.lang.String[] base_interfaces)

This method constructs an InterfaceDescription, using the supplied

parameters.
Parameter Description
name The name of this interface.
id The repository id for this interface.
defined_in The module in which this interface is defined.
version The interface’s version.
base_interfaces The interface’s list of base interfaces.

IRObject

public interface IRObject

The TRObject interface offers a generic interface to any object stored in the
Interface Repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

7-30 Reference

IDL definition

IDL definition

interface IRObject {
readonly attribute CORBA::DefinitionKind def_kind;
void destroy();

IORObject methods

public org.omg.CORBA.DefinitionKind def_kind)

This method returns the kind of IDL definition that this IRObject represents.
For a list of defined types, see “DefinitionKind” on page 7-20.

public void destroy()
This method deletes this IRObject from the Interface Repository.

ModuleDef

public interface ModuleDef extends org.omg.ModuleDefOperations, org.omg.CORBA.Container,
org.omg.CORBA.Contained, org.omg.CORBA.portable.IDLEntity

The interface is used to represent an IDL module in the interface repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ModuleDescription

public final class ModuleDescription

The ModuleDescription class describes a module that is stored in the interface
repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ModuleDescription variables

public java.lang.String name
The name of the module.
public java.lang.String id
The repository id of the module.

Interface repository interfaces and classes 7-31

ModuleDescrip

NativeDef

tion methods

public java.lang.String defined_in
The repository id of the module in which this module is defined.
public java.lang.String version

The module’s version.

ModuleDescription methods

public ModuleDescription()
This method is the default constructor for the ModuleDescription.

public ModuleDescription(java.lang.String name, java.lang.String id, java.lang.String defined_in,
java.lang.String version)

This method constructs a ModuleDescription using the supplied parameters.

Parameter Description

name The name of this interface.

id The repository id for this interface.

defined_in The module id in which this module is defined.
version The object’s version.

public interface NativeDef extends org.omg.CORBA.NativeDefOperations, org.omg.CORBA.TypedefDef,
org.omg.CORBA.portable.IDLEntity

This interface is used to represent a native definition that is stored in the
Interface Repository. The Container interface provides operations to create
NativeDef as a contained object.

OperationDef

7-32 Reference

public interface OperationDef extends org.omg.CORBA.OperationDefOperations, org.omg.CORBA
Contained, org.omg.CORBA.portable.|DLEntity

The interface is used to represent an interface operation that is stored in the
Interface Repository. This interface provides methods for setting and retrieving
the operation’s contexts, mode, parameters, and result value. A method is also
provided for retrieving a list of exceptions that may be raised by this operation.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

OperationDef methods

OperationDef methods

public java.lang.String[] contexts()
This method returns the contexts associated with this operation.
public void contexts(java.lang.String[] contexts)

This method sets this operation’s context list.

Parameter Description

contexts The list of contexts.

public org.omg.CORBA.ExceptionDef[] exceptions()
This method returns a list of exceptions that may be raised by this operation.
public void exceptions(org.omg.CORBA.ExceptionDef[] exceptions)

This method sets the list of exceptions that may be raised by this operation.

Parameter Description

exceptions The list of exceptions.

public org.omg.CORBA.OperationMode mode()
This method returns the mode of this operation.
public void mode(org.omg.CORBA.OperationMode mode)

This method sets the mode of this operation.

Parameter Description

mode The mode to be set. See “OperationMode” on page 7-35 for
more details on the parameters.

public org.omg.CORBA.ParameterDescription[] params)
This method returns a description of the parameters for this operation.
public void params(org.omg.CORBA.ParameterDescription[] params)

This method sets the parameter description for this operation.

Parameter Description

params The description of the parameters.

public org.omg.CORBA.TypeCode result()

This method returns the TypeCode of the result returned by this operation.
public org.omg.CORBA.IDLType result_def()

This method returns the IDL type of this operation’s return value.

Interface repository interfaces and classes 7-33

OperationDescription

public void result_def(org.omg.CORBA.IDLType result_def)

This method sets the IDL type for this operation’s return value.

Parameter Description
result_def The IDL type to set for the return value.

OperationDescription

7-34 Reference

public final class OperationDescription
The OperationDescription class is stored in the interface repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

OperationDescription variables

public java.lang.String name

The name of the operation.
public java.lang.String id

The repository id of the operation.
public java.lang.String defined_in

The repository id of the interface or value type in which this operation is
defined.

java.lang.String version

The operation’s version.
public org.omg.CORBA.TypeCode result

The operation’s result TypeCode.
public org.omg.CORBA.OperationMode mode

The operation’s mode.
public java.lang.String[] contexts
The operation’s associated context list.

public org.omg.CORBA.ParameterDescription[] parameters

The operation’s parameters.

public org.omg.CORBA.ExceptionDescription[] exceptions

The exceptions that this operation may throw.

OperationDescription methods

OperationDescription methods

public OperationDescription()
This method is the default constructor for an OperationDescription.

public OperationDescription(java.lang.String name, java.lang.String id, java.lang.String defined_in,
java.lang.String version, org.omg.CORBA.TypeCode result,
org.omg.CORBA.OperationMode mode, java.lang.String[] contexts,
org.omg.CORBA.ParameterDescriptions parameters,
org.omg.CORBA.ExceptionDescription[] exceptions)

This method constructs an OperationDescription, using the supplied

parameters.
Parameter Description
name The name of this operation.
id The repository id for this operation.
defined_in The interface or value type id in which this operation is
defined.
version The object’s version.
result The IDL typecode of the result of the operation.
mode The operation’s mode.
contexts A list of context strings for this operation.
parameters The list of parameters for this operation.
exceptions The list of exceptions that this operation may throw.

OperationMode

public final class OperationMode

This class enumerates the modes of operation. The two modes are:

org.omg.CORBA.OperationMode.OP_ONEWAY Oneway operations are those for which
the client application does not expect a
response.

org.omg.CORBA.OperationMode.OP_NORMAL Normal requests involve a response
being sent to the client by the object
implementation that contains the
results of the request.

Helper and Holder versions of this class are also provided. See Chapter 4,

“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

Interface repository interfaces and classes 7-35

ParameterDescription

ParameterDescription

public final class ParameterDescription

The ParameterDescription class describes a parameter for an operation that is
stored in the interface repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

ParameterDescription variables

public java.lang.String name
The name of the parameter.

public org.omg.CORBA.TypeCode type
The parameter’s TypeCode.

public org.omg.CORBA.IDLType type_def
The parameter’s IDL type.

public org.omg.CORBA.ParameterMode mode

The parameter’s mode. See “ParameterMode” on page 7-37 for more details
on the parameters.

ParameterDescription methods

public ParameterDescription()
This method is the default constructor for a ParameterDescription.

public ParameterDescription(java.lang.String name, org.omg.CORBA.TypeCode type,
org.omg.CORBA.IDLType type_def, org.omg.CORBA.ParameterMode mode)

This method constructs a ParameterDescription, using the supplied

parameters.
Parameter Description
name The name of the parameter.
type The type of the parameter.
type_def The IDL type of the parameter.
mode The mode of the parameter.

7-36 Reference

ParameterMode

ParameterMode

public final class ParameterMode

This class enumerates the three modes of parameters:
PARAM_IN Used for input from the client to the server.

PARAM_OUT Used for output of results from the server to the client.
PARAM_INOUT Used both for input from the client and output from the server.
Helper and Holder versions of this class are also provided. See Chapter 4,

“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

PrimitiveDef

public interface PrimitiveDef extends org.omg.CORBA.PrimitiveDefOperations,
org.omg.CORBA.IDLType, org.omg.CORBA.portable.|DLEntity

The interface is used to represent a primitive type (such as an int or a long) that
is stored in the Interface Repository. This interface provides a method for
retrieving the kind of primitive that is being represented.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

PrimitiveDef method

public org.omg.CORBA.PrimitiveKind kind()
This method returns the kind of primitive represented by this object.

PrimitiveKind

public class PrimitiveKind

The Primitivekind class enumerates the primitive types present in the IDL. It
provides both an enumeration (the PrimitiveKind enumerations begin with the
prefix _pk_) and a set of Java objects (the PrimitiveKind Java objects begin with
the prefix pk_).

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

Interface repository interfaces and classes 7-37

PrimitiveKind methods

PrimitiveKind methods

public int value()

This method returns an integer that represents the value of the constant.

PrimitiveKind constants

Java Object Integer Constant Represents

pk_any _pk_any Any object.

pk_boolean _pk_boolean Boolean.

pk_char _pk_char Character.

pk_double _pk_double Double.

pk_float _pk_float Float.

pk_long _pk_long Long.

pk_longdouble _pk_longdouble Long double.

pk_longlong _pk_longlong Long long.

pk_null _pk_null Null.

pk_octet _pk_octet Octet string.

pk_octet _pk_octet Octet string.

pk_objref _pk_objref Object reference.

pk_short _pk_short Short.

pk_string _pk_string String.

pk_TypeCode _pk_TypeCode TypeCode object.

pk_ulong _pk_ulong Unsigned long.

pk_ulonglong _pk_ulonglong Unsigned long.

pk_ushort _pk_ushort Unsigned short.

pk_void _pk_void Void.

pk_wchar _pk_wchar Unicode character.

pk_wstring _pk_wstring Unicode string.
Repository

7-38 Reference

public interface Repository extends org.omg.CORBA.RepositoryOperations,
org.omg.CORBA.Container, org.omg.CORBA.portable.|DLEntity

The Repository provides an interface to the Interface Repository itself, which is
used to contain the definitions of objects that are available to clients. The
Repository interface provides methods for storing and retrieving definitions.
The Repository is the only root object in the Interface Repository containment
hierarchy.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

Repository methods

Repository methods

public org.omg.CORBA.ArrayDef create_array(int length, org.omg.CORBA.IDLType element_type)

This method creates an array definition in the repository with the specified
length and element type. A reference to the ArrayDef that is created is
returned.

Parameter Description
length The number of elements in the array. This value must be greater than
Zero.

element_type The IDL type of the elements contained in the array.

public org.omg.CORBA.SequenceDef create_sequence(int bound,
org.omg.CORBA.IDLType element_type)

This method creates an array definition in the repository with the specified
number of elements (bound) and element type. It returns a reference to the
SequenceDef that is created.

Parameter Description
bound The maximum length of the sequence. This value must be zero or
greater.

element_type The IDL type of the elements contained in the sequence.

public org.omg.CORBA.StringDef create_string(int bound)

This method creates a string definition in the repository with the specified
number of characters (bound). Returns a reference to the StringDef that is
created.

Parameter Description

bound The maximum bounds of the string. This value must be zero or greater.

public org.omg.CORBA.WstringDef create_wstring(int bound)

This method creates a Unicode string definition in the repository with the
specified number of characters (bound). A reference to the listringDef that is
created is returned.

Parameter Description

bound The maximum bounds of the string. This value must be zero or greater.

Interface repository interfaces and classes 7-39

SequenceDef
public org.omg.CORBA.PrimitiveDef get_primitive(org.omg.CORBA.PrimitiveKind kind)

This method returns a PrimitiveDef object for the specified PrimitiveKind.

Parameter Description
kind The primitive type kind.

public org.omg.CORBA.Contained lookup_id(java.lang.String search_id)
This method searches for an object in the interface repository that matches
the specified search id. If a match is not found, a null value is returned.

Parameter Description

search_id The identifier to use for the search.

public org.omg.CORBA.FixedDef create_fixed(short digits, short scale)
This method sets the number of digits and the scale for the fixed type.

Parameter Description

digits The number of digits for the fixed type.

scale The scale of the fixed type.
SequenceDef

public interface SequenceDef extends org.omg.CORBA.SequenceDefOperations,
org.omg.CORBA.IDLType, org.omg.CORBA.portable.IDLEntity

The interface is used to represent an sequence that is stored in the Interface
Repository. This interface provides methods for setting and retrieving the
sequence’s bound and element type.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

SequenceDef methods

public int boundy)

This method returns the bounds of the sequence.
public void bound(int bound)

This method sets the bound of the sequence.

Parameter Description

members The list of members.

7-40 Reference

StringDef

public org.omg.CORBA.TypeCode element_type()

This method returns a TypeCode representing the type of elements in this
sequence.

public org.omg.CORBA.IDLType element_type_def()

This method returns the IDL type of the elements stored in this sequence.
public void element_type_def(org.omg.CORBA.IDLType element_type_def)

This method sets the IDL type for the elements stored in this sequence.

Parameter Description
element_type_def The IDL type to set.

StringDef

public interface StringDef extends org.omg.CORBA.StringDefOpeartions, org.omg.CORBA.IDLType,
org.omg.CORBA.portable.IDLEntity

The interface is used to represent a String that is stored in the Interface
Repository. This interface provides methods for setting and retrieving the
bounds of the string.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

StringDef methods

public int bound ()

This method returns the bounds (maximum length) of the String. If the String
is unbounded, it returns 0.

public void bound(int bound)
This method sets the bounds of the String. Pass 0 to set the bounds to

unbounded.
Parameter Description
bound The new String bounds.

Interface repository interfaces and classes 7-41

StructDef

StructDef

public interface StructDef extends org.omg.CORBA.StructDefOperations, org.omg.CORBA.TypedefDef,
org.omg.CORBA.Container, org.omg.CORBA.portable.IDLEntity

The interface is used to represent a structure that is stored in the Interface
Repository. This interface provides methods for setting and retrieving the
structure’s list of members.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

StructDef methods

public org.omg.CORBA.StructMember{] members()
This method returns the structures’s list of members.
public void members(org.omg.CORBA.StructMember[] members)

This method sets the structure’s list of members.

Parameter Description
members The list of members.
StructMember

7-42 Reference

public final class StructMember

This interface is used to define each field of a struct.

StructMember variables

public java.lang.String name
The name of the StructMember.
public org.omg.CORBA.TypeCode type
The structlember’s IDL type.
public org.omg.CORBA.IDLType type_def
The StructMember’s IDL type definition.

StructMember methods

StructMember methods

public StructMember final java.lang.String name, final org.omg.CORBA.TypeCode type, final
org.omg.CORBA.IDLType type_def

This method constructs a TypeDescription, using the supplied parameters.

Parameter Description

name The name of this StructMember.
type The StructMember’s IDL type code.
type_def The StructMember’s type definition.

TypedefDef

public interface TypedefDef extends org.omg.CORBA.TypedefDefOperations,
org.omg.CORBA.Contained, org.omg.CORBA.IDLType, org.omg.CORBA.portable.|DLEntity

This abstract interface represents a user-defined structure that is stored in the
Interface Repository. The following interfaces all inherit from this interface:

AliasDef
EnumDef
NativeDef
StructDef
UnionDef
WstringDef

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

TypeDescription

public final class TypeDescription
The TypeDescription class is stored in the interface repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

TypeDescription variables

public java.lang.String name
The name of the type.
public java.lang.String id
The repository id of the type.

Interface repository interfaces and classes 7-43

TypeDescription methods

UnionDef

public java.lang.String defined_in

The name of the module or interface in which this type is defined.
public java.lang.String version

The type’s version.
public org.omg.CORBA.TypeCode type

The type’s IDL type.

TypeDescription methods

public TypeDescription()
This method is the default constructor for a TypeDescription.

public TypeDescription(java.lang.String name, java.lang.String id, java.lang.String defined_in,
java.lang.String version, org.omg.CORBA.TypeCode type)

This method constructs a TypeDescription using the supplied parameters.

Parameter Description

name The name of this type.

id The repository id for this type.

defined_in The module or interface in which this type is defined.
version The object’s version.

type The type’s IDL type code.

7-44 Reference

public interface UnionDef extends org.omg.CORBA.UnionDefOperations, org.omg.CORBA.IDLType,
org.omg.CORBA.Container, org.omg.CORBA.portable.|DLEntity

The interface is used to represent a Union that is stored in the Interface
Repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

UnionDef methods

public org.omg.CORBA.TypeCode discriminator_type()
This method returns the TypeCode of the discriminator for the Union.
public org.omg.CORBAIDLType discriminator_type_def()

This method returns the IDL type of the union’s discriminator.

UnionMember
public void discriminator_type_def(org.omg.CORBA.IDLType discriminator_type_def)

This method sets the IDL type of the union’s discriminator.

Parameter Description

discriminator_type_def The list of members.

public org.omg.CORBA.UnionMember[] members()

This method returns the union’s list of members.
public void members(org.omg.CORBA.UnionMembers[] members)

This method sets the union’s list of members.

Parameter Description
members The list of members.
UnionMember

public final class UnionMember

The UnionMember class describes a member of the union that is stored in the
interface repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

UnionMember variables

public java.lang.String name
The name of the union member.
public org.omg.CORBA.Any label
The label that is associated with this member.
public org.omg.CORBA.TypeCode type
The union’s typecode.
public org.omg.CORBA.IDLType type_def
The union’s IDL type.

UnionMember methods

public UnionMember()

This method is the default constructor for an UnionMember.

Interface repository interfaces and classes 7-45

ValueBoxDef

public UnionMember(java.lang.String name, org.omg.CORBA.Any label, org.omg.CORBA.TypeCode
type, org.omg.CORBA.IDLType type_def)

This method constructs a UnionMenber, using the supplied parameters.

Parameter Description
name The name of this union member.
label The label that is associated with this member.
type The union’s typecode.
type_def The union’s IDL type.
ValueBoxDef

ValueDef

public interface ValueBoxDef extends org.omg.CORBA.ValueBoxDefOperations,
org.omg.CORBA.Contained, org.omg.CORBA.portable.|DLEntity

This interface is used as a simple value type that contains a single public
member of any IDL type. ValueBoxDef is a simplified version of value type:

value type name
public <IDLType> value;

This declaration is almost equal to value type boxed type <IDLType> but
ValueBoxDef is not the same as simple ValueDef.

ValueBoxDef methods

public org.omg.CORBA.IDLType original_type_def ();
This method identifies the type being boxed.

public void original_type_def (org,omg.CORBA.IDLType original_type_def);
This method sets the type being boxed.

7-46 Reference

public interface ValueDef extends org.omg.CORBA.ValueDefOperations, org.omg.CORBA.Container,
org.omg.CORBA.Contained, org.omg.CORBA.IDLType, org.omg.CORBA.portable.IDLEntity

This interface represents a value definition that is stored in the Interface
Repository. It can contain constants, typedefs, exceptions, operations, and
attributes. This interface is very close to a class type. See
“FullValueDescription” on page 7-24 for additional information.

ValueDef methods

ValueDef methods

public org.omg.CORBA.Interface[] supported_interfaces ();
This method lists the interfaces which this value type supports.
public void supported_interfaces (org.omg.CORBA.interfaceDef[] supported_interfaces);
This method sets the supported interfaces.
public org.omg.CORBA.Initializer[] initializers;
This method lists the initializers
public void initializers (org.omg.CORBA.Initializer(] initializers);
This method sets the initializers.
public org.omg.CORBA.ValueDef base_value;
This method describes the value types from which this value inherits.
public void base_value (org.omg.CORBA.ValueDef base_value;

This method sets a base valuetype of the valuetype which this valuetype
inherits from.

public org.omg.CORBA.ValueDef[] abstract_base_values ();
This method lists the abstract value types from which this value inherits.

public void abstract_base_values (org.omg.CORBA.ValueDef[] abstract_base_values);
This method defines the list of base abstract value types.

public boolean is_abstract();
If set to true, this value returns an abstract value type.

public void is_abstract (boolean is_abstract);

This method sets the value type to an abstract value type.
public boolean is_custom ();

If set to true, this value uses custom marshalling.
public void is_custom (boolean is_custom);

This method sets the custom marshalling for the value.

public boolean is_trucatable ():

If set to true, this value can be safely truncated from its base value.
public void is_truncatable (boolean is_truncatable);

This method sets the truncation attribute for this value.

Interface repository interfaces and classes 7-47

ValueDef meth

7-48 Reference

ods

public boolean is_a (java.lang.String value _id);

This method returns true if the value on which it is invoked either is identical
to or inherits, directly or indirectly from the interface or value defined by its
ID parameter. Otherwise it returns false.

public org.omg.CORBA.ValueDefPackage.FullValueDescription describe_value ();

This method returns a FullValueDescription describing the value including its
operations and attributes.

public org.omg.CORBA.ValueMemberDef create_value_member (java.lang.String id, java.lang.String
name, java.lang.String version, org.omg.CORBA.IDLtype type_def, short access);

This method returns a new ValueMemberDef contained in the vValueDef on which

it is invoked.

Parameter
id

name
version
type_def
short access

Description

The repository id for this type.
The name of this type.

The object’s version.

The value’s IDL type. See

The access value.

public org.omg.CORBA.AttributeDef create_attribute (java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLType type, org.omg.CORBA.AttributeMode mode);

This method creates a new attribute definition for this value type and returns
an AttributeDef for it.

Parameter
id

name
version
type
mode

Description

The repository id for this attribute.
The name of this type.

The object’s version.

The type’s IDL type.

The object’s mode.

public org.omg.CORBA.OperationDef create_operation (java.lang.String id, java.lang.String name,
java.lang.String version, org.omg.CORBA.IDLtype result, org.omg.CORBA.OperationMode mode,
org.omg.CORBA.ParameterDescription[] params, org.omg.CORBA.ExceptionDef[] exceptions,
java.lang.String[] contexts);

This method creates a a new operation for this value type and returns an
OperationDef for it.

Parameter
id
name

version

Description

The repository id of this operation.
The name of this type.

The object’s version.

ValueDescription

Parameter Description

result The IDLType for the operation.

mode The object’s mode.

params The list of the operation’s parameters.

exceptions The list of the operation’s exceptions.

contexts The list of the operation’s contexts.
ValueDescription

public final interface ValueDescription

This interface is used to represent a description of the value type that is stored
in the Interface Repository.

ValueDescription variables

public java.lang.String name

The name of the valuedescription.
public java.lang.String id

The repository id of the valuedescription.
public boolean is_abstract

If set to true, the valuedescription is an abstract value type.
public boolean is_custom

If set to true, the valuedescription is custom marshalled.
public java.lang.String defined_in

The repository id of the module or interface in which this valuedescription is
defined.

public java.lang.String version
The valuedescription’s version.
public java.lang.String[] supported_interfaces
The list of interfaces which this valuedescription supports.
public java.lang.String[] abstract_base_values
The list of abstract value types from which this valuedescription inherits.
public boolean is_truncatable

The value type’s setting for whether or not this valuedescription can safely
truncated to its base value types.

Interface repository interfaces and classes 7-49

ValueDescription methods

public java.lang.String base_value

The value types from which this valuedescription inherits.

ValueDescription methods

public ValueDescription(java.lang.String name, java.lang.String id, boolean is_abstract, boolean

is_custom, java.lang.String defined_in, java.lang.String version, java.lang.String
supported_interfaces, java.lang.String abstract_base_values, boolean is_truncatable,

java.lang.String base_values)

This method constructs an AttributeDescription, using the supplied

parameters.

Parameter
name

id
is_abstract

is_custom

defined_in

version
supported_interfaces
abstract_base_values
is_truncatable

base_values

Description

The name of this valuedescription.
The repository id for this valuedescription.
If the value is true, the valuedescription is abstract.

If the value is true, if the valuedescription uses custom
marshalling.

The module in which this valuedescription is defined.
The valuedescription’s version.

The supported interfaces.

The supported abstract base values.

If the value is true, if the valuedescription can be safely
truncated to its base values.

The base values.

ValueMemberDef

7-50 Reference

public final class ValueMemberDef extends org.omg.CORBA.ValueMemberDefOperations,
org.omg.CORBA.Contained, org.omg.CORBA.portable.IDLEntity

This interface is used to represent a value member definition that is stored in
the Interface Repository.

ValueMemberDef methods

public org.omg.CORBA.TypeCode type ();

This method returns the value member’s IDL type.
public org.omg.CORBA.IDLType type_def ();

This method represents the definition of the IDL type.
public void type_def (org.omg.CORBA.IDLType type_def);

This method sets the IDL type for value member.

WstringDef

public short access

This method defines the access value for the object.
public void access (short access);

This method sets the access value for value member.

WstringDef

public interface WstringDef extends org.omg.CORBA.WStringDefOperations, org.omg.CORBA.IDLType,
org.omg.CORBA.portable.IDLEntity

The interface is used to represent a Unicode string that is stored in the Interface
Repository.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

WStringDef methods

public int bound ()

This method returns the bounds of the WString.
public void bound(int bound)

This method sets the bounds of the WString.

Parameter Description

members The new wstring bounds.

Interface repository interfaces and classes 7-51

7-52 Reference

Activation interfaces and classes

This chapter describes the interfaces and classes in the Activation package
including, ActivationImplDef, Activator, CreationImplDef, ImplementationDef, and
OAD—dynamic interfaces and classes in the Activation package. They are used
with the Object Activation Daemon (OAD).

ActivationimplDef

valuetype ActivationimplDef

The ActivationInplDef valuetype provides a set of attributes for an Activator.

valuetype ActivationImplDef : ImplementationDef {
attribute string service_name;
attribute ::CORBA::ReferenceData 1d;
attribute ::extension::Activator activator_obj;
}i

ActivationimplDef methods

public abstract Activator activator_obj()

This method retrieves the object reference of the object implementation
under the control of the Activator.

public abstract byte[] id()

This method retrieves the reference data identifier for the implementation.
public abstract String service_name()

This method retrieves the implementation’s service name.

Activation interfaces and classes 8-1

Activator

Activator

8-2 Reference

public interface Activator

When you design your object implementation, you may want to defer the
activation of ORB objects until a client requests them. By deferring object
activation, you improve performance. If you have thousands of objects on a
server, you can save system resources by only activating objects when clients
request them. You can defer activation of multiple object implementations with
a single Activator.

interface Activator {
Object activate(in CORBA::ImplementationDef impl);
void deactivate(in Object obj, in CORBA::ImplementationDef impl);
}i

Activator methods

public org.omg.Object activate(org.omg.CORBA.ImplementationDef impl)

This method is used to activate an object implementation under the control
of an Activator. When the ORB receives a client request for an object for
which the Activator is responsible, the ORB invokes the activate () method on
the Activator. In this method, the ORB uniquely identifies the activated object
implementation by passing the Activator an ImplementationDef parameter—
from which the implementation can obtain ref_data, the unique identifier.

Parameter Description

impl The instance of ImplementationDef.

public void deactivate(org.omg.CORBA.Object obj, org.omg.CORBA.ImplementationDef impl);

This method is used to deactivate an object implementation under the
control of an Activator. In this method, the ORB uniquely identifies the object
implementation to deactivate by passing the Activator an object reference
and an InplementationDef parameter—from which the implementation can
obtain ref_data, the unique identifier. For an implementation with a large
number of objects, you might use deactivate() to clean up state data when
you have a loaded cache of objects.

Parameter Description
obj The object reference of the object to deactivate.
impl The instance of ImplementationDef.

CreationlmplDef

CreationimplDef

struct CreationimplDef

The CreationImplDef interface is an IDL struct that provides a set of attributes for
a specific object implementation. Methods for querying and setting the values
for these attributes are provided in this interface. The attributes are _args, _env,
id (for reference data), object_name, _path_name, _policy, and repository_id.

The Object Activation Daemon uses this interface to list, register, and unregister
object implementations. The command line arguments, specified when you use
oadutil, are used to set attributes defined in this interface.

IDL definition

struct CreationImplDef
CORBA: :RepositoryId repository_id;
string object_name;
CORBA: :ReferenceData 1d;
string path_name;
CORBA: :Policy activation_policy;
CORBA: :StringSequence args;
CORBA: :StringSequence env;
}i

Activation policy

The following is a discussion of how the values of a CreationImplDef are used by
the OAD when activating servers in response to client requests.

CreationImplDef provides methods that set the server’s activation policy. These
activation policies only apply to persistent objects, not transient objects.

Policy Description

SHARED_SERVER Multiple clients of a given object share the same
implementation. Only one client is activated by an OAD at a
particular time.

UNSHARED_SERVER Only one client of a given implementation will ever be bound
to the activated server. If multiple clients wish to bind to the
same object implementation, a separate server is activated for
each client. A server exits when its client application
disconnects or exits.

SERVER_PER_METHOD Each method invocation results in a new server being
activated. The server exits when the method invocation
completes.

Activation interfaces and classes 8-3

Examples

8-4 Reference

Examples

The following examples show how the OAD converts CreationImplDef attributes
into executed commands.

Java example

To activate the VisiBroker for Java application called com.mycompany . Server with
the argument CreditUnion and the System Property DEBUG set to 1, fill out a
CreationImplDef with the following attributes:

path_name = "vbj"
args = ["com.mycompany.Server", "CreditUnion"]
env = ["DEBUG=1"]

This would correspond to the OAD spawning the following command:

"vbj -DOAoad_uid=<uid> -DOAactivateIOR=<OAD's ior> -DDEBUG=1 \
com.mycompany . Server CreditUnion"

In addition, the following environment variables would be propagated from the
OAD'’s environment into that of the spawned “vbj” execution.

PATH
CLASSPATH
OSAGENT_PORT
OSAGENT_ADDR
VBROKER_ADM

Environment variables

When the registered Java class is activated by executing the vbj command, the

OAD’s environment is not automatically passed to the spawned process. If set,
the environment variables listed in “Environment variables that are propagated
or passed explicitly” on page 8-5, will be passed explicitly by the OAD.

All other environment variables must be registered using the env attribute in
CreationImplDef.

For activated Java implementations, the environment settings, as recorded in
CreationImplDef’s env attribute, are propagated in two ways:

¢ In the spawned vbj command’s environment

* As System Properties to the class (that is, the -D arguments to the Java virtual
machine)

Therefore, for spawned Java applications, the registration maps to the following
executed command:

vbj -DOAoad_uid=<uid> -DOAactivateIOR=<oad's ior>
{ -Denvl ... -DenvN }
className { argsl ... argsN }

Environment variables that are propagated or passed explicitly

Consequently, the spawned environment contains all the specified
environment variables from the implementation definition as well as
definitions for PATH, CLASSPATH, OSAGENT_PORT, and OSAGENT_ADDR
which are taken from the OAD’s own environment at startup. As with any OA
parameter, those added by the OAD are stripped off during BOA_init and not
seen by the client program.

Environment variables that are propagated or passed explicitly

These are the environment variables that would be propagated from the OAD’s
environment into that of the spawned server or, if set, passed explicitly by the
OAD.

PATH

CLASSPATH

OSAGENT_PORT

OSAGENT_ADDR

VBROKER_ADM

LD_LIBRARY_PATH as set in the CreationImplDef

CreationlmplDef methods

public abstract org.omg.CORBA.Policy activation_policy()

This method retrieves the server’s activation policy.
public abstract void activation_policy(org.omg.CORBA.Policy activation_policy)

This method sets the server’s activation policy. The activation policies are
shared, unshared, and server-per-method.

Parameter Description

activation_policy The server’s activation policy.

public abstract String[] args()
This method retrieves a list of arguments passed to the server.
public abstract void args(String args(])

This method sets the command-line arguments to be passed to the server.
You must specify the class name as the first argument. For more information,
see “Examples” on page 8-4.

Parameter Description

args An array of strings containing all command-line arguments.

public abstract String[] env()

This method retrieves a list of environment settings passed to the server.

Activation interfaces and classes 8-5

CreationlmplDef methods

Note

8-6 Reference

public abstract void env(String env([])

This method sets the environment settings to be passed to the server. For
more information about setting the env attribute, see “Environment
variables” on page 8-4.

Parameter Description

env An array of strings containing a list of environment settings.

public abstract byte[] id()
This method retrieves the reference data identifier for the implementation.
public abstract void id(byte id[])

This method sets the reference data identifier for the implementation.

Parameter Description

id An array of bytes containing the implementation’s reference
data identifier.

public abstract String object_name()
This method retrieves the implementation’s object name.
public abstract void object_name(String object_name)

This method sets the implementation’s object name.

Parameter Description

object_name A string containing the implementation’s object name.

public abstract String path_name()
For registrations, this method retrieves the string “vbj”.
public abstract void path_name(String path_name)

This method sets the exact path name of the executable program that
implements the object. For programs, the path must be “vbj”.

The environment variable setting for the OAD’s path must be able to find the
vbj executable. The OAD path is set during installation.

Parameter Description

path_name A string containing the implementation’s path name.

public abstract String repository_id()

This method retrieves the implementation’s repository identifier.

ImplementationDef

public abstract void repository_id(String repository _id)

This method sets the implementation’s repository identifier.

Parameter Description
repository_id A string containing the implementation’s repository identifier.
ImplementationDef

OAD

The ImplementationDef is an empty base class for the types of
ImplementationDefs: ActivationImplDef and CreationImplDef. You only use
ImplementationDef in signatures in the ActivationImplDef or the CreationImplDef
methods.

public interface OAD extends org.omg.CORBA.Object

The OAD interface provides access to the OAD (Object Activation Daemon). It
is used by the administration tools for listing, registering, and unregistering

objects. It can also be used by client code for programmatic administration of
the OAD.

interface OAD {
CreationImplDef create_CreationImplDef();

Object reg_implementation(in extension::CreationImplDef impl)
raises(DuplicateEntry,InvalidPath);

CreationImplDef get_implementation(in CORBA::RepositoryId repld,
in string object_name)
raises (NotRegistered);
void change_implementation(in extension::CreationImplDef old_info,
in extension::CreationImplDef new_info)
raises (NotRegistered, InvalidPath, IsActive);

attribute boolean destroy_on_unregister;

void unreg_implementation(in CORBA::RepositoryId repld,in string object_name)
raises (NotRegistered);

void unreg_interface(in CORBA::RepositoryId repId)
raises (NotRegistered);

void unregister_all();
ImplementationStatus get_status(in CORBA::RepositoryId repld,

in string object_name)
raises (NotRegistered);

Activation interfaces and classes 8-7

ImplementationStatus

ImplStatusList get_status_interface(in CORBA::RepositoryId repld)
raises (NotRegistered);

ImplStatusList get_status_all();

Object lookup_interface(in CORBA::RepositoryId repld,
in long timeout0
raises (NotRegistered, FailedToExecute, NotResponding, Busy);

Object lookup_implementation(in CORBA::RepositoryId repld,
in string object_name, in long timeout(
raises(NotRegistered, FailedToExecute, NotResponding, Busy);

CreationImplDef boa_activate_obj(in Object obj,
in string repository_id,
in long unique_id)
raises (NotRegistered);

void boa_deactivate3_obj(in Object obj,
in string repository_id
in long unique_id)
raises(NotRegistered);

string generated_command(in extension::CreationImplDef impl);

string generated_environment (inextension::CreationImplDef impl);

}i

ImplementationStatus

ImplementationStatus is a struct which includes impl from CreationImplDef and the
status from ObjectStatusList. ObjectStatusList is a struct specifying a unique_id
for a long type and activation_state for State. The implementation can have one
of the following activation states:

e Active
¢ Inactive
* Waiting for activation

module Activation

{

struct ObjectStatus {
long unique_id;
State activation_state;
Object objRef;
}i
typedef sequence<ObjectStatus>ObjectStatusList;
struct ImplementationStatus {
extension::CreationImplDef impl;
ObjectStatusList status;
}i

8-8 Reference

OAD methods

OAD methods

public void change_implementation(org.omg.CORBA.CreationimpIDef old_info,
org.omg.CORBA.CreationlmplDef new_info)

This method dynamically changes an object’s implementation. You can use
this method to change the registration’s activation policy, path name,
argument settings, and environment settings.

Parameter Description
old_info The information you want to change.
new_info The information to replace the old info.

This method throws the following exceptions.

Exception Description

NotRegistered ~ The object you specify is not registered. You must specify a registered
object.

InvalidPath The Java class or cpp executable is not found.

IsActive The object implementation is currently running. Deactivate the object

and then try to change its information.

Caution You cannot change information for a currently active implementation. Be
sure to exercise caution when changing an object’s implementation name
and object name with this method. Doing so will prevent client applications
from locating the object with the old name.

public abstract CreationlmplDef boa_activate_obj (Object obj, string repository_id, long unique_id)

This method is invoked implicitly when the spawned process deactivates an
object on which the obj_is_ready was previously called.

Parameter Description

obj A string containing an object name.

repository_id A string containing a repository identifier.

unique_id The same identifier used when the boa_activate_obj was invoked.

This method throws the following exception.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

Activation interfaces and classes 8-9

OAD methods

void boa_deactivate_obj (Object obj, string repository_id, long unique_id)

8-10 Reference

This method returns a string which represents the command-line option that
is executed for a given implementation.

Parameter Description

obj A string containing an object name.

repository_id A string containing a repository identifier.

unique_id The same identifier used when the boa_activate_obj was invoked.

This method throws the following exception.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

public abstract CreationimplDef create_CreationimplDef()

This method creates an instance of CreationImplDef. You can then set its
attributes as explained in “CreationImplDef” on page 8-3.

Exception Description

DuplicateEntry The object you specify is a duplicate entry. You must specify
an unregistered object.

InvalidPath The Java class is not found.

public abstract void destroy_on_unregister(boolean destroy_on_unregister)

This method sets the destroy_on_unregister attribute for the OAD. If the
attribute is set to true, any active implementations are shut down when
unregistered.

public abstract boolean destroy_on_unregister()

This method retrieves the setting for the destroy_on_unregister attribute for an
implementation. If the attribute is set to true, any active implementations are
shut down when unregistered.

public abstract String generated_command (org.omg.CORBA.CreationimplDef impl)

This method returns a string which represents the command-line option that
will be executed for a given implementation.

public abstract String generated_environment (com.Inprise.vbroker.extension.CreationimplDef impl)

This method returns a string which represents the environment in which the
spawned server is executed for a given implementation.

OAD methods

public org.omg.CORBA.CreationlmplDef get_implementation(String repository _id,
String object_name)

This method retrieves information about implementations registered for the
specified repository identifier and object name.

Parameter Description
repository_id A string containing a repository identifier.
object_name A string containing an object name.

This method throws the following exceptions.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

InvalidPath The Java class or cpp executable is not found.

IsActive The object implementation is currently running. Deactivate

the object and then try to change its information.

public com.inprise.vbroker.Activation.ImplementationStatus get_status
(String repository _id, String object_name)

This method retrieves the status information about implementations
registered for the specified repository identifier and object name.

Parameter Description
repository_id A string containing a repository identifier.
object_name A string containing an object name.

public Activation.ImplementationStatus(] get_status_all()
This method gets the status information for all implementations.
public Activation.ImplementationStatus|] get_status_interface(String repository_id)

This method gets the status information about implementations registered
for the specified repository identifier.

Parameter Description

repository_id A string containing a repository identifier.

public Activation ImplStatusList get_status_interface (CORBA::Repositoryld repld)
This method returns the Object reference for an implementation of the
specified Repositoryld.

Parameter Description

repository_id A string containing a repository identifier.

Activation interfaces and classes 8-11

OAD methods

This method throws the following exception.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

FailedToExecute The object that you specified failed to execute. An error
occurred during the execution.

NotResponding No response to the method.

Busy The object that you specified is in use.

public Activation ImplStatusList get_status_all ()
This method returns status information for all registered implementations.
public org.omg.CORBA.Object lookup_interface (CORBA::Repositoryld replD, long timeout)

This method looks up a specific implementation.

Parameter Description
repository_id A string containing a repository identifier.
timeout

This method throws the following exceptions.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

FailedToExecute The object that you specified failed to execute. An error
occurred during the execution.

NotResponding No response to the method.

Busy The object that you specified is in use.

public org.omg.CORBA.Object lookup_implementation (CORBA::Repositoryld replD, string
object_name, long timeout)

This method is invoked implicitly when the spawned process calls
BOA::0bj_is_ready. This method does not need to be invoked directly by the

client.
Parameter Description
repository_id A string containing a repository identifier.
object_name A string containing an object name.
timeout

8-12 Reference

OAD methods

This method throws the following exceptions.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

FailedToExecute The object that you specified failed to execute. An error
occurred during the execution.

NotResponding No response to the method.

Busy The object that you specified is in use.

public org.omg.CORBA.Object reg_implementation(org.omg.CORBA.CreationlmplDef impl)

This method registers an implementation with the OAD and the VisiBroker
directory service.

Parameter Description

impl The instance of CreationImplDef.

This method throws the following exceptions.

Exception Description

DuplicateEntry The object you specify is a duplicate entry. You must specify
an unregistered object.

InvalidPath The Java class is not found.

public void unreg_implementation(String repository_id, String object_name)

This method unregisters implementations by repository identifier and object
name. If the destroy_on_unregister attribute is set to true, this method
terminates all processes currently implementing the repository identifier and
object name that is specified.

Parameter Description
repository_id A string containing a repository identifier.
object_name A string containing an object name.

This method throws the following exceptions.

Exception Description

NotRegistered The object you specify is not registered. You must specify a
registered object.

Activation interfaces and classes 8-13

OAD methods

public void unreg_interface(String repository_id)

This method unregisters all implementations for a repository identifier. If the
destroy_on_unregister attribute is set to true, this method terminates all
processes currently implementing the repository identifier specified.

Parameter Description

repository_id A string containing a repository identifier.

This method throws the following exceptions.

Exception Description
NotRegistered = The object you specify is not registered. You must specify a registered
object.

public void unregister_all()

This method unregisters all implementations. Unless the attribute
destroy_on_unregister is set to true, all active implementations continue to

execute.

8-14 Reference

Naming service interfaces
and classes

This chapter describes the interfaces and classes for the VisiBroker Naming
Service. The VisiBroker Naming Service is a complete implementation of the
Interoperable Naming Specification document (orbos/98-10-11) from the OMG.

NamingContext

public interface NamingContext extends com.inprise.vbroker. CORBA.Object

This object is used to contain and manipulate a list of names that are bound to
ORB objects or to other NamingContext objects. Client applications use this
interface to resolve or list all of the names within that context. Object
implementations use this object to bind names to object implementations or to
bind a name to a NamingContext object. The following IDL sample shows the IDL
specification for the NamingContext.

IDL definition

module CosNaming {

interface NamingContext {
void bind(in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);
void bind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

Naming service interfaces and classes 9-1

NamingContext methods

Object resolve(in Name n)
raises(NotFound, CannotProceed, InvalidName);
void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);
NamingContext new_context();
NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
void destroy()
raises (NotEmpty) ;
void list(in unsigned long how_many,
out BindingList bl,
out BindingIterator bi);
}i
}i

NamingContext methods

public void bind(CosNaming.NameComponent]] n, org.omg.CORBA.Object obj) throws
(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName,
CosNaming.NamingContextPackage.AlreadyBound);

This method attempts to bind the specified Object to the specified Name by
resolving the context associated with the first NameComponent and then binding
the object to the new context using the following Name:

Name [NameComponent,, . . ., NameComponent (n-1) , NameComponent, |

This recursive process of resolving and binding continues until the context
associated with the NameComponent (n—1) is resolved and the actual
name-to-object binding is stored. If parameter n is a simple name, the obj will
be bound to n within this NamingContext.

Parameter Description
n A Name, initialized with the desired name for the object.
obj The object to be named.

The following exceptions may be throws by this method.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned naming context.

InvalidName The specified Nane has zero name components or the id field of one
of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has already been bound
to another object within the NamingContext.

9-2 Reference

NamingContext methods

public void rebind(CosNaming.NameComponent[] n, in org.omg.CORBA.Object obj) throws
(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName);

This method is exactly the same as the bind method, except that the
AlreadyBound exception will never be thrown. If the specified Nane has already
been bound to another object, that binding is replaced by the new binding.

Parameter Description
n A Name structure, initialized with the desired name for the object.
obj The object to be named.

The following exceptions may be thrown by this method.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned naming context.

InvalidName The specified Nane has zero name components or the id field of one
of its name components is an empty string.

public void bind_context(CosNaming NameComponent[] n, CosNaming.NamingContext nc) throws
(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed, InvalidName,
CosNaming.NamingContextPackage.AlreadyBound);

This method is identical to the bind method, except that the supplied Name will
be associated with a NamingContext, not an arbitrary ORB object.

Parameter Description

n A Name structure initialized with the desired name for the naming
context. The first (n—1) NameComponent structures in the sequence
must resolve to a NamingContext.

ne The NamingContext object to be bound.

The following exceptions may be thrown by this method.

Exception Description
NotFound The Nane, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned naming context.

InvalidName The specified Name has zero name components or the id field of one
of its name components is an empty string.
AlreadyBound The Name on a bind or bind_context operation has already been bound

to another object within the NamingContext.

Naming service interfaces and classes 9-3

NamingContext methods

public void rebind_context(CosNaming. NameComponent(] n, in CosNaming.NamingContext nc) throws
(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName);

This method is exactly the same as the bind_context method, except that the
AlreadyBound exception will never be thrown. If the specified Name has already
been bound to another naming context, that binding is replaced by the new

binding.
Parameter Description
n A Name structure, initialized with the desired name for the object.
ne The NamingContext object to be rebound.

The following exceptions may be thrown by this method.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned naming context.

InvalidName The specified Nane has zero name components or the id field of one
of its name components is an empty string.

public org.omg.CORBA.Object resolve(CosNaming.NameComponent[] n) throws
(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName);

This method attempts to resolve the specified Name and return an object
reference. If parameter n is a simple name, it is resolved relative to this
NamingContext.

If n is a complex name, it is resolved using the context associated with the first
NameComponent. Next, the new context to resolve the following Name:

Name [NameComponent (2)r . , NameComponent (n-1) , NameComponent,]

This recursive process continues until the object associated with the nth
NameComponent is returned.

Parameter Description

n A Nane structure, initialized with the name for the desired object.

9-4 Reference

NamingContext methods

The following exceptions may be thrown by this method.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned naming context.

InvalidName The specified Name has zero name components or the id field of one
of its name components is an empty string.

public void unbind(CosNaming.NameComponent[] n) throws

(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName);

This method performs the inverse operation of the bind method, removing
the binding associated with the specified Nane.

Parameter Description

n A Name structure, initialized with the desired name to be unbound.

The following exceptions may be thrown by this method.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned naming context.

InvalidName The specified Nane has zero name components or the id field of one
of its name components is an empty string.

public CosNaming.NamingContext new_context();

This method creates a new naming context. The newly created context will
be implemented within the same server as this object. The new context is
initially not bound to any Nane.

public CosNaming.NamingContext bind_new_context(in NamComponent[] n) throws
(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed,
CosNaming.NamingContextPackage.InvalidName,
CosNaming.NamingContextPackage.AlreadyBound);

This method creates a new context and binds it to the specified Name within
this Context.

Parameter Description

n A Nane structure, initialized with the desired Nane for the newly
created NamingContext object.

Naming service interfaces and classes 9-5

NamingContextExt

The following exceptions can be thrown by this method.

Exception Description
NotFound The Name, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned NamingContext.

InvalidName The specified Name has zero name components or the id field of one
of its name components is an empty string.

AlreadyBound The Name on a bind or bind_context operation has already been bound
to another object within the NamingContext.

public void destroy() throws(CosNaming.NamingContextPackage.NotEmpty);

This method deactivates this naming context. Any subsequent attempt to
invoke operations on this object will throw a CORBA.OBJECT_NOT_EXIST
runtime exception.

Before using this method, all Name objects that have been bound relative to
this NamingContext should be unbound using the unbind method. Any attempt
to destroy a NamingContext that is not empty will cause a NotEmpty exception to
be thrown.

public void list(int how_many,
CosNaming.BindingList bl,
CosNaming.Bindinglterator bi)

This method returns all of the bindings contained by this context. Up to
“how_many” Names are returned with the BindingList. Any left over
bindings will be returned via the BindingIterator. The returned BindingList
and BindingIterator, described in detail in “Binding and BindingList” on
page 9-8, can be used to navigate the list of names.

Parameter Description
how_many The maximum number of Names to be returned in the list.
bl A list of Names returned to the caller. The number of names in the

list will not exceed how_many.

bi An iterator for use in traversing the rest of the Names.

NamingContextExt

9-6 Reference

public linterface NamingContextExt extends CosNaming.NamingContext

The NamingContextExt interface, which extends NamingContext, provides the
operations required to use stringified names and URLs.

IDL definition

module CosNaming {

NamingContextExt methods

interface NamingContextExt :NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n)
raises(InvalidName);

Name to_name(in StringName sn)
raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);
Object resolve_str(in StringName n)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);
}i
}i

NamingContextExt methods

public java.lang.String to_string(CosNaming.NameComponent[] n) throws
(CosNaming.NamingContextPackage.InvalidName);

This operation returns the stringified representation of the specified Name.

Parameter Description

n A Name structure initialized with the desired name for object.

The following exceptions can be thrown by this method.

Exception Description

InvalidName The specified Nane has zero name components or the id field of one
of its name components is an empty string.

public CosNaming.NameComponent[] to_name(java.lang.String sn) throws
(CosNaming.NamingContextPackage.InvalidName);

This operation returns a Name object for the specified stringified name.

Parameter Description

sn The stringified name of an object.

The following exceptions can be thrown by this method.

Exception Description

InvalidName The specified Name has zero name components or the id field of one
of its name components is an empty string.

Naming service interfaces and classes 9-7

Binding and BindingList

public java.lang.String to_url(java.lang.String addr, java.lang.String sn) throws
(CosNaming.NamingContextPackage.InvalidAddress,
CosNaming.NamingContextPackage.InvalidName);

This operation returns a fully-formed string URL given the specified URL
component and the stringified name.

Parameter Description

addr A URL component of the form “myhost.inprise.com:800”. If the
Address is empty, it is the local host.

sn A stringified name of an object.

The following exceptions can be thrown by this method.

Exception Description
InvalidAddress The specified Address is malformed.
InvalidName The specified Name has zero name components or the id field of one

of its name components is an empty string.

public org.omg.CORBA.Object resolve_str(java.lang.String n) throws
(CosNaming.NamingContextPackage.NotFound,
CosNaming.NamingContextPackage.CannotProceed, InvalidName,
CosNaming.NamingContextPackage.AlreadyBound);

This operation returns a Name object for the specified stringified name.

Parameter Description

n A stringified name of an object.

The following exceptions can be thrown by this method.

Exception Description
NotFound The Nane, or one of its components, could not be found.
CannotProceed One of the NameComponent objects in the sequence could not be

resolved. The client may still be able to continue the operation from
the returned NamingContext.

InvalidName The specified Name has zero name components or the id field of one
of its name components is an empty string.
AlreadyBound The Name on a bind or bind_context operation has already been bound

to another object within the NamingContext.

Binding and BindingList

public interface Binding

The Binding, BindingList, and BindingIterator interfaces are used to describe the
name-object bindings contained in a NamingContext. The Binding struct

9-8 Reference

IDL definition

encapsulates one such pair. The binding_name field represents the Name and the
binding_type indicates whether the Nane is bound to an ORB object or a
NamingContext object.

The BindingList is a sequence of Binding structures contained by a NamingContext
object.

IDL definition

module CosNaming {

enum BindingType {
nobject,
ncontext
}
struct Binding {
Name binding_name;
BindingType binding_type;
}i
typedef sequence<Binding> BindingList;

}i

Bindinglterator

public interface Bindinglterator extends com.inprise.vbroker. CORBA.Object

This object allows a client application to walk through the unbounded
collection of bindings returned by the NamingContext operation 1ist, described in
“public void list(int how_many, CosNaming.BindingList bl,
CosNaming.Bindinglterator bi)” on page 9-6.

IDL definition

module CosNaming {

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList b);
void destroy();
}i
}i

Naming service interfaces and classes 9-9

Bindinglterator methods

Bindinglterator methods

public boolean next_one(CosNaming.Binding b);

This method returns the next Binding from the collection. The values false is
returned if the list has been exhausted. Otherwise, the value true is returned.

Parameter Description
b The next Binding object from the list.

public boolean next_n(int how_many, CosNaming.BindingList b);

This method returns a BindingList containing the number of requested
Binding objects from the list. The number of bindings returned may be less
than the requested amount if the list is exhausted. The value falseis
returned when the list has been exhausted. Otherwise, the value true is
returned.

Parameter Description
how_many The maximum number of Binding object desired.
b A BindList containing no more than the requested number of

Binding objects.

public void destroy();

This method destroys this object and releases the memory associated with
the object. Failure to call this method will result in increased memory usage.

NamingContextFactory

9-10 Reference

public interface NamingContextFactory extends com.inprise.vbroker. CORBA.Object

This interface is provided to instantiate an initial NaningContext. A client may
bind to an object of this type and use the create_context method to create an
initial context. Once the initial context has been created, the new_context
method, described in “public CosNaming.NamingContext new_context();” on
page 9-5, can be used to create other contexts. An instance of this naming
context factory is created when the naming service is started, described in
Chapter 18, “Using the Naming Service,” of the VisiBroker for Java
Programmer’s Guide.

To create an initial NaningContextFactory that automatically creates a single root
context, see “ExtendedNamingContextFactory” on page 9-11.

IDL definition

module CosNaming {

NamingContextFactory methods

interface NamingContextFactory {
NamingContext create_context();
oneway void shutdown();

}i

NamingContextFactory methods

public CosNaming.NamingContextExt create_context();

This method allows a client to create a naming context. Since the
specification for naming contexts states that they do not have any notion of a
root context, simply instantiating a NaningContextFactory will not create a
naming context.

public void shutdown();

This method allows a client to gracefully shutdown the naming service. If the
service is restarted with the same logfile, the factory will be restored to the
state it had prior to being shutdown.

public CosNamingExt.ClusterManager get_cluster_manager);
This method creates a cluster using a specified cluster criterion.
public void remove_stale_contexts (java.lang.String password);

This method allows the client to remove members from the Cluster
throughout its lifetime.

public CosNaming.NamingContext[] list_all_roots (java.lang.String password);

This method allows you to list all root contexts.

ExtendedNamingContextFactory

public interface ExtendedNamingContextFactory extends CosNamingExt.NamingContextFactory

This interface extends the NamingContextFactory interface and allows the creation
of a default root within a factory when the extended naming service is started,
described in Chapter 18, “Using the Naming Service,” of the VisiBroker for Java
Programmer’s Guide.

IDL definition

module CosNaming {

interface ExtendedNamingContextFactory : NamingContextFactory({
NamingContext root_context();
}i
}i

Naming service interfaces and classes 9-11

ExtendedNamingContextFactory methods

ExtendedNamingContextFactory methods

public CosNaming.NamingContextExt root_context();

This method returns the root naming context that was automatically created
when this object was instantiated.

9-12 Reference

Event service
interfaces and classes

This chapter describes the interfaces and classes for the VisiBroker Event
Service.

ConsumerAdmin

class org.omg.CosEventChannelAdmin.ConsumerAdmin extends ConsumerAdminPOA

This interface is used by consumer applications to obtain a reference to a proxy

supplier object. This is the second step in connecting a consumer application to
an EventChannel.

IDL definition

module CosEventChannelAdmin {
interface ConsumerAdmin {
ProxyPushConsumer obtain_push_supplier();
ProxyPullConsumer obtain_pull_supplier();
}i
}i

Java definition

class ConsumerAdmin {
org.omg.CosEventChannelAdmin. ProxyPushSupplier obtain_push_supplier ();
org.omg.CosEventChannelAdmin. ProxyPullSupplier obtain_pull_supplier ();

Event service interfaces and classes 10-1

ConsumerAdmin methods

ConsumerAdmin methods

public org.omg.CosEventChannelAdmin.ProxyPushSupplier obtain_push_supplier();

The obtain_push_supplier method is invoked if the calling consumer
application is implemented using the push model. If the application is
implemented using the pull model, the obtain_pull_supplier method should
be invoked.

public org.omg.CosEventChannelAdmin.ProxyPullSupplier obtain_pull_supplier();

The returned reference is used to invoke either the connect_push_consumer,
described in “ProxyPushSupplier” on page 10-7, or the connect _pull_consumer
method, described in “ProxyPullSupplier” on page 10-6.

EventChannel

class org.omg.CosEventChannelAdmin.EventChannel

The EventChannel class provides the administrative operations for adding
suppliers and consumers to the channel and for destroying the channel.

Suppliers and consumers both use the resolve_initial_instances method to
obtain an EventChannel reference. If the object name is not specified, a suitable
EventChannel will be located by VisiBroker. Once a supplier or consumer is
connected to an EventChannel, it may invoke any of the EventChannel methods.

Java definition

class org.omg.CosEventChannelAdmin.EventChannel {
org.omg.CosEventChannelAdmin.ConsumerAdmin for_consumers ();
org.omg.CosEventChannelAdmin. SupplierAdmin for_suppliers ();
void destroy ();

}

EventChannel methods

org.omg.CosEventChannelAdnin.ConsumerAdmin for_consumers();

This method returns an org.omg. CosEventChannelAdmin. ConsunerAdnin object that
can be used to add consumers to this EventChannel.

org.omg.CosEventChannelAdmin.SupplierAdmin for_suppliers();

This method returns an org.omg. CosEventChannelAdmin. SupplierAdnin object that
can be used to add suppliers to this EventChannel.

void destroy();
This method destroys this EventChannel.

10-2 Reference

EventLibrary (Java)

EventLibrary (Java)

class com.inprise.vbroker.CosEvent.EventLibrary

The EventLibrary class provides several methods for creating an EventChannel
within an application’s process. Using an in-process event channel frees you
from having to start a separate event channel or event channel factory process.

Java definition

class com.inprise.vbroker.CosEvent.EventLibrary {

static org.omg.PortableServer.POA getRootPoal();

static org.omg.PortableServer.POA getTransientPoa();

static org.omg.PortableServer.POA getPersistentPoa();

static org.omg.CORBA.ORB orb();

static org.omg.CORBA.Object activate(
org.omg.PortableServer.POA poa,
org.omg.PortableServer.Servant servant, String name);

static org.omg.CORBA.Object activatePersistent (
org.omg.PortableServer.Servant servant, String name);

static org.omg.CORBA.Object activateTransient (
org.omg.PortableServer.Servant servant);

static EventChannel create_channel (
String name, boolean debug, int maxQueueLength);

static EventChannel create_channel (boolean debug, int maxQueueLength);

static EventChannel create_channel (String name, boolean debug);

static EventChannel create_channel (String name);

static EventChannel create_channel();

static EventChannelFactory create_factory(
String name, boolean debug, int maxQueueLength);

static EventChannelFactory create_factory(String name, boolean debug);

static EventChannelFactory create_factory(String name);

EventLibrary methods

static org.omg.CosEventChannelAdmin.EventChannel create_channel(
String name, boolean debug, int maxQueueLength);

This method creates an EventChannel with the specified nane, debug, and queue

length settings.
Parameter Description
name The name to be used for this channel.
debug If set to true, debugging output is enabled. If set to false, debugging
output is disabled.

maxQueueLength The maximum number of messages that may be queued for each
consumer.

Event service interfaces and classes 10-3

ProxyPullConsumer

static org.omg.CosEventChannelAdmin.EventChannel create_channel(
String name, boolean debug);

This method creates an EventChannel with the specified name, and debug
settings. The queue length for each consumer is set to 100.

Parameter Description

name The name to be used for this channel.

debug If set to true, debugging output is enabled. If set to false, debugging
output is disabled.

static org.omg.CosEventChannelAdmin.EventChannel create_channel(
String name);

This method creates an EventChannel with the specified name. The EventChannel
object’s debug flag is set to false and the queue length is set to 100.

Parameter Description

name The name to be used for this channel.

static org.omg.CosEventChannelAdmin.EventChannel create_channel();

This method creates an EventChannel. The EventChannel object is given no
name, the debug flag is set to false, and the queue length is set to 100.

ProxyPullConsumer

class org.omg.CosEventChannelAdmin.ProxyPullConsumer

This class is used by a pull supplier application. It provides the
connect_pull_supplier method for connecting the supplier’s PullSupplier-derived
object to the EventChannel. An AlreadyConnected exception is raised if an attempt is
made to connect the same proxy more than once.

IDL definition

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPullConsumer : CosEventComm::PullConsumer {
void connect_pull_supplier(in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected);

10-4 Reference

Javadefinition

Java definition

class org.omg.CosEventChannelAdmin.ProxyPullConsumer extends
org.omg.CosEventComm.PullConsumerQOperations {
public void connect_pull_supplier (org.omg.CosEventComm.PullSupplier pull_supplier)
throws org.omg.CosEventChannelAdmin.AlreadyConnected;

ProxyPullConsumer method

void connect_pull_supplier (org.omg.CosEventComm.PullSupplier pull_supplier)

This method connects a PullSupplier to an EventChannel.

Parameter Description
pull_supplier The PullSupplier-derived object to be connected to the
EventChannel.
ProxyPushConsumer

public interface org.omg.CosEventChannelAdmin.ProxyPushConsumer

This interface is used by a push supplier application and provides the
connect_push_supplier method, used for connecting the supplier’s
PushSupplier-derived object to the EventChannel. An AlreadyConnected exception is
raised if an attempt is made to connect the same proxy more than once.

IDL definition

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPushConsumer : CosEventComm::PushConsumer {
void connect_push_supplier (in CosEventComm::PushSupplier push_supplier)
raises (AlreadyConnected) ;
}i
}i

Java definition

public interface ProxyPushConsumer extends
org.omng.CosEventComm. PushConsumer {
public void connect_push_supplier
(org.omg.CosEventComm, PushSupplier push_supplier) throws
org.omg.CosEventChannelAdmin.AlreadyConnected;

Event service interfaces and classes 10-5

ProxyPullSupp

lier

ProxyPushConsumer method

void connect_push_supplier (org.omg.CosEventComm.PushSupplier push_supplier)

This method connects a PushSupplier to an EventChannel.

Parameter Description

push_supplier PushSupplier-derived object to be connected to the EventChannel.

ProxyPullSupplier

10-6 Reference

public interface org.omg.CosEventChannelAdmin.ProxyPullSupplier

This interface is used by a pull consumer application and provides the
connect_pull_consumer method, used for connecting the consumer’s
PullConsumer-derived object to the EventChannel. An AlreadyConnected exception
will be raised if an attempt is made to connect the same PullConsumer more than
once.

IDL definition

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPullSupplier : CosEventComm::PullSupplier {
void connect_pull_consumer (in CosEventComm::PullConsumer pull_consumer)
raises (AlreadyConnected) ;
}i
}i

Java definition

public interface ProxyPullSupplier extends
org.omg.CosEventComm.PullSupplier {
void connect_pull_consumer (org.omg.CosEventComm.PullConsumer pull_consumer)

ProxyPullSupplier method

void connect_pull_consumer (org.omg.CosEventComm.PullConsumer pull_consumer)

This method connects a PullConsumer to an EventChannel.

Parameter Description

pull_consumer PullConsumer-derived object to be connected to the EventChannel.

ProxyPushSupplier

ProxyPushSupplier

public interface org.omg.CosEventChannelAdmin.ProxyPushSupplier

This interface is used by a push consumer application and provides the
connect_push_consumer method, used for connecting the consumer’s
PushConsumer-derived object to the EventChannel. An AlreadyConnected exception
will be raised if an attempt is made to connect the same PushConsumer more than
once.

IDL definition

module CosEventChannelAdmin {
exception AlreadyConnected();
interface ProxyPushSupplier : CosEventComm::PushSupplier {
void connect_push_consumer(in CosEventComm::PushConsumer push_consumer)
raises (AlreadyConnected) ;
}i
}i

Java definition

public interface org.omg.CosEventChannelAdmin.ProxyPushSupplier extends
org.omg.CosEventComm. PushSupplier {
public void connect_push_consumer (org.omg.CosEventComm.PushConsumer
push_consumer) throws org.omg.CosEventChannelAdmin.AlreadyConnected;

ProxyPushSupplier method

void connect_push_consumer (org.omg.CosEventComm.PushConsumer push_consumer)

This method connects a PushConsumer to an EventChannel.

Parameter Description
push_consumer PushConsumer-derived object to be connected to the EventChannel.
PullConsumer

public interface org.omg.CosEventComm.PullConsumer

This interface is used to derive consumer objects that use the pull model of
communication. The pull method is called by a consumer whenever it wants
data from the supplier. A Disconnected exception will be raised if the supplier
has disconnected.

Event service interfaces and classes 10-7

IDL definition

IDL definition

module CosEventChannelAdmin {
exception AlreadyConnected();
interface PullConsumer {
void disconnect_pull_consumer ();
}i

Java definition

public interface PullConsumer {
public void disconnect_pull_consumer ();

}

PullConsumer method

void disconnect_push_consumer ()

The disconnect_push_consumer method deactivates this consumer if the channel
is destroyed.

PushConsumer

public interface org.omg.CosEventComm.PushConsumer

This interface is used to derive consumer objects that use the push model of
communication. The push method is used by a supplier whenever it has data for
the consumer. A Disconnected exception will be raised if the consumer has
disconnected.

IDL definition

module CosEventComm {
exception Disconnected();
interface PushConsumer {
void push(in any data) raises(Disconnected);
void disconnect_push_consumer();
}i
}i

Java definition

interface org.omg.CosEventComm.PushConsumer {
public void push (org.omg.CORBA.Any data) throws org.omg.CosEventComm.Disconnected;
public void disconnect_push_consumer ();

10-8 Reference

PullSupplier

PushConsumer methods

void disconnect_push_consumer ()

The disconnect_push_consumer method deactivates this consumer if the channel
is destroyed.

void push (org.omg.CORBA.Any data)

A supplier communicates event data to the consumer by invoking the push()
method and passing the event data as a parameter. If the event
communication has already been disconnected, the Disconnected exception

is raised.
Parameter Description
data Information to be passed to the consumer.

PullSupplier

public interface org.omg.CosEventComm.PullSupplier

This interface is used to derive supplier objects that use the pull model of
communication.

IDL definition

module CosEventComm {
interface PullSupplier {
any pull() raises(Disconnected);
any try_pull (out boolean has_event) raises(Disconnected);
void disconnect_pull_supplier();
}i
}i

Java definition

public interface PullSupplierOperations {
public org.omg.CORBA.Any pull () throws org.omg.CosEventComm.Disconnected;
public org.omg.CORBA.Any try_pull (org.omg.CORBA.BooleanHolder has_event)
throws org.omg.CosEventComm.Disconnected;
public void disconnect_pull_supplier ();

Event service interfaces and classes 10-9

PushSupplier

PullSupplier methods

any pull();

This method blocks until there is data available from the supplier. The data
returned is an Any type. If the consumer has disconnected, this method raises
a Disconnected exception.

any try_pull(org.ong.CORBA.BooleanHolder has_event);

This non-blocking method attempts to retrieve data from the supplier. When
this method returns, has_event is set to the value true and the data is returned
as an any type if there was data available. If has_event is set to the value false,
then no data was available and the return value will be NULL.

Parameter Description

has_event When the method returns, has_event contains true if data is being
returned. Otherwise, it contains false.

void disconnect_pull_supplier();

This method deactivates this pull server if the channel is destroyed.

PushSupplier

public interface org.omg.CosEventComm.PushSupplier

This interface is used to derive supplier objects that use the push model of
communication. The disconnect_push_supplier method is used by the
EventChannel to disconnect supplier when it is destroyed.

IDL definition

module CosEventComm {
exception AlreadyConnected();
interface PushSupplier {
void disconnect_push_supplier();
}i
}i

Java definition

public interface org.omg.CosEventComm.PushSupplierOperations {
public void disconnect_push_supplier ();

}

10-10 Reference

SupplierAdmin

PushSupplier method

void disconnect_push_supplier();

This method deactivates this push supplier if the channel is destroyed.

SupplierAdmin

public interface org.omg.CosEventChannelAdmin.SupplierAdmin

This interface is used by supplier applications to obtain a reference to the proxy
consumer object. This is the second step in connecting a supplier application to
an EventChannel.

IDL definition

module CosEventChannelAdmin {
interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer () ;
ProxyPullConsumer obtain_pull_consumer();
}i
}i

Java definition

public interface SupplierAdmin {
public org.omg.CosEventChannelAdmin.ProxyPushConsumer obtain_push_consumer ();
public org.omg.CosEventChannelAdmin.ProxyPullConsumer obtain_pull_consumer ();

}

SupplierAdmin methods

You should invoke the obtain_push_consumer method if you are implementing the
supplier application using the push model. If the application is implemented
using the pull model, the obtain_pull_consumer method should be invoked.

public ProxyPushConsumer obtain_push_consumer();

The obtain_push_consumer method returns a ProxyPushConsumer object, which is
then used to connect a push-style supplier.

public ProxyPullConsumer obtain_pull_consumer();

The returned reference is used to invoke the either the connect_push_supplier,
described on “ProxyPushConsumer” on page 10-5, or the
connect_pull_supplier method, described in “ProxyPullConsumer” on

page 10-4.

Event service interfaces and classes 10-11

10-12 Reference

Exceptions classes

This chapter describes the exception classes used in VisiBroker.

Introduction

CORBA system exceptions are a subclass of java.lang.RuntimeException. This
means that CORBA system exceptions do not need to be declared in all method
signatures which might raise such exceptions.

The UserException is a subclass of java.lang.Exception.

Note Due to the changes in the inheritance hierarchy, the class
org.omg.CORBA.Exception no longer exists.

java.lang.Exception

org.omg.CORBA.UserException java.lang.RuntimeException
UserEx1 UserEx2 org.omg.CORBA.SystemException

org.omg.CORBA.COMM_FAILURE, etc.

SystemException

public class SystemException extends java.lang.RuntimeException

CORBA system exceptions are raised when the runtime encounters problems.
They inherit from java.lang.RuntimeException. Table 11.1 summarizes all the
SystemException classes that can be raised and their associated meanings.

Exceptions classes 11-1

SystemException attributes

The standard IDL system exceptions are mapped to final Java classes that
extend org.omg.CORBA. SystemException and provide access to the IDL major and
minor exception code, as well as a string describing the reason for the
exception.

Note There are no public constructors for org.omg.CORBA. SystemException; only classes
that extend it can be instantiated.

Currently, VisiBroker does not support the use of minor codes; consequently,

11-2 Reference

there is no minor method to set the minor code.

SystemException attributes

public CompletionStatus completed

This attribute indicates whether the operation was completed or not.

Table 11.1

Exception class name
BAD_CONTEXT
BAD_INV_ORDER
BAD_OPERATION
BAD_PARAM
BAD_TYPECODE
COMM_FAILURE
DATA_CONVERSION
FREE_MEM

INDIRECTION EXCEPTION

IMP_LIMIT
INITIALIZE

INTERNAL

INTF_REPOS

INV_FLAG

INV_IDENT

INV_OBJREF
INV_POLICY
INVALID_TRANSACTION
MARSHAL
NO_IMPLEMENT
NO_MEMORY
NO_PERMISSION
NO_RESOURCES
NO_RESPONSE
OBJ_ADAPTER

List of system exceptions

Description

Error processing context object.

Routine invocations out of order.
Invalid operation.

An invalid parameter was passed.
Invalid typecode.

Communication failure.

Data conversion error.

Unable to free memory.

Mismatch in typecode indirection when reading or
writing.

Implementation limit violated.

ORB initialization failure.

ORB internal error.

Error accessing interface repository.
Invalid flag was specified.

Invalid identifier syntax.

Invalid object reference specified.
Invalid policy for invocation.

Invalid transaction context encountered.
Error marshalling parameter or result.
Operation implementation not available.
Dynamic memory allocation failure.

No permission for attempted operation.
Insufficient resources to process request.
Response to request not yet available.
Failure detected by object adaptor.

UserException

Table 11.1 List of system exceptions (continued)

Exception class name Description
OBJECT_NOT_EXIST Object is not available.
PERSIST_STORE Persistent storage failure.
REBIND IOR conflicts with the QoS policies that were set.
TRANSACTION REQUIRED Non-null transaction context required.
TRANSACTION_ROLLEDBACK Transaction has been rolled back.
TRANSIENT Transient failure.
UNKNOWN A Java exception of type java.lang.Exception is
thrown.
UserException

public class UserException extends java.lang.Exception

The UserException class is an abstract base class used to define exceptions that an
object implementation may raise. There is no state information associated with
these exception types, but derived classes may add their own state information.
The primary use of this class is to simplify the use of catch blocks in a client’s
code, as shown in Code sample 11.1.

Code sample 11.1 Catching system and user exceptions

try {
proxy.operation();

}

catch(org.omg.CORBA. SystemException se) {
System.out.println("The runtime failed: " + se);

}

catch(org.omg.CORBA.UserException ue) {
System.out.println("The implementation failed: " + ue);

}

UserException constructor

protected UserException()

This method creates a UserException exception.

Exceptions classes 11-3

11-4 Reference

Interceptor and object wrapper
interfaces and classes

This chapter describes the VisiBroker interfaces and classes used with
interceptors and object wrappers. For information about how to create and use
interceptors and object wrappers, see the VisiBroker for Java Programmer’s
Guide.

Introduction

The ORB provides a set of APIs known as interceptors which provide a way to
plug in additional ORB behavior such as support for transactions and security.
The three forms of interceptors are listed in the following table.

Interceptor Type Description

Client Interceptor System level interceptors which can be used to hook ORB services
such as transactions and security into the client ORB processing.

Server Interceptor System level interceptors which can be used to hook ORB services
such as transactions and security into the server ORB processing.

Object Wrappers User level interceptors which provide a simple mechanism for users
to intercept calls to stubs and skeletons allowing for simple tracing
and data caching among other things.

InterceptorManagers

Interceptors are installed and managed via interceptor managers. The interface
InterceptorManager is the global interceptor manager used to manager all
global interceptors. Global interceptors may be handed additional interceptor

Interceptor and object wrapper interfaces and classes 12-1

IOR templates

managers to install localized interceptors, for example, per-POA interceptors
use the POAInterceptorManager.

An instance of the global interceptor manager, InterceptorManager, may be
obtained via ORB.resolve_initial_references when passing the String
VisiBrokerInterceptorControl as an argument. This value is only available when
the ORB is in administrative mode, that is, during ORB initialization.

IOR templates

In addition to the interceptor, the Interoperable Object Reference (IOR)
template may be modified directly on the POAIntercptorManager interface
during the call to POALifeCycleInterceptor.create. The IOR template is a full IOR
value with the type_id not set, and all GIOP ProfileBodyValues will have
incomplete object keys. The POA sets the type_id and fills in the object keys of
the template before calling the I0RCreationInterceptors.

InterceptorManager

public interface Interceptor InterceptorManager

This is the base class from which all other interceptor managers are derived.
Interceptor mangers are interfaces which are used to manage the installation
and removal of interceptors from the system.

InterceptorManagerControl

12-2 Reference

public interface InterceptorManagerControl

This is the interface that is responsible for controlling a set of related
interceptor managers.

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

InterceptorManagerControl method

InterceptorManagerControl method

public.com.inprise.vbroker.interceptor.InterceptorManager get_manager (java.lang.string name);

This method is invoked by the ORB to obtain an instance of the an
InterceptorManger which returns a string identifying the manager.

Parameter Description
string name The name of the inceptor.
BindInterceptor

public interface BindInterceptor

You can use this interface to derive your own interceptor for handling bind and
rebind events for a client or server application. The Bind Interceptors are global
interceptors invoked on the client side before and after binds.

If an exception is thrown during a bind, the remaining interceptors in the chain
are not called and the chain is truncated to only those interceptors already
called. Exceptions thrown during bind_succeeded or bind_failed are ignored.

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

Bindinterceptor methods

public.com.inprise.vbroker.IOP.IORValue bind (com.inprise.vbroker.IOP.IORValue ior,
org.omg.CORBA.Object obj, boolean rebind,
com.inprise.vbroker.interceptor.Closure closure);

This method is called during all ORB bind operations.

Parameter Description

ior The Interoperable Object Reference (IOR) for the server object
to which the client is binding.

obj The client object which is being bound to the server. The object

will not be properly initialized at this time, so do not attempt
an operation on it. However, it may be stored in a data
structure and used after the bind has completed.

rebind Specifies whether it is a rebind attempt.

closure A new closure object for the bind operation. The closure will
be used in corresponding calls to either bind_failure or
bind_succeeded.

Interceptor and object wrapper interfaces and classes 12-3

BindInterceptorManager

public com.inprise.vbroker.IOP.IORValue bind_failed (com.inprise.vbroker.|OP.IORValue ior,
org.omg.CORBA.Object obj,
com.inprise.vbroker.interceptor.Closure closure);

This method is called if a bind operation failed.

Parameter Description

ior The IOR of the server object on which the bind operation
failed.

obj The client object which is being bound to the server.

closure The closure object previously given in the bind call.

public void bind_succeeded (com.inprise.vbroker.IOP.IORValue ior, org.omg.CORBA.Object obj,
int profilelndex,
com.inprise.vbroker.interceptor.InterceptorManagerContro interceptorControl,
com.inprise.vbroker.interceptor.Closure closure);

This method is called if a bind operation succeeded.

Parameter Description

ior The IOR of the server object on which the bind operation
succeeded.

obj The client object which is being bound to the server.

profileIndex The index of the profile that actually resulted in successful
binding.

interceptorControl This Manager provides a list of the types of Managers.

closure The closure object previously given in the bind call.

public void exception_occurred (com..inprise.vbroker.|OP.IORValue ior,
org.omg.CORBA.Object obj,
org.omg.CORBA::Environment env,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked by the ORB when an exception occurs.

Parameter Description

ior The IOR of the server object on which the bind operation
succeeded.

target The client object which is being bound to the server.

env Contains information on the exception that was raised.

closure May contain data saved by one interceptor method that can be

retrieved later by another interceptor method.

BindinterceptorManager

public interface BindInterceptorManager extends com.inprise.vbroker.interceptor.InceptorManager

This interface is used to add BindInterceptor.

12-4 Reference

Import statement

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

BindinterceptorManager method

public void add (com.inprise.vbroker.interceptor.Bindinterceptor interceptor);

This method is used to add a BindInterceptor.

ClientRequestinterceptor

public interface ClientRequestinterceptor

You use this interface to derive your own client-side interceptor, providing
implementations for those methods that you wish to override. The Client
Request interceptors may be installed during the bind_succeded call of a bind
interceptor and remain active for the duration of the connection. The
methods defined in your derived class will be invoked by the ORB during
the preparation or sending of an operation request, during the receipt of a
reply message, or if an exception is raised.

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

ClientRequestinterceptor methods

public void preinvoke_premarshal (org.omg.CORBA.Object target,
java.lang.String operation, com.inprise.vbroker.|IOP.ServiceContextListHolder service_contexts,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked by the ORB on every request, before the request is
marshaled. An exception thrown from this interceptor will result in the
request being completed immediately The chain will be shortened to only
those interceptors that have already fired, the request will not be sent, and
exception_occured() will be called on all interceptors still in the chain.

Parameter Description
target The client object which is being bound to the server.
operation Identifies the name of the operation being invoked.

Interceptor and object wrapper interfaces and classes 12-5

ClientRequestinterceptor methods

12-6 Reference

Parameter

service_context

closure

Description

Identifies the services assigned by the Orb. These services are
registered with the OMG.

May contain data saved by one interceptor method that can be
retrieved later by another interceptor method.

public void preinvoke_postmarshal (org.omg.CORBA.Object target,
com.inprise.vbroker. CORBA.portable.Outstream payload,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked after every request has been marshaled, but before it
was sent.Any exception thrown in this method will cause the rest of the
chain to not be invoked anymore. The request will not be sent to the server.
exception_occured() will subsequently be called on the whole interceptor

chain.

Parameter
target
payload

closure

Description
The client object which is being bound to the server.
Marshalled buffer.

May contain data saved by one interceptor method that can be
retrieved later by another interceptor method.

public void postinvoke (org.omg.CORBA.Object target,
com.inprise.vbroker.IOP.ServiceContext [] Service_contexts,
com.inprise.vbroker. CORBA.portable.InputStream payload,
org.omg.CORBA.Environment env,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked after a request has completed.

Parameter

target

service_context

payload
env

closure

Description

The client object which is being bound to the server.

Identifies the services assigned by the Orb. These services are
registered with the OMG.

Marshalled buffer.
Contains information on the exception that was raised.

May contain data saved by one interceptor method that can be
retrieved later by another interceptor method.

public void exception_occurred (org.omg.CORBA.Object target, org.omg.CORBA.Environment env,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked by the ORB when an exception was thrown before
the invocation. All exceptions thrown after the invocation will be gathered in
the Environment parameter of the postinvoke method.

ClientRequestinterceptorManager

ClientRequestinterceptorManager

public interface ClientRequestinterceptorManager extends com.inprise.vbroker.interceptor.
InterceptorManager

This interface is used to add and remove ClientRequestInterceptor.

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

ClientRequestinterceptorManager methods

public void add (com.inprise.vbroker.interceptor.ClientRequestinterceptor interceptor);

This method is invoked by the ORB to add a ClientRequestInterceptor.

POALifeCyclelnterceptor

public interface POALifeCycletinterceptor

The POALifeCycleInterceptor is a global interceptor which is invoked every time a
POA is created or destroyed. All other Server-side interceptors may be installed
either as global interceptors, or for a specific POAs. You install the
POALifeCycleInterceptor through the InterceptorManager interface. The
POALifeCycleInterceptor is called during POA creation and destruction.

Import statement

The import statements import com.inprise.vbroker.interceptor.* and
com.inprise.vbroker.PortableServerExt.*; should be included in your code.

POALifeCycleinterceptor methods

public void create (POA poa
org.omg.CORBA.PolicyListHolder policies,
|ORValueHolder ior,
InterceptorManagerControl poaAdmin);

This method is invoked when a new POA is created either explicitly through
a call to create_POR or via AdaptorActivator. With AdapterActivator, the

Interceptor and object wrapper interfaces and classes 12-7

POALifeCyclelnterceptorManager

interceptor is called only after the unknown_adapter method successfully
returns from the AdapterActivator.

Parameter Description

poa The POA that is being created.

policies The list of policies specified for this POA.

iorTemplate The IOR template is a full IOR value with the type_id not set,
and all GIOP.ProfileBodyValues will have incomplete object
keys.

poaAdmin The InterceptorManagerControl used to obtain other

interceptor managers.

public void destroy (POA poa);

This method is called when a POA is just about to be destroyed and all of its
objects have been etherealized. It is guaranteed that destroy will be called on
all interceptors before create will be called again for a POA with the same
name. If the destroy operation throws a system exception it is ignored, and
the remaining interceptors will continue to be called.

Parameter Description
poa Portable Object Adaptor (POA) being destroyed.

POALifeCyclelnterceptorManager

public interface POALifeCyclelnterceptorManager

This interface is used to register POALifeCycleInterceptor.

Import statement

The import statements import com.inprise.vbroker.interceptor.* and
com.inprise.vbroker.PortableServerExt.*; should be included in your code.

POALifeCyclelnterceptorManager method

public void add (POALifeCyclelnterceptor interceptor);
This method is invoked by the ORB to add a PoALifeCycleInterceptor.

Parameter Description

interceptor The interceptor to be added.

12-8 Reference

ActiveObjectLifeCyclelnterceptor

ActiveObjectLifeCyclelnterceptor

public interface ActiveObjectLifeCyclelnterceptor

The ActiveObjectLifeCycleInterceptor interface is called when objects are added
and removed from the active object map. Only used when POA has RETAIN
policy. This interface is a per-POA interceptor which may be installed by a
POALifeCycleInterceptor when the POA is created.

Import statement

The import statements import com.inprise.vbroker.interceptor.* and
com.inprise.vbroker.PortableServerExt.*; should be included in your code.

ActiveObjectLifeCyclelnterceptor methods

public void create (byte[] oid, org.omg.PortableServer.Servant servant,
org.omg.PortableServer.POA adapter);

This method is invoked after an object has been added to the Active Object
Map, either through explicit or implicit activation, using either direct APIs or
a ServantActivator. The object reference and the POA of the new active object
are passed as parameters.

Parameter Description

oid The object ID of the servant being activated.

servant The servant being activated.

adaptor The Portable Object Adpator (POA) on which the servant was
activated.

public void destroy (byte[] oid, org.omg.PortableServer.Servant servant,
org.omg.PortableServer.POA adapter);

This method is called after an object has been deactivated and etherealized.
The object reference and the POA of the object are passed as parameters.

Parameter Description

oid The object ID of the servant being destroyed.

servant The servant being destroyed.

POAadaptor The Portable Object Adpator (POA) on which the servant was
destroyed.

ActiveObjectLifeCyclelnterceptorManager

public interface ActiveObjectLifeCyclelnterceptorManager

This is the interface used to add ActiveObjectLifeCyclelnterceptor.

Interceptor and object wrapper interfaces and classes 12-9

Import statement

Import statement

The import statements import com.inprise.vbroker.interceptor.* and
com.inprise.vbroker.PortableServerExt.*; should be included in your code.

ActiveObjectLifeCyclelnterceptorManager method

public void add (ActiveObjectLifeCyclelnterceptor interceptor);
This method is invoked by the ORB to add a ActiveObjectLifeCycleInterceptor.

ForwardRequestException

public interface ForwardRequestException extends org.omg.CORBA.UserException,

This exception can be raised by ServerRequestInterceptor’s preinvoke method.
The preinvoke method can raise this exception to forward a request to another
object.

Variables

public boolean is_permanent
Specifies if the location forwarding is permanent.
public org.omg.CORBA.Object forward_reference

Provides a reference to the object to which the request gets forwarded.

ServerRequestinterceptor

public interface Interceptor ServerRequestinterceptor

The ServerRequestInterceptor interface is a per-POA interceptor which may be
installed by a POALifeCycleInterceptor at POA creation time. This interface
may be used to perform access control, to examine and insert service contexts,
and to change the reply status of a request.

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

12-10 Reference

ServerRequestinterceptormethods

ServerRequestinterceptor methods

public void preinvoke (org.omg.CORBA.Object target,
java.lang.String operation, com.inprise.vbroker.IOP.ServiceContext [] service_contexts,
com.inprise.vbroker. CORBA .portable.InputStream payload,
com.inprise.vbroker.interceptor.Closure closure) raises (ForwardRequestException);

This method is invoked by the ORB on every request, as soon as the request
arrives on the server side. An exception thrown from this interceptor will
result in the request being completed immediately This method is called
before any Servant Locators are invoked. Due to this, the servant may not be
available.

Parameter Description

target The object on which the request is invoked.

String operation Identifies the name of the operation being invoked.

service_contexts Identifies the services assigned by the Orb. These services are
registered with the OMG.

payload Marshalled buffer.

closure May contain data saved by one interceptor method that can be

retrieved later by another interceptor method.

public void postinvoke_premarshal (org.omg.CORBA.Object target,
com.inprise.vbroker.IOP.ServiceContextListHolder service_contexts,
org.omg.CORBA.Environment env,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked after an upcall to the servant but before marshalling
the reply. An exception here is handled by interrupting the chain and
exception_occured() is called on all interceptors in the chain.

Parameter Description

target The object on which the request is invoked.

service_contexts Identifies the services assigned by the Orb. These services are
registered with the OMG.

env Contains information on the exception that was raised.

closure May contain data saved by one interceptor method that can be

retrieved later by another interceptor method.

public void postinvoke_postmarshal (org.omg.CORBA.Object target,
com.inprise.vbroker. CORBA .portable.OutputStream payload,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked after marshalling the reply but before sending the
reply to the client. Exceptions thrown here are ignored. The entire chain is
guaranteed to be called.

Interceptor and object wrapper interfaces and classes 12-11

ServerRequestinterceptorManager

It is called after the ServantLocator has been invoked. Any exception thrown
in this method will replace the exception thrown by the application program
or, in one-way calls, after the request was successfully sent.

Parameter Description

target The object on which the request is invoked.

payload Marshalled buffer.

closure May contain data saved by one interceptor method that can be

retrieved later by another interceptor method.

public void exception_occurred (org.omg.CORBA.Object target,
org.omg.CORBA::Environment env,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked if an exception is raised at any point of request
processing. An exception thrown during this call should replace the existing
exception in the environment.

Parameter Description

target The object on which the request is invoked.

env Contains information on the exception that was raised.
closure May contain data saved by one interceptor method that can be

retrieved later by another interceptor method.

ServerRequestinterceptorManager

public interface ServerRequestinterceptorManager extends com.inprise.vbroker.interceptor.
InterceptorManager

This interface is used to add ServerRequestInterceptors.

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

ServerRequestinterceptorManager method

public void add (com.inprise.vbroker.interceptor.ServerRequestinterceptor interceptor);

This method is invoked by the ORB to add a ServerRequestInterceptor.

12-12 Reference

IORCreationinterceptor

IORCreationinterceptor

public interface PortableServerExt::IORInterceptor

The IORCreationInterceptor is a per-POA interceptor which may be installed by
a POALifeCyclelnterceptor at POA creation time. The interceptor may be used
to modify IORs by adding additional profiles or components. This interface is
typically used to support services such as transactions or firewall.

In addition to the interceptor, you may also change the per-POA IOR template
which controls all IORs for that POA. See “IOR templates” on page 12-2 for
more information. You may prefer this IOR template approach if the IOR
manipulations are not related to the repository or the OID of the reference being
created.

In addition, making radical changes to the IOR is not recommended.

Import statement

The import statements import com.inprise.vbroker.interceptor.* and
com.inprise.vbroker.PortableServerExt.*; should be included in your code.

IORInterceptor method

public void create (org.omg.PortableServer.POA poa,
com.inprise.vbroker.IOP.IORValueHolder ior);

The method is called whenever the POA needs to create an object reference.
The interceptor may modify the IORValue by adding additional profiles or
components, or changing the existing profiles or components.

Parameter Description

poa The POA on which the object reference is being created.

ior The IOR holder in which you can change the IOR’s profiles or
components.

IORInterceptorManager

public interface PortableServerExt::IORInterceptorManager extends InterceptorManager

This interface is used to add IORInterceptors.

Import statement

The import statements import com.inprise.vbroker.interceptor.* and
com.inprise.vbroker.PortableServerExt.*; should be included in your code.

Interceptor and object wrapper interfaces and classes 12-13

IORInterceptorManager method

IORInterceptorManager method

public void add (IORCreationinterceptor interceptor);

This method is invoked by the ORB to add an IORInterceptor.

Location
enum Location
This enum describes the location, client-side or server-side, where an object
wrapper should be registered.
Closure
public interface Closure extends Object
Closure objects are created by the ORB at the beginning of certain sequences of
interceptor calls. The same Closure object is used for all calls in that particular
sequence. The Closure object contains a single public data field, object, of type
java.lang.Object which may be set by the interceptor to keep state information.
The sequences for which Closure objects are created vary depending on the
interceptor type.
Code sample 12.1 Closure class
class Closure {
java.lang.Object object;
bi
ExtendedClosure

public interface ExtendedClosure extends Closure (
public Requestinfo reqinfo;
public InputStream payload,;

}

This interface is a derived class of Closure and contains a RequestInfo for read
only attribute.

IDL sample 12.1 Requestinfo

struct RequestInfo {
boolean response_expected;
unsigned long request_id;
}i

You can cast the Closure object passed to the ServerRequestInterceptor and
ClientRequestInterceptor to its subclass, ExtendedClosure. ExtendedClosure can be
used to extract the RequestInfo, from which you can extract the request_id and

12-14 Reference

ChainUntypedObjectWrapperFactory

response_expected. The request_id is the unique id assigned to the request. The
response_expected flag indicates whether the request is a one-way call.

int my_response_expected = ((ExtendedClosure)closure).reqInfo.response_expected;
int my_request_id = ((ExtendedClosure)closure).reqInfo.request_id;

For more information, please see the example in examples/interceptor/
client_server.

Note If you want to modify the InputStream, you must use the payload parameter of the
ExtendedClosure. The payload attribute of the request interceptor is read-only; it
does not allow you to change the InputStream.

For this reason, ExtendedClosure provides a read-write InputStream payload
parameter . The main purpose of the payload attribute is to allow a new
InputStrean to be used in place of the old one.

The example examples/interceptor/encryption shows how to use ExtendedClosure’s
payload attribute. In this example, when the interceptor tries to decrypt the data
in an encrypted InputStream, a new InputStream containing the decrypted
message needs to be created. ExtendedClosure serves as a holder for the
InputStream. When the payload is assigned to the newly-created InputStrean, that
InputStream becomes the InputStream associated with the request.

ChainUntypedObjectWrapperFactory

public interface ChainUntypedObject WrapperFactory extends com.inprise.vbroker.interceptor.
UntypedObjectWrapperFactory);

This interface is used by a client or server application to add or remove an
UntypedObjectiirapperFactory object. An UntypedObjectWrapperFactory object is used
to create an UntypedObjectiirapper for each object a client application binds to or
for each object implementation created by a server application.

}i
enum Location (CLIENT,SERVER, BOTH };

abstract interface interface ChainUntypedObjectWrapperFactory :
UntypedObjectWrapperFactory (

void add(UntypedObjectWrapperFactory owFactory, Location loc);
void remove (UntypedObjectWrapperFactory owFactory, Location loc);
long count (Location loc);

}i

See the VisiBroker for Java Programmer’s Guide for complete information on
using object wrappers.

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

Interceptor and object wrapper interfaces and classes 12-15

ChainUntypedObjectWrapperFactory methods

ChainUntypedObjectWrapperFactory methods

public void add (com.inprise.vbroker.interceptor.UntypedObjectWrapperFactory owFactory,
com.inprise.vbroker.interceptor.Location loc);

This method adds the specified untyped object wrapper factory for a client or
server application.

Note On the client side, untyped object wrapper factories must be installed before
any objects are bound. On the server side, untyped object wrapper factories
must be installed before any implementation objects are created.

Parameter Description
owFactory The object wrapper factory to be added.
loc The location where the object wrapper is to be added.

public void remove(com.inprise.vbroker.interceptor.UntypedObjectWrapperFactory owFactory,
com.inprise.vbroker.interceptor.Location loc);

This method removes the specified untyped object wrapper factory for a
client or server application.

Note Removing one or more object wrapper factories from a client will not affect
objects of the class that are already bound by the client. Only subsequently
bound objects will be affected. REmoving object wrapper factories from a
server will not affect object implementations that have already been created.
Only subsequently created object implementations will be affected.

Parameter Description
owFactory The object wrapper factory to be added.
loc The location from which the object wrapper it to be removed.

long count (com.inprise.vbroker.interceptor.Location loc);

This method is called to add an untyped object wrapper factory.

Parameter Description

loc The location for which count is required.

UntypedObjectWrapper

public interface UntypedObjectWrapper

You use this interface to derive untyped object wrappers that you wish to use
for your client or server applications. When you derive an untyped object
wrapper from this interface, you define a pre_method method that is invoked
before an operation request is issued by a client application or before it is
processed by an object implementation on the server-side. You also define a
post_method method that will be invoked after an operation request is processed

12-16 Reference

UntypedObjectWrapper methods

by an object implementation on the server-side or after an reply has been
received by a client application.

You must also derive a factory class from the UntypedObjectiirapperFactory
interface, described in “UntypedObjectWrapperFactory” on page 12-18, that
will create your UntypedObjectirapper objects.

See the VisiBroker for Java Programmer’s Guide for complete information using
object wrappers.

interface UntypedObjectWrapper {
void pre_method |
in string operation,
in Object target,
in interceptor Closure closure
)i
void post_method (
in string operation,
in Object target,
in CORBA Environment env,
in interceptor Closure closure
)
}i

UntypedObjectWrapper methods

public void pre_method (java.lang.String operation,
org.omg.CORBA.Object target,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked before an operation request is sent on the client-side
or before it is processed by an object implementation on the server side.

Parameter Description

operation The name of the operation being requested.

target The object that is the target of the request.

closure The closure object that can be used to pass data between object wrapper
method.

public void post_method(java.lang.String operation,
org.omg.CORBA.Object target,

Interceptor and object wrapper interfaces and classes 12-17

UntypedObjectWrapperFactory

org.omg.CORBA.Environment env,
com.inprise.vbroker.interceptor.Closure closure);

This method is invoked after an operation request has been processed by the
object implementation on the server-side or before the reply message is
processed by the stub on the client side.

Parameter Description

operation The name of the operation being requested.

target The object that is the target of the request.

env An Environment object that is used to reflect exceptions that might have

occurred in the processing of the operation request.

closure The closure object that can be used to pass data between object
wrapper method.

UntypedObjectWrapperFactory

public interface UntypedObjectWrapperFactory

You use this interface to derive your own untyped object wrapper factories.
You register your untyped object wrapper factories using the add method,
offered by the ChainUntypedObjectWrapperFactory interface.

Your factory is used to create an instance of your untyped object wrapper for a
client or server application whenever a new object is bound or an object
implementation is created.

interface UntypedObjectWrapperFactory {
interceptor UntypedObjectWrapper create(
in Object object, location loc(
)i
}i

Import statement

The import statement import com.inprise.vbroker.interceptor.*; should be
included in your code.

UntypedObjectWrapperFactory method

public com.inprise.vbroker.interceptor.UntypedObjectWrapper create (org.omg.CORBA.Object obj,

12-18 Reference

com.inprise.vbroker.interceptor.Location loc);

This method is called to create an instance of your type of
UntypedObjectiirapper. Your implementation of this method can examine the

UntypedObjectWrapperFactory method

type of bound object or object implementation to determine whether or not it
wants to create an object wrapper for that object.

Parameter Description

obj The object being bound by a client application for which the untyped
object wrapper is being created. If this method is being invoked on the
server-side, this represents the object implementation that is being
created.

loc The location where the object wrapper is to be created.

Interceptor and object wrapper interfaces and classes 12-19

12-20 Reference

Quality of Service
interfaces and classes

This chapter describes the VisiBroker implementation of the Quality of Service
(QoS) APIs. The QoS APIs allow you to use policies to define and manage the
connection between your client applications and the servers to which they
connect. See “PortableServer.POA” on page 5-26 for information about creating
policies.

QoS provides the following classes to manage ORB-, thread-, and Object-level
policies:

* ORB-level policies: ORB-level policies are handled by a locality-constrained
PolicyManager, through which you can set Policies and view the current
Policy overrides. Policies set at the ORB level override system defaults.

¢ Thread-level policies: Thread-level policies are set through PolicyCurrent,
which contains operations for viewing and setting Policy overrides at the
thread level. Policies set at the thread level override system defaults and
values set at the ORB level.

* Object-level policies: Object-level policies can be applied by accessing the
base Object interface’s quality of service operations. Policies applied at the
Object level override system defaults and values set at the ORB or thread
level.

PolicyManager

public interface org.omg.CORBA.PolicyManager

The PolicyManager interface is used to access policy overrides at the ORB level.

Quality of Service interfaces and classes 13-1

IDL definition

IDL definition

module CORBA {

interface PolicyManager {
PolicyList get_policy_overrides(in PolicyTypeSeq ts);
void set_policy_overrides(in Policy[] policies, in SetOverrideType set_add)
raises (InvalidPolicies);
}i
}i

Policy Manager methods

Policy[] get_policy_overrides (int[]);

This method returns a list of all the policies of the requested types. If the
specified sequence is empty (that is, if the length of the list is zero), all
Policies at this scope are returned. If none of the requested policy types is set
at the target PolicyManager, an empty sequence is returned.

void set_policy_overrides (Policy[] policies, SetOverrideType set_add) throws InvalidPolicy

This method updates the current set of policy overrides with the requested
list. Invoking set_policy_overrides with an empty sequence of policies and a
mode of SET_OVERRIDE removes all overrides from a PolicyManager. Only certain
policies that pertain to the invocation of an operation at the client end can be
overriden using this operation. Attempts to override any other policy will
raise the CORBA.NO_PERMISSION exception. If the request would put the set of
overriding policies for the target Policylanager in an inconsistent state, no
policies are changed or added, and the exception InvalidPolicies is raised.
There is no evaluation of compatibility with policies set within other

PolicyManagers.
Parameter Description
policies A sequence of references to Policy objects.
set_add A parameter of type org.omg.CORBA.SetOverrideType that

indicates whether these policies should be added
(ADD_OVERRIDE) to any other overrides that already exist in the
PolicyManager, or added to a clean PolicyManager free of any
other overrides (SET_OVERRIDE). If the request would cause the
specified PolicyManager to be in an inconsistent state, no
policies are changed or added, and an InvalidPolicies
exception is raised.

13-2 Reference

PolicyCurrent

PolicyCurrent

Object

public interface org.omg.CORBA.PolicyCurrent extends org.omg.CORBA.PolicyManager,
org.omg.CORBA.Current

The PolicyCurrent interface derives from PolicyManager and Current without
adding new methods. Therefore all operations on the PolicyManager interface
are also available in PolicyCurrent. See “PolicyManager” on page 13-1 for a
description of these methods.

PolicyCurrent provides access to the policies overriden at the thread level. A
reference to a thread’s PolicyCurrent is obtained by invoking
org.omg.CORBA.ORB.resolve_initial_references and specifying an identifier of
PolicyCurrent.

IDL definition

interface PolicyCurrent : PolicyManager, Current {};

public interface org.omg.CORBA.Object

Because the CORBA 2.3 specification contains only limited support for QoS,
VisiBroker extended org.omg.CORBA.Object to provide additional QoS support as
defined in the OMG Messaging specification. This means that there are two
exposed Object interfaces. To use this additional functionality, cast
org.omg.CORBA.Object to com.inprise.vbroker.CORBA.Object. Because the additional
methods defined in the Messaging specification were not yet available in
CORBA 2.3, these methods are added to com. inprise.vbroker.CORBA.Object to
provide QoS functionality.

For more information, see Chapter 5, “Quality of Service,” of the OMG’s
CORBA Messaging specification (orbos/98-05-05), and Chapter 3, “OMG IDL
Syntax and Semantics,” of the CORBA 2.3 specification (orb/98-12-01).

org.omg.CORBA.Object methods

public interface org.omg.CORBA.Object, org.omg.CORBA.Policy _get_policy(int type);

Returns the effective Policy for the object reference. The effective Policy is the
one that would be used if a request were made. This Policy is determined
first by obtaining the effective override for the PolicyType as returned by
_get_client_policy.

The effective override is then compared with the Policy as specified in the
IOR. The effective Policy is the intersection of the values allowed by the
effective override and the IOR-specified Policy. If the intersection is empty,
the system exception INV_POLICY is raised. Otherwise, a Policy with a

Quality of Service interfaces and classes 13-3

com.inprise.vbroker.CORBA.Object methods

13-4 Reference

value legally within the intersection is returned as the effective Policy. The
absence of a Policy value in the IOR implies that any legal value may be
used. Invoking non_existent () or _validate_connection on an object reference
prior to _get_policy ensures the accuracy of the returned effective Policy. If
_get_policy is invoked prior to the object reference being bound, the returned
effective Policy is implementation dependent. In that situation, a compliant
implementation may do any of the following: raise the exception
CORBA.BAD_INV_ORDER, return some value for that PolicyType which
may be subject to change once a binding is performed, or attempt a binding
and then return the effective Policy. Note that if the RebindPolicy has a value
of TRANSPARENT, VB_TRANSPARENT, or VB_NOTIFY_REBIND, the
effective Policy may change from invocation to invocation due to transparent
rebinding.

org.omg.CORBA.Object _set_policy_overrides(const Policy[] _policies, SetOverrideType _set_add)

throws org.omg.CORBA.InvalidPolicy;

This method returns a new object reference with the requested list of Policy
overrides at the object level, and works in a way similar to the

org.omg.CORBA. PolicyManager method of the same name. However, it updates
the current set of policies of an Object, thread, or ORB with the requested list
of Policy overrides. In addition, this method returns an org.omg.CORBA. Object
whereas other methods of the same name return void.

com.inprise.vbroker.CORBA.Object methods

public interface com.inprise.vbroker. CORBA.Object extends org.omg.CORBA.Object,

org.omg.CORBA.Policy _get_client_policy(int type);

_get_client_policy returns the effective overriding Policy for the object
reference without doing the intersection with the server-side policies. The
effective override is obtained by first checking for an override of the given
PolicyType at the Object scope, then at the Current scope, and finally at the
ORB scope. If no override is present for the requested PolicyType, the system-
dependent default value for that PolicyType is used. Portable applications are
expected to set the desired “defaults” at the ORB scope since default Policy
values are not specified.

org.omg.CORBA.Policy[] _get_policy_overrides(int[] types);

_get_policy_overrides returns a list of Policy overrides of the specified policy
types set at the object level. If the specified sequence is empty, all overrides at
the object level are returned. If no PolicyTypes are overriden at the object
level, an empty sequence is returned.

boolean _validate_connection(org.omg.CORBA.PolicyListHolder inconsistent_policies);

_validate_connection returns a boolean value based on whether the current
effective policies for the object will allow an invocation to be made. It returns
the value true if the current effective policies for the Object allow an
invocation to be made. If the object reference is not yet bound, a binding
occurs as part of this operation. If the object reference is already bound, but

RebindPolicy

current policy overrides have changed or for any other reason the binding is
no longer valid, a rebind is attempted regardless of the setting of any
RebindPolicy override. The _validate_connection operation is the only way to
force such a rebind when implicit rebinds are disallowed by the current
effective RebindPolicy. The attempt to bind or rebind may involve
processing GIOP LocateRequests by the ORB. Returns the value false if the
current effective policies would cause an invocation to raise the system
exception INV_POLICY. If the current effective policies are incompatible, the
out parameter inconsistent_policies contains those policies causing the
incompatibility. This returned list of policies is not guaranteed to be
exhaustive. If the binding fails due to some reason unrelated to policy
overrides, the appropriate system exception is raised.

RebindPolicy

Note

public interface org.omg.Messaging.RebindPolicy

The Visibroker implementation of RebindPolicy is a complete implementation
of the RebindPolicy as defined in the CORBA 2.4 Specification with
enhancements to support failover.

The RebindPolicy determines how the client-side ORB handles closed
connections, GIOP location-forward messages and object failures. The ORB
handles fail-overs, rebinds, and reconnections by looking at the effective
policy at the org.omg.CORBA.Object instance.

The OMG-defined Policy values determine whether the ORB may
transparently rebind once it is successfully bound to a target server. The
extended policy values determine whether the ORB may transparently
failover once it is successfully bound to a target Object.

The RebindPolicy is a client-side-only policy.

The RebindPolicy is enforced only after being successfully bound to an object.
For GIOP-based protocols an object reference is considered bound once it is
in a state where a LocateRequest message would result in a LocateReply
message with status OBJECT_HERE.

It can have one of six values that determines the behavior in the case of a
disconnection, an object-forwarding request, or an object failure. The
currently supported values are:

* org.omg.Messaging.TRANSPARENT allows the ORB to silently handle object-
forwarding and necessary reconnections during the course of making a
remote request.

* org.omg.Messaging.NO_REBIND allows the ORB to silently handle reopening of
closed connections while making a remote request, but prevents any
transparent object-forwarding that would cause a change in client-visible
effective QoS policies. When Rebindlode is set to NO_REBIND, only explicit
rebind is allowed.

Quality of Service interfaces and classes 13-5

IDL definition

Note

13-6 Reference

* org.omg.Messaging.NO_RECONNECT prevents the ORB from silently handling
object-forwards or the reopening of closed connections. You must
explicity rebind and reconnect when RebindMode is set to NO_RECONNECT.

* com.inprise.vbroker.QoSExt.VB_TRANSPARENT is the default value of this Policy.
It extends the functionality of TRANSPARENT by allowing transparent
rebinding with both implicit and explicit binding. VB_TRANSPARENT is
designed to be compatible with the object failover implementation in
VisiBroker 3.x.

* com.inprise.vbroker.QoSExt.VB_NOTIFY_REBIND throws an exception if a rebind
is necessary. The client catches this exception, and binds on the second
invocation.

* qqq--VB_NO_REBIND

Be aware that if the effective policy for your client is VB_TRANSPARENT and your
client is working with servers that hold state data, VB_TRANSPARENT could
connect the client to a new server without the client being aware of the
change of server, any state data held by the original server will be lost.

For more information on QoS policies and types, see the Messaging chapter
of the CORBA 2.4 specification. Our QoS implementation is based on the
OMG document orbos/98-05-05.

IDL definition

#pragma prefix "omg.org"

module Messaging {
typedef short RebindMode;
const CORBA::PolicyType REBIND_POLICY_TYPE = 23;
interface RebindPolicy::CORBA::Policy {
readonly attribute RebindMode rebind_mode;
}i

Policy Values

Table 13.1, “OMG Policy values,” describes the OMG Policy values that can be
set as the RebindPolicy:

Table 13.1 OMG Policy values

Policy Value Description

TRANSPARENT This policy allows the ORB to silently handle object-forwarding
and necessary reconnection when making a remote request. This
is the least restrictive OMG policy value.

Table 13.1 OMG Policy values (continued)

Policy Value
NO_REBIND

NO_RECONNECT

Description

Policy Values

This policy allows the ORB to silently handle reopening of closed
connections while making a remote request, but prevents any
transparent object-forwarding that would cause a change in the
client-side effective QoS policies.

This policy prevents the ORB from silently handling
object-forwards or the reopening of closed connections. This is
the most restrictive OMG policy value.

The VisiBroker-specific values that can be set as the RebindPolicy are listed in the
following table. For a detailed description of all policy behavior, see Table 13.3,
“Behavior resulting from RebindMode policies.”

Table 13.2 VisiBroker-specific RebindMode policies

Policy Value

com.inprise.vbroker.QoSExt.VB_TRANSPARENT

com.inprise.vbroker.QoSExt.VB_NOTIFY_REBIND

com.inprise.vbroker.QoSExt.VB_NO_REBIND

Description

This policy extends TRANSPARENT
behavior to failover. This is the
default policy.

When this policy is set, if a remote
invocation fails because the server
object goes down, the ORB tries to
reconnect to another server using the
osagent. The client ORB masks the
communication failure if the rebind
succeeds, and does not throw an
exception to the calling thread.

VB_NOTIFY_REBIND behaves like
VB_TRANSPARENT, but throws an
exception when the communication
failure is detected. It will try to
transparently reconnect to another
object if another invocation is
attempted.

VB_NO_REBIND does not enable failover.
It only allows the client ORB to
reopen a closed connection to the
same server; it does not allow object
forwarding of any kind.

The following table lists the behavior of the different RebindMode policies:

Table 13.3 Behavior resulting from RebindMode policies

RebindMode type
NO_RECONNECT

VB_NO_REBIND

Reestablish closed
connection to the
same object?

No, throws REBIND
exception.

Yes

Allow object
forwarding? Object failover?'

No, throws REBIND No

No

Quality of Service interfaces and classes 13-7

RelativeConnectionTimeoutPolicy

Table 13.3 Behavior resulting from RebindMode policies (continued)

Reestablish closed
connection to the Allow object

RebindMode type same object? forwarding? Object failover?’
NO_REBIND Yes Yes, if policies No
match
No, throws REBIND
exception.
TRANSPARENT Yes Yes No
VB_NOTIFY_REBIND Yes Yes Throws an exception

after failure detection
and then tries a failover
on subsequent requests.

VB_TRANSPARENT Yes Yes Yes, transparently.

1. The appropriate CORBA exception will be thrown in the case of a communication problem or an
object failure.

RelativeConnectionTimeoutPolicy

Note:

13-8 Reference

public interface com.inprise.vbroker.QoSExt.RelativeConnectionTimoutPolicy

The RelativeConnectionTimeoutPolicy indicates a timeout after which attempts to
connect to an object using one of the available endpoints is aborted. The timeout
situation is likely to happen with objects protected by firewalls, where HTTP
tunneling is the only way to connect to the object.

This Policy is not enforced for in-process communications.

The policy value is an integer that specifies the timeout in 100s of nanoseconds.
It is applied to every endpoint that the ORB tries to connect to. Therefore, if
multiple connection attempts are made, the elapsed time will be a multiple of
the configured timeout. The accuracy is also limited by the Java virtual machine
implementation.

IDL definition

#pragma prefix "inprise.com"

module QoSEXE{
const CORBA::PolicyType RELATIVE_CONN_TIMEOUT_POLICY_TYPE = 0x56495304
interface RelativeConnectionTimeoutPolicy : CORBA::Policy {

readonly attribute TimeBase::TimeT relative_expiry:

)

DeferBindPolicy

DeferBindPolicy

public interface com.inprise.vbroker.QoSExt.DeferBindPolicy

The DeferBindPolicy determines if the ORB will attempt to contact the
remote object when it is first created, or delay this contact until the first
invocation is made. By default, the ORB connects to the (remote) object when
on a bind() or a string_to_object call. If the DeferBindPolicy is set to true, the
ORB does not contact the remote Object until the first invocation.

If you create a client object, and DeferBindPolicy is set to true, you may delay
the server startup until the first invocation. This option existed before as an
option to the Bind method on the generated helper classes.

IDL definition

#pragma prefix "inprise.com"

module QoSExt{
const CORBA::PolicyType DEFER_BIND_POLICY_TYPE = 0x56495305
interface DeferBindPolicy: CORBA::Policy {

readonly attribute boolean value:

)

ExclusiveConnectionPolicy

public interface com.inprise.vbroker.QoSExt.ExclusiveConnectionPolicy: CORBA::Policy

The ExclusiveConnectionPolicy is a Visibroker-specific policy that gives you
the ability to establish an exclusive (non-shared) connection to a specified
server object. This policy has boolean value of true or false. A true value will
open an exclusive connection to the server object. A false value will try to
reuse an existing connection if possible and open a new connection only if
reuse is not possible. The default value is false.

This policy provides the same features as Object._clone() in Visibroker 3.x.

IDL definition

interface ExclusiveConnectionPolicy :CORBA::Policy {
/** Returns the current setting of the ExclusiveConnectionPolicy */
readonly attribute boolean value;
}i

Quality of Service interfaces and classes 13-9

SyncScopePolicy

public interface org.omg.CORBA.SyncScopePolicy:CORBA::Policy qqqg--is this right??

This interface is a local object derived from CORBA: :Policy. It is applied to
oneway operations to indicate the synchronization scope with respect to the
target of that operation request. It is ignored when any non-oneway operation
is invoked. This policy is also applied when the DII is used with a flag of
INV_NO_RESPONSE since the implementation of the DII is not required to consult an
interface definition to determine if an operation is declared oneway. The default
value of this Policy is SYNC_TRANSPORT. Applications must explicitly set the
SyncScopePolicy to ensure portability across ORB implementations. When
instances of SyncScopePolicy are created, a value of type Messaging: : SyncScope is
passed to CORBA: :0RB: :create_policy. This policy is only applicable as a client-
side override.

IDL definition

interface SyncScopePolicy :CORBA::Policy {
readonly attribute SyncScope synchronization;

bi
The following table lists the behavior of the different SyncScope policy values.

Table 13.4 SyncScope policy values

SyncScope type Description

SYNC_NONE The ORB returns control to the client (e.g.
returns from the method invocation)
before passing the request message to the
transport protocol. The client is
guaranteed not to block. Since no reply is
returned from the server, no location-
forwarding can be done with this level of
synchronization.

13-10 Reference

Table 13.4 SyncScope policy values

SyncScope type
SYNC_WITH_SERVER

SYNC_WITH_TARGET

Description

The server-side ORB is to send a reply
before invoking the target implementation.
If a reply of NO_EXCEPTION is sent, any
necessary location-forwarding has already
occurred. Upon receipt of this reply, the
client-side ORB shall return control to the
client application. The client blocks until
all location-forwarding has been
completed. For a server using a POA, the
reply would be sent after invoking any
ServantManager, but before delivering the
request to the target Servant.

Equivalent to a synchronous, non-oneway
operation in CORBA 2.2. The server-side
ORB will only send the reply message after
the target has completed the invoked
operation. Note that any LOCATION_FORWARD
reply will already have been sent prior to
invoking the target and that a
SYSTEM_EXCEPTION reply may be sent at
anytime (depending on the semantics of
the exception). Even though it was
declared oneway, the operation actually
behaves like a synchronous operation. This
form of synchronization guarantees that
the client knows that the target has seen
and acted upon a request. As with CORBA
2.2, only with this highest level of
synchronization can the OTS be used. Any
operations invoked with lesser
synchronization precludes the target from
participating in the client’s current
transaction.

QoS exceptions

Table 13.5, “QoS exceptions” lists possible QoS exceptions

Table 13.5 QoS exceptions

Exception
org.omg.CORBA. INV_POLICY

org.omg.CORBA.REBIND

org.omg.CORBA.PolicyError

Description

Raised when there is an incompatibility between Policy
overrides.

Raised when the RebindPolicy has a value of NO_REBIND,
NO_RECONNECT, or VB_NOTIFY_REBIND and an invocation on a
bound object references results in an object-forward or
location-forward message.

Raised when the requested Policy is not supported.

Quality of Service interfaces and classes 13-11

13-12 Reference

|OP and IIOP
interfaces and classes

This chapter describes the VisiBroker implementation of the key General
Inter-ORB Protocol interfaces and other structures defined by the CORBA
specification. For a complete description of these interfaces, refer to Chapter 15
of the OMG CORBA Specification.

lIOP.ProfileBody

public class ProfileBody

This class contains information about the protocol supported by an object.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

IDL definition

struct ProfileBody {
::GIOP: :Version iiop_version;
string host;
unsigned short port;
::CORBA: :OctetSequence object_key;
sequence<: : I0P: : TaggedComponent > components;
}i

IOP and IIOP interfaces and classes 14-1

IITOP.ProfileBody variables

lIOP.ProfileBody variables

public com.inprise.vbroker.GIOP.Version iiop_version;
Represents the version of IIOP supported.
public java.lang.String host;
Represents the name of the host where the object is implemented.
public short port;
Indicates the port number to use for establishing a connection to the object.
public byte[] object_key;

Used to uniquely identify the object reference and contains information used
to locate the servant that implements the object. The object key is stored in a
vendor-specific format and is generated when an ICR is created.

public com.inprise.vbroker.|OP.TaggedComponent[] components;

A sequence of zero or more TaggedComponent objects used to hold additional
information that may be used in making invocations on the object described
by this profile.

lIOP.ProfileBody constructors

public ProfileBody()

Creates an empty ProfileBody.

public ProfileBody(com.inprise.vbroker.GIOP.Version iiop_version, java.lang.String host,
short port, byte[] object_key, com.inprise.vbroker.|OP.TaggedComponent[] components)

Creates a ProfileBody initialized with the specified IIOP version, host name,
port number, object key, and components.

Parameter Description

iiop_version The version of IIOP supported.

host The host where the object implemented.

port The port number to use when establishing a connection to the object.
object_key The object’s key.

components A sequence of zero or more TaggedComponent objects used to hold

additional information that may be used in making invocations on the
object described by this profile.

[IOP.IORValue

public class IORValue

This class represents an Interoperable Object Reference and is used to provide
important information about object references. Your client application can

14-2 Reference

IDL definition

create an I0R by invoking the ORB: :object _to_string method described under the
syntax statement “abstract public java.lang.String
object_to_string(org.omg.CORBA.Object obj)” on page 5-20.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

IDL definition

valuetype IORValue {

public string type_id;

public ProfileValueSeq profiles;

TOR toIOR();

IORValue copy () ;

boolean matchesTemplate (in IORValue iorv);
}i

IIOP.IORValue variables

public java.lang.String type_id;

Describes the type of object reference that is represented by this IOR.
public com.inprise.vbroker.|IOP.ProfileValue[] profiles;

Represents a sequence of one or more TaggedProfile objects, which contain
information about the protocols that are supported.

public com.inprise.vbroker.IOP.IOR tolOR();
Converts to an IOR.
publiccom.inprise.vbroker.IOP. IORValue copy);

Makes a duplicate copy of the IORValue.
public boolean matchesTemplate (IORValue iorv);

Checks to see if the IORValue matches the template IORValue.

IOP.ServiceContext

public class ServiceContext

This class represents service-specific context information that is passed along
with a request or reply.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

IOP and IIOP interfaces and classes 14-3

IDL definition

IDL definition

struct ServiceContext {
::I0P: :ServicelID context_id;
::CORBA: :OctetSequence context_data;
}i

lIOP.ServiceContext variables

public int Context_id;
Identifies a particular service and data format.
public byte[] context_data;

The context data associated with the particular service identified by the
Context_id. The context data is encoded in a service-specific format and then
encapsulated as a sequence of octets.

IIOP.ServiceContext constructors

public ServiceContext()

Creates an empty ServiceContext.
public ServiceContext(int context_id, byte[] context_data)

Creates a ServiceContext initialized with the specified identifier and data.

Parameter Description
context_id Identifies a particular service and data format.
context_data Service-specific data, encapsulated as a sequence of octets.

|IOP.TaggedProfile

public class TaggedProfile

This class represents a supported protocol and encapsulates all the basic
information the protocol needs to identify an object.

Helper and Holder versions of this class are also provided. See Chapter 4,
“Generated interfaces and classes,” for more information on these classes and
the methods they offer.

IDL definition

struct TaggedProfile {
::I0P::Profileld tag;
sequence <octet> profile_data;
}i

14-4 Reference

IIOP.TaggedProfile variables

IIOP.TaggedProfile variables

public int tag;

Identifies the contents of the profile data and should be one of the following
values:

Value Description

TAG_INTERNET_IOP Indicates the protocol is standard IIOP.

TAG_MUTIPLE_COMPONENTS Indicates the profile data contains a list of ORB services
available using the protocol.

TAG_VSGN_LOCATOR Indicates that the IOR is an interim, pseudo-object that is used
until the real IOR is received by the osagent.

TAG_LOCAL_IPC_IOP Indicates the protocol is IOP over a local IPC mechanism.

public byte[] profile_data;

Encapsulates all the protocol information needed to identify an object.

lIOP.TaggedProfile constructors

public TaggedProfile()
Creates an empty TaggedProfile.
public TaggedProfile(int tag, byte[] profile_data)

Creates a TaggedProfile initialized with the specified tag and data.

Parameter Description
tag Identifies the contents of the profile data and should be one of

TAG_INTERNET_IOP
TAG_MUTIPLE_COMPONENTS
TAG_VSGN_LOCATOR
TAG_LOCAL_IPC_IOP

profile_data The protocol information needed to invoke an operation on an IOR

IOP and IIOP interfaces and classes 14-5

14-6 Reference

RMI interfaces and classes

This chapter describes the interfaces used to support RMI over IIOP. VisiBroker
currently does not support the server side programming model for RMI over
RMI in VisiBroker 4.x. While the server-side APIs are documented here, using
them may throw a NO_IMPLEMENT exception.

PortableRemoteObiject

public abstract class javax.rmi. PortableRemoteObject { }

This class is the base class for all server implementation. RMI-IIOP server
implementations may inherit from javax.rmi.PortableRemoteObject or implement
an RMI-IIOP remote interface and then use the exportObject method to register
themselves as a server object. Clients should use the narrow method to narrow
generic remote interfaces to specific remote interfaces.

Constructors

public static void exportObject (Remote obj)

Makes a server object ready to receive remote calls. Subclasses of
PortableRemoteObject do not need to call this method, as it is called by the
constructor.

Parameter Description

obj The server object to be exported.

RMI interfaces and classes 15-1

PortableRemoteObject methods

PortableRemoteObject methods

protected PortableRemoteObject ()

This method initializes the object by calling exportObbject ().
public static Remote toStub (Remote obj)

This method returns a stub for the given server object. The server must be
ready to receive remote communication, which may require the use of the
PortableRemoteObject.connect (Remote,Remote) method, if the object has not yet
been passed as an argument on a remote method call. This method throws a
java.rmi.NoSuchObjectException exception if a stub cannot be located for the
given server object.

Parameter Description

obj The server object for which a stub is required. Must be a subclass of
PortableRemoteOBject or have been previously the target of a call to
PortableRemoteObject .exportObject ().

public static void unexportObject (Remote obj)

This method unregisters a server object from the runtime, allowing the object
to become available for a garbage collection. This method throws a
java.rmi.NoSuchObjectException exception if the remote object is not currently
exported.

Parameter Description
obj The object to be exported.

public static java.lang.Object narrow (java.lang.Object narrowFrom, java.lang.Class narrowTo)

This method narrows this RMI-IIOP object to a stub of the remote interface of
a class narrowTo. This method throws a ClassCastException exception if
narrowFrom cannot be cast to narrowTo.

Parameter Description

narrowFrom The object to be cast to type.
narrowTo The desired type of object.

public static void connect (Remote unconnected, Remote connected)

This method makes a remote object ready for remote communication. This
normally happens implicitly when the object is sent or received as an
argument on a remote method call, but in some circumstances it is useful to
perform this action by making an explicit call. This method throws a

15-2 Reference

PortableRemoteObject methods

java.rmi.RemoteException exception if the connected object is not connected or
if the unconnected object is already connected.

Parameter Description

unconnected Identifies the object to be connected.
connected Identifies the previously connected object.

RMI interfaces and classes 15-3

15-4 Reference

Note

Resolver

URL Naming
interfaces and classes

This chapter describes the Resolver interface and classes used in VisiBroker’s
URL Naming Service.

In previous versions of VisiBroker for Java, the URL Naming Service was called
the Web Naming Service.

public interface Resolver extends Object

When using the URL Naming service, a Resolver is called by the ORB’s
resolve_initial_references. For more information about using Resolver, see
Chapter 29, “Using URL naming,” in the VisiBroker for Java Programmer’s
Guide.

interface Resolver {

// Read Operations
Object locate(in string url_s)
raises (InvalidURL, CommFailure, RegFailure);

// Write Operations
void force_register_url(in string url_s, in Object obj)
raises (InvalidURL, CommFailure, RegFailure);

void register_url(in string url_s, in Object obj)

raises (InvalidURL, CommFailure, RegFailure, AlreadyExists);
}i

URL Naming interfaces and classes 16-1

Resolver methods

Resolver methods

Object locate(String url_s)

This method is called transparently by the bind() method in the following
situation: when client applications need to bind to the Resolver, they simply
specify the URL when they call the bind method. If the URL is invalid, an
InvalidURL exception is raised.

Parameter Description
url_s The URL’s string.

void force_register_url(String url_s, Object obj)

This method registers a server’s object by associating its IOR (Interoperable
Object Reference) with a URL (Uniform Resource Locator).

If you attempt to associate a URL with an object’s IOR using the
force_register method and a URL has already been bound to that object, the
new URL binding replaces the old binding.

Parameter Description
url_s The URL’s string.
obj The object whose IOR will be associated with the URL.

void register_url(String url_s, Object obj)

This method registers a server’s object by associating its IOR (Interoperable
Object Reference) with a URL (Uniform Resource Locator).

If you attempt to associate a URL with an object’s IOR using the register
method and a URL has already been bound to that object, an AlreadyExists
exception is raised.

Parameter Description
url_s The URL’s string.
obj The object whose IOR will be associated with the URL.

16-2 Reference

Agent

Location Service
interfaces and classes

This chapter provides detailed information about the Location Services’s Agent
and TriggerHandler interfaces which can be used to locate object instances on a
network of Smart Agents. For more information about the Location Service, see
Chapter 17, “Using the Location Service,” in the VisiBroker for Java
Programmer’s Guide.

public interface Agent extends com.inprise.vbroker. CORBA.Object

The Location Service Agent is a collection of methods that enable you to
discover objects on a network of Smart Agents. Methods for the Agent interface
can be divided into two groups: those that query a Smart Agent for data
describing instances, and those that register and unregisters triggers. You can
query based on the interface’s repository ID, or based on a combination of the
interface’s repository ID and the instance name. Results of a query can be
returned as either object references or more complete instance descriptions.
Triggers are a notification mechanism by which clients of the Location Service
can be notified of changes to the availability of instances.

IDL definition

interface Agent {
HostnameSeq all_agent_locations()
raises(Fail);
RepositoryIdSeq all_repository_ids()
raises(Fail);

Location Service interfaces and classes 17-1

Agent methods

ObjSeq all_instances(in string repository_id)
raises(Fail);

ObjSeq all_replica(in string repository_id,in string instance_name)
raises(Fail);

DescSeq all_instances_descs(in string repository_id)
raises(Fail);

DescSeq all_replica_descs(in string repository_id,in string instance_name)
raises(Fail);

void reg_trigger(in TriggerDesc desc,in TriggerHandler handler)
raises(Fail);

void unreg_trigger(inTriggerDesc desc,in TriggerHandler handler)
raises(Fail);

}i

Agent methods

public java.lang.String(] all_agent_locations() throws com.inprise.vbroker.ObjLocation.Fail;

This method retrieves a sequence of host names on which osagents reside.
This method throws the following exception:

Exception Description

Fail Either there is no agent available or there is unsuccessful
communications with the osagent.

public org.omg.CORBA.Object]] all_instances(java.lang.String repository_id) throws
com.inprise.inprise.vbroker.ObjLocation.Fail;

This method retrieves object references to instances of an interface which
satisfy the given repository id.

Parameter Description

repository_id A string containing a repository identifier.

This method throws the following exception:

Exception Description
Fail The repository id is invalid.

public com.inprise.vbroker.ObjLocation.Desc[] all_instances_descs(java.lang.String repository_id)
throws com.inprise.inprise.vbroker.ObjLocation.Fail;

This method retrieves full description information for instances of the
interface which implement the given repository id.

Parameter Description

repository_id A string containing a repository identifier.

17-2 Reference

Agent methods

This method throws the following exception:

Exception Description

Fail The repository id is invalid.

public org.omg.CORBA.Object]] all_replica(java.lang.String repository_id, java.lang.String
instance_name) throwscom.inprise.inprise.vbroker.ObjLocation.Fail;

This method retrieves object references to like-named instances of the
interface which satisfy the given repository id and instance name.

Parameter Description
repository_id A string containing a repository identifier.
instance_name A string containing an instance name.

This method throws the following exception:

Exception Description

Fail Either the repository id or object name is invalid.

public com.inprise.vbroker.ObjLocation.Desc]] all_replica_descs(java.lang.String repository _id,
java.lang.String instance_name) throws com.inprise.inprise.vbroker.ObjLocation.Fail;

This method retrieves full description information for like-named instances
of the interface which implement the given repository id and have the given
instance name.

Parameter Description
repository_id A string containing a repository identifier.
instance_name A string containing an instance name.

This method throws the following exception:

Exception Description

Fail Either the repository id or object name is invalid.

public java.lang.String[] all_repository_ids() throws com.inprise.inprise.vbroker.ObjLocation.Fail;
This method retrieves all interfaces known to any osagent. This method
throws the following exception:

Exception Description

Fail The repository id is invalid.

Location Service interfaces and classes 17-3

Desc

public void reg_trigger(com.inprise.vbroker.ObjLocation.TriggerDesc desc,
com.inprise.vbroker.ObjLocation.TriggerHandler handler) throws
com.inprise.inprise.vbroker.ObjLocation.Fail;

This method registers a trigger handler.

Parameter Description

desc Description of the instance. The instance description can contain
combinations of the following instance information: repository ID,
instance name, and host name. The more instance information provided,
the more particular your specification of the instance.

handler The TriggerHandler object you want to register.

This method throws the following exception:

Exception Description

Fail There is no such trigger.

public void unreg_trigger(com.inprise.vbroker.ObjLocation.TriggerDesc desc,
com.inprise.vbroker.ObjLocation.TriggerHandler handler) throws
com.inprise.inprise.vbroker.ObjLocation.Fail;

This method unregisters a trigger handler.

Parameter Description

desc Description of the instance. The instance description can contain
combinations of the following instance information: repository ID,
instance name, and host name. The more instance information provided,
the more particular your specification of the instance.

handler The TriggerHandler object you want to unregister.

Note Triggers are “sticky.” A TriggerHandler is invoked every time an object
satisfying the trigger description becomes accessible. You may only be
interested in learning when the first instance becomes accessible; in this case,
invoke the Agent’s unreg_trigger () method to unregister the trigger after the
first occurrence is found.

This method throws the following exception:

Exception Description

Fail There is no such trigger.

Desc

public interface Desc

This interface contains information you use to describe the characteristics of an
object. You pass this structure as an argument to several of the Location Service

17-4 Reference

IDL definition

methods described in the chapter. The Desc structure, or a sequence of them, is
returned by some of the Location Service methods.

IDL definition

struct Desc {
CORBA: :Object ref;
::TI0P: :ProfileBodyValue iiop_locator;
string repository_id;
string instance_name;
boolean activable;
string agent_hostname;
}i

Desc variables

public boolean activable;

If true, this object is registered with the Object Activation Daemon. If false,
the object was started manually and is registered with the osagent.

public org.omg.CORBA.Object ref;
A reference to the object being described.
public com.inprise.vbroker.lIOP.ProfileBodyValue iiop_locator;
A reference to the object being described.
public java.lang.String repository_id;
The object’s repository identifier.
public java.lang.String instance_name;
The object’s instance name.
public java.lang.String agent_hostname;

The name of the host running the Smart Agent with which this object is
registered.

Desc constructor

public Desc(org.omg.CORBA.Object ref, com.inprise.vbroker.lOP.ProfileBodyValue iiop_locator,
java.lang.String repository_id, java.lang.String instance_name, boolean activable,
java.lang.String agent_hostname)

Creates a Desc object, initialized with the specified parameters.

Parameter Description
ref A reference to the object being described.
iiop_locator A reference to the object being described.

Location Service interfaces and classes 17-5

Desc methods

Fail

Parameter Description

repository_id The object’s repository identifier.

instance_name The object’s instance name.

activable Set to true if this object is registered with the Object Activation

Daemon. It is set to false if the object was started manually and is
registered with the osagent.

agent_hostname The name of the host running the Smart Agent with which this
object is registered.

Desc methods

public java.lang.String toString()

Returns a string containing the contents of this object.

public interface Fail extends org.omg.CORBA.UserException

This exception interface may be thrown by the Agent interface to indicate
various errors. The data member FailReason is used to indicate the nature of the
failure.

Fail variables

com.inprise.vbroker.ObjLocation.FailReason reason
Indicates the nature of the failure. Must be one of the following values:

NO_AGENT_AVAILABLE
INVALID_REPOSITORY_ID
INVALID_OBJECT_NAME
NO_SUCH_TRIGGER
AGENT_ERROR

TriggerDesc

17-6 Reference

public final interface TriggerDesc

This interface contains information you use to describe the characteristics of one
or more objects for which you wish to register a Triggertandler, described in
“TriggerHandler” on page 17-8. These members may be set to null to monitor
the widest possible set of objects. The more information specified, the smaller
the resulting set of objects.

IDL definition

IDL definition

struct TriggerDesc {
string repository_id;
string instance_name;
string host_name;

}i

TriggerDesc variables

public java.lang.String host_name;

Represents the host name where the object or objects to be monitored by the
TriggerHandler are located. May be set to null to include all hosts in the
network.

public java.lang.String instance_name;

Represents the instance name of the object to be monitored by the
TriggerHandler. May be set to null to include all possible instance names.

public java.lang.String repository_id;

Represents the repository identifiers of the objects to be monitored by the
TriggerHandler. May be set to null to include all possible repository
identifiers.

TriggerDesc constructor

public Desc(java.lang.String repository _id, java.lang.String instance_name,
java.lang.String hostname)

Creates a Desc object, initialized with the specified parameters.

Parameter Description

repository_id The repository identifiers of the objects to be monitored by the
TriggerHandler. May be set to null to include all possible repository
identifiers.

instance_name The instance name of the object to be monitored by the TriggerHandler.
May be set to null to include all possible instance names.

hostname The host name where the object or objects to be monitored by the
TriggerHandler are located. May be set to null to include all hosts in the
network.
TriggerDesc methods

public java.lang.String toString()

Returns a string containing the contents of this object.

Location Service interfaces and classes 17-7

TriggerHandler

TriggerHandler

public interface TriggerHandler extends com.inprise.vbroker. CORBA.Object

A TriggerHandler is a callback object that is invoked every time an object
satisfying the trigger description becomes accessible. You implement a
TriggerHandler by extending the _TriggerHandlerImplBase interface and
implementing its impl_is_ready and impl_is_down methods.

IDL definition

interface TriggerHandler {
void impl_is_ready (in Desc desc);
void impl_is_down(in Desc desc);
}i

TriggerHandler methods

public void impl_is_ready(com.inprise.vbroker.ObjLocation.Desc desc)

This method is called by the Location Service when an instance matching the
desc becomes accessible.

Parameter Description

desc Description of the instance. The instance description can contain
combinations of the following instance information: repository ID,
instance name, and host name. The more instance information
provided, the more particular your specification of the instance.

public void impl_is_down(com.inprise.vbroker.ObjLocation.Desc desc)

This method is called by the Location Service when an instance matching the
desc becomes inaccessible.

Parameter Description

desc Description of the instance. The instance description can contain
combinations of the following instance information: repository ID,
instance name, and host name. The more instance information
provided, the more particular your specification of the instance.

17-8 Reference

Note

Using command-line options

This appendix describes the options that may be set for the Basic Object
Adaptor, the Object Request Broker, and the Location Service.

The options in this Appendix can be used with VisiBroker 3.x. However if you
are using VisiBroker 4.5, see the properties in Appendix B, “Using VisiBroker
properties.”

How to set ORB and BOA options

Note

There are three ways to set the ORB and BOA initialization options,

¢ Using command-line arguments with the vbj command.
¢ Using command-line arguments and starting your executable with vbj.
* Setting properties programmatically using methods.

The ORB initialization options are listed in “ORB options” on page A-5 and the
BOA initialization options are listed in “BOA options” on page A-3.

Using vbj with command-line arguments

You can use the vbj command to define command-line arguments customizing
the behavior of the ORB and BOA when invoking your application. When using
the vbj command with command-line, you must include an equal sign (=) when
setting a value. For example,

vbj -DOAthreadMax=40 Server

You can also use the java command to define command-line properties
customizing the behavior of the ORB and BOA when invoking your
application; however, when you use the vbj command, the ORB checks
environment variables.

Using command-line options A-1

Using vbj and

Note

starting your executable

Using vbj and starting your executable

You can also start the program’s executable using the vbj command and include
command-line arguments. When entering the command-line argument, do not
include the D after the dash (-) or use an equal sign (=) when setting a value. For
example:

vbj <executable> -OAthreadMax 40

When you use vbj to start the executable, you must call 0RB.init and pass in the
arguments. See “Example using ORB.init() with arguments” on page A-4.

Applets

To set options in applets, you must use the parameter name and value. For
example,

<param name=ORBtcpNoDelay value=60>

Setting properties programmatically using methods

You can set properties programmatically using the ORB and BOA initialization
methods: ORB. init () and BOA_init (). The following sections describe the use of
these methods in more detail.

BOA_init() method

A-2 Reference

public org.omg.CORBA.BOA BOA _init(String boaType, java.util.Properties properties)

You use the BOA_init () to set the object adapter type and its properties for your
application. There are two versions of BOA_init ().

¢ If you use the BOA_init method with no arguments, you accept the default
thread policy which is thread pooling.

¢ If you use BOA_init with arguments, you can set the adapter type and its
properties. If you don’t want to set any properties, you can pass a null
instead.

Each time B02_init () is called, it returns an instance of the object adapter type
specified. It always returns the same instance of the object adapter. If you call
BOA_init () with no arguments, it returns an instance of TPool. If you call
BOA_init () with a TPool argument and properties, it modifies the existing TPool.
If you repeatedly call B0A_init () with the same type, it updates the properties, if
they are different than the previous invocation of BOA_init ().

If you run BOA_init () with no arguments and then invoke your application using
a runtime parameter with different settings than B0A_init (), BOA_init () is
overridden by the runtime arguments. However, if you use BOA_init () with

BOA options

arguments and then use a runtime parameter, the B0A_init () takes precedence.
The runtime parameter is never even checked.

Code sample A.1 shows the BOA_init () method specifying thread per session
with no properties.

Code sample A.1 BOA_init() method specifying thread per session, but no properties

try {
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();
org.omg.CORBA.BOA boa = orb.BOA_init("TSession", null);

}

The Bo2_init () method shown in Code sample A.2 is used by your object
implementation to set the thread policy as thread pooling with a maximum of
40 threads in the pool. These parameters are passed as arguments to the object
implementation’s server process when it is started.

Code sample A.2 BOA_init() method specifying thread pool and maximum threads

java.util.Properties props = new java.util.Properties();
props.put ("OAthreadMax", "40");
org.omg.CORBA.BOA boa = orb.BOA_init ("TPool", props);

BOA options

The following table summarizes the B0A_init () options.

Table A.1 BOA_init options

Options Description

OAconnectionMax <#> Specifies the maximum number of allowable incoming
connection to the adapter. If you do not specify, the
default is unlimited.

OAconnectionMaxIdle <#> Specifies the number of seconds which a connection can
be without any traffic before being shutdown by
VisiBroker. The default setting is 0, which means that
connections will never time-out. This option should be
set for Internet applications.

OAid <TPool | TSession> Specifies the thread policy to be used by the BOA. The
default is TPool unless you are in backward
compatibility mode; if you are in backward
compatibility, the default is TSession.

Using command-line options A-3

ORB.init() met

hod

Table A.1 BOA_init options (continued)

Options

OAipAddr <hostname | ip_address>

OAport <port_number>

OAthreadMax <#>

OAthreadMaxIdle <#>

OAthreadMin <#>

Description

Specifies the hostname or IP address to be used for the
Object Adaptor. Use this option if your machine has
multiple network interfaces and the BOA is associated
with just one address. If no option is specified, the host’s
default address is used.

Specifies the port number to be used by the object
adapter when listening for a new connection.

Specifies the maximum number of threads allowed
when OAid TPool is selected. If you do not specify or
you Specify 0, this selects unlimited number of threads
or, to be more precise, a number of threads limited only
by your system resources.

This specifies number of seconds a thread can exist
without servicing any requests before it is returned to
the system. By default, this is set to 300 seconds. You can
specify this only when 0aid TPool is selected

Specifies the minimum number of threads available in
the thread pool. If you do not specify, the default is zero.
You can specify this only when 02id TPool is selected.

ORB.init() method

A-4 Reference

public static ORB init(String[] args, Properties props)

The 0RB.1init () method is used by your application to set such options as the IP
address and port number of the Smart Agent to be used. These parameters are
passed as arguments to the application process when it is started.

The parameters passed to ORB.init () are the same arguments that were passed
to your application’s main routine. The ORB. init () method ignores any
arguments it does not recognize.

Code sample A.3 shows the 0RB. init passing arguments that specify a port for

the Smart Agent.

Code sample A.3 Example using ORB.init() with arguments

public static void main(String[] args) {

java.util.Properties props = new java.util.Properties();
props.put ("ORBagentPort", "9898");
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args, props);

ORB options

ORB options

The following table summarizes the ORB.1init () options.

Table A2 ORB.init options
Options

ORBagentAddr <hostname | ip_address>

ORBagentAddrFile <file_name>

ORBagentNoFailOver <false | true>

ORBagentPort <port_number>

ORBalwaysProxy <false | true>

ORBalwaysTunnel <false | true>

ORBbackCompat <false | true>

ORBconnectionCacheMax <#>

ORBconnectionMax <#>

Description

Specifies the hostname or IP address of the host
running the Smart Agent this client should use. If a
Smart Agent is not found at the specified address or
if this option is not specified, broadcast messages are
used to locate a Smart Agent.

Specifies a file to be used in place of the default file,
agentaddr.

Disables fail-over of this Smart Agent to another
Smart Agent. If you do not specify, the default value
is false.

Specifies the port number of the Smart Agent. This
option can be useful if multiple ORB domains are
required. If not specified, a default port number of
14000 is used.

Specifies whether or not clients must always connect
using the Gatekeeper. The default is false. If set to
true, ORBgatekeeperlOR must also be set.

Specifies whether or not clients must always connect
to the Gatekeeper using HTTP. The default is false.
If set to true, ORBgatekeeperIOR must also be set.

If set to true, this option specifies that backward
compatibility with previous versions of VisiBroker
should be provided which signals the runtime to be
compatible with previous versions of VisiBroker
clients and servers. Use ORBbackcompat true when
deploying servers and/or clients in an environment
based on a previous version of VisiBroker. See the
additional information about this option provided
after this table.

Specifies the maximum number of outgoing
connections that can be cached. By default, this
value is set to 0 which means that there is no limit on
the number of cached connections.

Specifies the maximum number of outgoing
connections that are allowed. If you do not specify
this option, the default is allow an unlimited
number of connections.

Using command-line options A-5

ORB options

A-6 Reference

Table A.2
Options

ORBconnectionMaxIdle <#>

ORBdebug <false | true>
ORBdebugDir <directory>

ORBdebugThreads <false | true>
ORBDefaultInitRef
ORBdisableAgentCache <false | true>

ORBdisableGatekeeperCallbacks<false

| true>

ORBdisableLocator <false | true>
ORBgatekeeperIOR <URL>
ORBgcTimeout <#>

ORBInitRef

ORBmbufSize <buffer_size>

ORBsecureShutdown <false | true>

ORBservices <service>

ORBsyncGC <false | true>

ORB.init options (continued)

Description

This specifies the number of seconds that an
outgoing connection can idle before it is shutdown
by VisiBroker. By default, this is set to 0, which
means that connections never time-out. This option
should be set for Internet applications.

Turns debugging on.

Specifies the directory where the thread debugging
information is written. By default, the output is
written to the current working directory.

Turns thread debugging on.
Specifies the default initial reference.

Disables caching of the Smart Agent. If you do not
specify, the default value is false.

Specifies whether Gatekeeper callbacks are enabled
or disabled. If you do not specify, the default value
is false and Gatekeeper callbacks are enabled. If set
to true, ORBgatekeeperIOR must also be set.

Disables the Smart Agent and Gatekeeper.
Specifies a URL that is associated with the IOR.

Specifies the interval, in seconds, at which ORB
garbage collection occurs. By default, the interval is
set at 30 seconds.

Specifies the initial reference.

Specifies the size of the intermediate buffer used by
VisiBroker for operation request processing. To
improve performance, the ORB performs more
complex buffer management than in previous
versions of VisiBroker. The default size of send and
receive buffers is 4K. If data sent or received is larger
than the default, new buffers are allocated for each
request/reply. If your application frequently sends
data larger than 4K and you wish to take advantage
of buffer management you may adjust the default
using this system property specify the number of
bytes you wish to use for a default buffer size.

If set to false, a user can use the shutdown command
to the ORB management interface to shut down the
server. By default, this value is set to true, and a
CORBA:NO_PERMISSION exception is thrown if a
user attempts to use the shutdown command.

Installs one of the ORB's special services. A service
can be one that you have created, the ORBManager
service supplied with VisiBroker, or one of the
VisiBroker services that are sold separately, such as
the Naming or Event service.

Specifies whether or not to perform synchronous
garbage collection. The default value is true.

ORBbackcompatoption

Table A.2 ORB.init options (continued)

Options Description

ORBtcpNoDelay <false | true> When set to true, it sets all sockets to send requests
immediately. The default is false which allows
sockets to send requests in batches as the bulffer fills.

ORBtcpTimeout <> Specifies the number of milliseconds a TCP socket
will wait to send data before timing-out. If set to 0,
there is no time-out—the application waits forever.
If set to a positive value, the application waits for
this number of milliseconds before it gives up and
assumes the server is down. When a time-out
occurs, the connection is broken and a
COMM_FAILURE exception is thrown.

ORBwarn <#> Specifies the level of warning message to be printed
0—Default setting; no warning messages.

1—Prints non-CORBA exceptions thrown by
user-written code and the stack trace of the
exception.

2—Same as level 1, plus prints CORBA exceptions
and the stack trace of the exception.

ORBbackcompat option

The ORBbackcompat option causes the runtime to do the following:

¢ Double-register with the Smart Agent in the previous version’s style of
interface name, as well as the 3.0 version’s style of repository ID.

¢ Clients will use the interface name to locate the providers.

¢ Typecode encoding complies with the CDR encoding from previous versions
of VisiBroker.

¢ Sets the BOA type to TSession (thread-per-session). Otherwise, it is the TPool
(thread pool) type.

Location Service options

These command-line options can be used by your client program to control
various Location Service features. When your client application invokes the
ORB.init method, the Location Services is initialized and receives any command-
line arguments you have specified. Command-line options for the Location
Service are processed and stripped from the argument list. All unrecognized
options are ignored.

As with the command-line options for the BOA and ORB, the Location Service
options take the form of type-value pairs.

vbj <executable> -LOCdebug 1 -LOCtimeout 10 -LOCverify 0

Using command-line options A-7

Location Service options

The table below summarizes the Location Service command-line options.

Table A.3 Location Service options

Type/Value pair
LOCdebug <0 | 1>

LOCtimeout <seconds>

LOCverify <0 | 1>

Purpose

If set to 1, enables using the Location Service debugging
output, described in Chapter 14, “IOP and IIOP
interfaces and classes.” If this option is not specified,
debugging output is disabled.

Indicates the number of seconds to wait for a response from a
server when verifying the existence of an object. This option
is only used when -L0Cverify has been set to one. The default
value is one second.

If set to 1, the Location Service verifies the existence of an
object before returning an object reference to the client
application. If set to 0, the Location Service offers faster
performance, but it may not return the most current
information. The default value for this option is 0.

A-8 Reference

Using VisiBroker properties

This appendix describes the properties that may be set for VisiBroker for Java.

Note The properties in this Appendix can be used with VisiBroker 4.x. However if
you want to use VisiBroker 3.x, see the options in Appendix A, “Using
command-line options.”

JAVA RMI over lIOP properties

This table lists the Java RMI over IIOP properties.

Property Default Description

javax.rmi.CORBA.StubClass com. inprise.vbroker.rmi.CORBA.StubImpl Specifies the name of the
implementation of the Stub base
class from which all RMI-IIOP
stubs must inherit.

javax.rmi.CORBA.UtilClass com. inprise.vbroker.rmi.CORBA.UtilImpl Specifies the name of the
implementation of the Utility
class that provides methods that
can be used by stubs and ties to
perform common operations.

javax.rmi.CORBA.PortableRemoteObje com.inprise.vbroker.rmi.CORBA. Specifies that the RMI-IIOP

ctClass PortableRemoteObject Impl server implementation objects
may inherit from
javax.rmi.PortableRemoteObject
or simply implement an
RMI-TIOP remote interface and
then use the exportObject
method to register themselves
as a server object.

Using VisiBroker properties B-1

OSAgent properties

Property Default Description

java.rmi.server.codebase <not set> Specifies where a server can
locate unknown classes.

java.rmi.server.useCodebaseOnly false Specifies if a server is allowed to

locate unknown classes, If set to
true, does not allow the server
to locate remote classes even if
the client sends the location of
the remote classes to the server.

OSAgent properties

Property

vbroker.

vbroker.

vbroker.

vbroker.

vbroker.

vbroker.

vbroker

agent

agent

agent

agent

agent

agent.

.agent

This table lists the OSAgent (Smart Agent) properties.

.addr

.addrFile

.debug

.enableCache

.enablelocator

failover

.port

Default
null

null

false

true

true

true

14000

Old property
ORBagentAddr

ORBagentAddrFile

ORBdebug

ORBagentCache

ORBdisableLocator

ORBagentNoFailOver

ORBagentPort

Description

Specifies the IP address or host name of
the host running the OSAgent. The
default value, null, instructs VisiBroker
applications to use the value from the
OSAGENT_ADDR environment variable.
If this OSAGENT_ADDR variable is not
set, then it is assumed that the OSAgent is
running on a local host.

Specifies a file that stores information on
where the IP address(es) or host name(s)
OSAgent maybe found.

When set to true, specifies that the system
will display debugging information about
communication of VisiBroker applications
with the OSAgent.

When set to true, allows VisiBroker
applications to cache IOR.

When set to false, does not allow
VisiBroker applications to communicate
with the OSAgent.

When set to true, allows a VisiBroker
application to fail over to another
OSAgent.

Specifies the port number that defines a
domain within your network. VisiBroker
applications and the OSAgent work
together when they have the same port
number. This is the same property as the
OSAGENT_PORT environment variable.

B-2 Reference

ORB properties

ORB properties

This table lists the ORB properties.

Property

vbroker.orb.alwaysProxy

vbroker.orb.alwaysSecure

vbroker.orb.alwaysTunnel

vbroker.orb.autoLocateStubs

vbroker.orb.bidOrder

Default Old property
false ORBalwaysProxy
false

false ORBalwaysTunnel
false

inprocess:liop:ssl:iiop:prox
v:hiop:locator

Using VisiBroker properties

Description

When set to true, specifies that
clients must always connect to
the server using the
Gatekeeper.

When set to true, specifies that
clients must always make
secure connections to the
server.

When set to true, specifies that
clients always make http tunnel
(IIOP wrapper) connections to
the server.

Turns on the ability to locate
stubs when reading object
references. This is done using
read_Object, based on the
object’s repository id instead of
either the generic object or the
stubs for passed formal class
argument.

You can specify the relative
order of importance for the
various transports. Transports
are given precedence as
follows:

1 inprocess
liop

ssl

2

3

4 iiop
5 proxy
6

hiop

7 locator

The transports that appear first
have higher precedence. For
example: If an IOR contains
both LIOP and IIOP profiles,
the first chance goes to LIOP.
Only if the LI0P fails is T10P
used. (The critical bid, specified
by the vbroker.orb.bids.critical
property, has highest
precedence no matter where it
is specified in the bid order.)

B-3

ORB properties

Property

vbroker.orb.bids.critical

vbroker.orb.defAddrMode

vbroker.orb.
bufferCacheTimeout

vbroker.orb.bufferDebug

vbroker.orb.debug

vbroker.orb.DefaultInitRef
vbroker.orb.dynamicLibs

vbroker.orb.embedCodeset

vbroker.orb.enableVBdbackco

mpat

B-4 Reference

Default Old property

inprocess

0 (Key)

6000

false

false

null ORBDefaultInit
Ref
null

true

true

Description

The critical bid has highest
precedence no matter where it
is specified in the bid order. If
there are multiple values for
critical bids, then their relative
importance is decided by the
bidOrder property.

The default addressing mode
that client ORB uses. If it is set
to 0, the addressing mode is
Key, if set to 1, the addressing
mode is Profile, if set to 2, the
addressing mode is IOR.

Specifies the time in which a
message chunk has been cached
before it is discarded.

When set to true, this property
allows the internal buffer
manager to display debugging
information.

When set to true, allows the
ORB to display debugging
information.

Specifies the default initial
reference.

Specifies a list of available
services used by the ORB.

When an IOR is created, the
ORB embeds the codeset
components into the IOR. This
may produce problems with
some non-compliant ORBs. By
turning off the embedCodeset
property, you instruct the
Visibroker ORB not to embed
codesets in IORs. When set to
false, specifies that
character and wide
character conversions between
the client and the server are not
to be negotiated.

This property enables
workarounds to deal with
behavior that is not GIOP 1.2-
compliant in VisiBroker 4.0 and
4.1. In a multi-vendor
environment with GIOP 1.2-
compliant ORBs when wchar /
wstring data types are
transmitted, this flag needs to
be set to false.

Property

vbroker.orb.enableBiDir

vbroker.orb.enableKeyId

vbroker.orb.

enableNullString

vbroker.orb.

enableServerManager

vbroker.orb. fragmentSize

vbroker.

vbroker.

vbroker.

vbroker.

vbroker.

vbroker.

vbroker.

vbroker.

orb.

orb.

orb.

orb.

orb.

orb.

orb.

orb.

InitRef

streamChunkSize

gcTimeout

logger.appName

logger.catalog

logger.output

logLevel

procIld

Default Old property
true

true ORBnullString
false

0

null ORBInitRef
4096

30 ORBgcTimeout

VBJ-Application

com.inprise.vbroker.
Logging.ORBMsgs

stdout

energ

ORB properties

Description

You can selectively make
bidirectional connections. If the
client defines
vbroker.orb.enableBiDir=client
and the server defines
vbroker.orb.enableBiDir=server
the value of
vbroker.orb.enableBiDir at the
gatekeeper determines the state
of the connection. Values of this
property are: server, client,
both ornone. See the Gatekeeper
Guide for more information.

When set to false, disables the
use of key IDs in client requests.

If set to true, enables
marshalling of null strings.

When set to true, enables Server
Manager within a server so that
clients can access it.

Specifies the GIOP message
fragment size. It must be a
multiple of GIOP message
chunk size. Assigning a zero to
this property will eventually
turn of fragmentation.

Specifies the initial reference.

Specifies the GIOP message
chuck size. It must be a power
of 2.

Specifies the time in seconds
that must pass before important
resources that are not used are
cleared.

Specifies the application name
that appears in the log.

Specifies the message catalog of
messages used by the ORB
when logging is enabled.

Specifies the output of the
logger. It can be the standard
output or a file name.

Specifies the logging level of
message that will be logged.
The default value, emrg, means
that the system logs messages
when the system is unusable, or
in a panic condition.

Specifies the process ID of the
server.

Using VisiBroker properties B-5

ORB properties
Property

vbroker.orb.sendLocate

vbroker.orb.
systemLibs.applet

vbroker.orb.
systemLibs.application

vbroker.orb.tcIndirection

vbroker.orb.warn

Default

false

Old property

com.inprise.vbroker.IIOP.
Init,
com.inprise.vbroker.LIOP.
Init,

com. inprise.vbroker.qos.
Init, com.inprise.vbroker.
URLNaming.Init,

com. inprise.vbroker .HIOP.
Init, com.inprise.vbroker.
firewall.Init,
com.inprise.vbroker.
dynamic.Init,
com.inprise.vbroker.
naming.Init

com.inprise.vbroker.IIOP.
Init,

com. inprise.vbroker.LIOP.
Init,

com. inprise.vbroker.gos.
Init,

com. inprise.vbroker.ds.
Init, com.inprise.vbroker.
URLNaming.Init,
com.inprise.vbroker.
dynamic.Init,
com.inprise.vbroker.ir.Init,
com.inprise.vbroker.
naming.Init

true

0 ORBwarn

Description

When set to true, forces the
system to send a locate request
before making invocations on a
IIOP 1.2 target.

Provides a list of system
libraries loaded in applet.

Provides a list of system
libraries loaded in application.

Specifies that indirection be
turned off when writing the
typecodes. May be necessary
when inter operating with
ORBs from other vendors.
When set to the value, false, it is
not possible to marshall
recursive typecodes.

Specifies a value of 0, 1, or 2
which indicates the level of
warning messages to be
printed.

B-6 Reference

POA properties

POA properties

This table lists the POA properties.

Property Default Description

vbroker.poa. logLevel emerg Specifies the logging level of messages to be logged.
The default value, enrg, means that messages are
logged when the system is unusable or during a
panic condition.

Server Manager properties

This table lists the Server Manager properties.

Property Default Description

vbroker.serverManager .name null Specifies the name of the Server
Manager.

vbroker.serverManager . enableOperations true When set to true, enables

operations exposed, by the Server
Manager, to be invoked.

vbroker.serverManager . enableSet Property true When set to true, enables
properties, exposed by the Server
Manager, to be changed.

Location Service properties

This table lists the Location Service properties.

Property Default Description

vbroker.locationservice.debug false When set to true, allows the Location
Service to display debugging information.

vbroker.locationservice.verify false When set to true, allows the Location
Service to check for the existence of an
object referred by an object reference sent
from the OSAgent.

vbroker.locationservice.timeout 1 Specifies the connect/receive/send
timeout when trying to interact with the
Location Service.

Using VisiBroker properties B-7

Event Service properties

Event Service properties

This table lists the Event Service properties.

Property

vbroker.events.maxQueuelLength

vbroker.events. factory

vbroker.events.debug

vbroker.events.interactive

Default
100

false

false

false

Description

Specifies the number of messages to be queued
for slow consumers.

When set to true, allows the event channel
factory to be instantiated, instead of an event
channel.

When set to true, allows output of debugging
information.

When set to true, allows the event channel to
be executed in a console-driven, interactive
mode.

Naming Service properties

Naming Service properties are listed in the VisiBroker for Java Programmer’s
Guide, Chapter 18, “Using the Naming Service.”

OAD properties

This table lists the OAD properties that can be set.

Property

vbroker.oad. spawnTimeOut

vbroker.oad.verbose

vbroker.oad.readOnly

vbroker.oad.iorFile

vbroker.oad.quoteSpaces

vbroker.oad.killOnUnregister

vbroker.oad.verifyRegistration

Default
20

false

false

0adj.ior

false

false

false

Description

After the OAD spawns an executable,
specifies how long, in seconds, the system
will wait to receive a callback from the
desired object before throwing a
NO_RESPONSE exception.

Allows the OAD to print detailed
information about its operations.

When set to true, does not allow you to
register, unregister, or change the OAD
implementation.

Specifies the filename for the OAD’s
stringified IOR.

Specifies whether to quote a command.

Specifies whether to kill spawned servers
once they are unregistered.

Specifies whether to verify the object
registration.

B-8 Reference

Interface Repository properties

This table list the OAD properties that cannot be overridden in a property file.
They can however be overridden with environment variables or from the

command line.

Property

vbroker.oad. implName
vbroker.oad.implPath

vbroker.oad.path
vbroker.oad. systemRoot
vbroker.oad.windir

vbroker.oad.vbj

Default Description

impl_rep Specifies the filename for the implementation
repository.

null Specifies the directory where the implementation
repository is stored.

null Specifies the directory for the OAD.

null Specifies the root directory.

null Specifies the Windows directory.

vbj Specifies the VBJ directory.

Interface Repository properties

This table lists the Interface Repository (IR) properties.

Property Default
vbroker.ir.debug false
vbroker.ir.ior null
vbroker.ir.name null

Description

When set to true, allows the IR resolver to display
debugging information.

When the vbroker.ir.name property is set to the default
value, null, the ORB will try to use this property to locate
the IR.

Specifies the name that is used by the ORB to locate the IR.

URL Naming properties

This table lists the URL Naming properties.

Property

Default Description

vbroker .URLNaming.allowUserInteraction true When set to true, allows the URL

vbroker.URLNaming.debug

Naming Service to initiate the
graphical user interface (GUI) for
user interaction.

false When set to true, specifies that the
URLNaming Service display
debugging information.

Using VisiBroker properties B-9

Client-Side Connection properties

Client-Side Connection properties

This table lists the Client-Side Connection properties.

Property

vbroker.ce.iiop.ccm.connectionCacheMax

vbroker.ce.iiop.ccm.connectionMax

vbroker.ce.iiop.ccm.connectionMaxIdle

vbroker.ce.iiop.connection.tcpNoDelay

vbroker.ce.iiop.ccm.type

Default

5

360

false

Pool

Description

Specifies the maximum number of
cache connections on a client. The
connection is cached when the client
releases it. Consequently, the next
time the client needs a new
connection, it first tries to get an
available one from the cache, instead
of creating a new one.

Specifies the maximum number of
total connections within a client. This
value is equal to active connections
plus those that are cached. The default
value, zero, means that the client will
not try to close any of the old active or
cached connections.

Specifies the time in msecs that the
client uses to determine if a cached
connection should be closed or not. In
other words, if a cached connection
has been idle longer than this time,
then the client will close it.

When set to true, turns off buffering
for the socket so that all packets are
sent as soon as they are ready. The
default value, false, turns on
buffering.

Specifies what type of client
connection management is used by a
client. The default value, Pool, means
connection pool.

Client-Side In Process Connection properties

This table lists the Client-Side In-Process Connection properties.

Property Default

vbroker.ce.inprocess.ccm.bid 9488

B-10 Reference

Description

Specifies the bid value for the POA bidder. It
affects an automatic process in the ORB used
in picking a protocol to handle client
connections.

Property

vbroker.ce.iiop.ccm.bid

vbroker.ce.iiop.ccm.bid

Default
10000

9744

Server-Side Server Engine properties

Description

Specifies the bid value for the iiop bidder. It
affects an automatic process in the ORB used
in picking a protocol to handle client
connections.

Specifies the bid value for the liop bidder. It
affects an automatic liop in the ORB used in
picking a protocol to handle client
connections.

Server-Side Server Engine properties

This table lists the Server-Side Server Engine properties.

Property Default Description
vbroker.se.default iiop_tp Specifies the default server engine.
vbroker.se.<se>.scm.<scm>. listener.giopVersion 1.2 This property can be used to resolve

interoperability problems with older ORBs that
cannot handle unknown minor GIOP versions
correctly. Legal values for this property are 1.0, 1.1
and 1.2. For example, to make the nameservice
produce a GIOP 1.1 ior, start it like this:

nameserv -VBJprop
vbroker.se.iilop_tp.scm.iiop_tp.listener.giopVers
ion=1.1

Server-Side Thread Session IIOP_TS/MIOP_TS Connection

properties

This table lists the Server-Side Thread Session IIOP_TS/IIOP_TS Connection

properties.

Property

vbroker.se.iiop_ts.host

vbroker.se.iiop_ts.proxyHost

vbroker.se.iiop_ts.scms

.se.iiop_ts.scm.iiop_ts.
.type

vbroker
manager

Default
null

null

iiop_ts

Socket

Description

Specifies the host name used by
this server engine. The default
value, null, means use the host
name from the system.

Specifies the proxy host name used
by this server engine. The default
value, null, means use the host
name from the system.

Specifies the list of Server
Connection Manager name(s).

Specifies the type of Server
Connection Manager.

Using VisiBroker properties B-11

Server-Side Thread Session BOA_TS/BOA_TS Connection properties

Property Default Description
vbroker.se.iiop_ts.scm.iiop_ts. 0 Specifies the maximum number of
manager . connectionMax connections the server will accept.

The default value, 0 (zero), implies
no restriction.

vbroker.se.iiop_ts.scm.iiop_ts. 0 Specifies the time in seconds the

manager .connectionMaxIdle server uses to determine if an
inactive connection should be
closed or not.

vbroker.se.iiop_ts.scm.iiop_ts. I1I0P Specifies the type of protocol the
listener.type listener is using.
vbroker.se.iiop_ts.scm.iiop_ts. 0 Specifies the port number that is
listener.port used with the host name property.

The default value, 0 (zero), means
the system will pick a random port

number.
vbroker.se.iiop_ts.scm.iiop_ts. 0 Specifies the proxy port number
listener.proxyPort used with the proxy host name

property. The default value, 0
(zero), means the system will pick a
random port number.

vbroker.se.iiop_ts.scm.iiop_ts. “ThreadSession” Specifies the type of thread
dispatcher.type dispatcher used in the Server
Connection Manager.

Server-Side Thread Session BOA_TS/BOA TS
Connection properties

This protocol has the same set of properties as the thread session iiop_ts/iiop_ts
connection properties (see above table), by replacing all iiop_ts with boa_ts in
all the properties. For example, the
vbroker.se.iiop_ts.scm.ilop_ts.manager.connectionMax will become
vbroker.se.boa_ts.scm.boa_ts.manager.connectionMax. Also, the default value for
vbroker.se.boa_ts.scms is boa_ts.

B-12 Reference

Server-Side Thread Pool lIOP_TP/IOP_TP Connection properties

This table lists the Server-Side Thread Pool IIOP_TP/IIOP_TP Connection

properties.

Property

vbroker.se.iiop_tp.host

vbroker.se.1liop_tp.ProxyHost

vbroker.se.1liop_tp.scms

vbroker.se.iiop_tp.scm.iiop_tp.
connection.tcpNoDelay

vbroker.se.iiop_tp.scm.iiop_tp.manager.

type

vbroker.se.iiop_tp.scm.iiop_tp.manager.

connectionMax

vbroker.se.iiop_tp.scm.iiop_tp.manager.

connectionMaxIdle

vbroker.se.iiop_tp.scm.iiop_tp.
listener.type

vbroker.se.iiop_tp.scm.iiop_tp.
listener.port

vbroker.se.iiop_tp.scm.iiop_tp.
listener.proxyPort

vbroker.se.iiop_tp.scm.iiop_tp.
dispatcher.type

vbroker.se.iiop_tp.scm.iiop_tp.
dispatcher.threadMin

Default
null

null

iiop_tp

false

Socket

I10P

ThreadPool

Using VisiBroker properties

Description

Specifies the host name that can be
used by this server engine. The
default value, null, means use the
host name from the system.

Specifies the proxy host name that
can be used by this server engine.

The default value, null, means use
the host name from the system.

Specifies the list of Server
Connection Manager name(s).

When set to true, turns off
buffering for the socket so that all
packets are sent as soon as they are
ready. The default value, false,
turns on buffering.

Specifies the type of Server
Connection Manager.

Specifies the maximum number of
cache connection on the server.
The default value, 0 (zero), implies
no restriction.

Specifies the time in seconds that
the server uses to determine if an
inactive connection should be
closed or not.

Specifies the type of protocol the
listener is using.

Specifies the port number used
with the host name property. The
default value, 0 (zero), means that
the system will pick a random port
number.

Specifies the proxy port number
used with the proxy host name
property. The default value, 0
(zero), means that the system will
pick a random port number.

Specifies the type of thread
dispatcher used in the Server
Connection Manager.

Specifies the minimum number of
threads that the Server Connection
Manager can create.

B-13

Property Default Description

vbroker.se.iiop_tp.scm.iiop_tp. 0 Specifies the maximum number of

dispatcher.threadMax threads that the Server Connection
Manager can create. The default
value, 0 implies no restriction.

vbroker.se.iiop_tp.scm.iiop_tp. 300 Specifies the time in seconds before
dispatcher.threadiaxIdle a idle thread will be destroyed.

Server-Side Thread Pool BOA_TP/BOA_TP Connection properties

This protocol has the same set of properties as the thread pool iiop_tp/iiop_tp
connection properties (see above table), by replacing all iiop_tp with boa_tp in
all the properties. For example, the
vbroker.se.iiop_tp.scm.iiop_tp.manager.connectionMax will become
vbroker.se.boa_tp.scm.boa_tp.manager.connectionMax. Also, the default value for
vbroker.se.boa_tp.scms is boa_tp.

Properties that support bidirectional communication

NOTE:

B-14 Reference

This table lists the properties that support bidirectional communication.

These properties are evaluated only once -- when the SCMs are created. In all cases, the
exportBiDir and importBiDir properties on the SCMs are given priority over the enableBiDir
property. In other words, if both properties are set to conflicting values, the SCM-specific
properties will take effect. This allows you to set the enableBiDir property globally and
specifically turn off bidirectionality in individual SCMs.

Property Default Description

vbroker.orb.enableBiDir You can selectively make bidirectional
connections. If the client defines
vbroker.orb.enableBiDir=client and the server
defines vbroker.orb.enableBiDir=server the
value of vbroker.orb.enableBiDir at the
gatekeeper determines the state of the
connection. Values of this property are:
server, client, both or none.

vbroker.se.<se>.scm.<scm>.mana By A client-side property. Setting it to true
ger.exportBiDir default, enables creation of a bidirectional callback
not set by POA on the specified server engine. Setting it
the ORB. to false disables creation of a bidirectional
POA on the specified server engine.

vbroker.se.<se>.scm.<scm>.mana By A server-side property. Setting it to true
ger.importBiDir default allows the server-side to reuse the connection
not set by already established by the client for sending

the ORB. requests to the client. Setting it to false
prevents reuse of connections in this fashion.

Symbols

... ellipsis 1-4
[] brackets 1-4
| vertical bar 1-4

A

AbstractInterfaceDef interface 7-1
activation

interfaces 8-1

policies 8-3
ActivationImplDef 8-1
ActivationImplDef interface 8-1
Activator

impl_is_ready 5-4
Activator interface 8-2
additional information 1-5
Agent interface 17-1
AliasDef interface 7-3
Any

Any type mapping 3-25
applications

locating osagent via vbj command 2-9
ARG_IN class 17-4
arguments

-ORBshmsize 2-9
ArrayDef interface 7-4
arrays

mapping 3-11
AttributeDef interface 7-5
AttributeDescription class 7-6
AttributeMode class 7-7
attributes

list of exception classes 11-2

B

backward compatibility A-5, A-6

basic types
IDL types 3-3
Binding
interface 9-8
binding

BindOptions class 5-1
Binding structure 9-8
Bindinglterator 9-10

class 9-9

interface 9-9
BindingList

interface 9-8
BindingList sequence 9-8

Index

BindInterceptor 12-3
BindOptions class 5-1
BOA
initialization options A-1, A-2
OAConnectionMax A-3
OAipaddr A-4
OAport A-4
OAThreadMax A-4
options A-3
BOA interface 5-2
BOA_init
method A-2
BOA_init() 5-23
BOA_init(String boaType, java.util. Properties
properties) 5-24, A-2
boolean type
mapping 3-8
buffer size
setting A-6

C

Caffeine compiler
description 2-6

char type
mapping 3-8

class
BindInterceptor 12-3
ClientInterceptor 12-7, 12-8

classes
Any 6-1
ARG_IN 6-4,17-4
ARG_INOUT 6-4
ARG_OUT 6-4
AttributeDescription 7-6
AttributeMode 7-7
BindOptions 5-1
BOA 5-2
Closure 12-14
CompletionStatus 5-5
ConstantDescription 7-8
ContainedPackage.Description 7-12
ContainerPackage.Description 7-19
ContextList 6-5
DefinitionKind 7-20
dynamic 6-1
DynamicImplementation 6-17
DynAny 6-6
DynAnyFactory 6-10
DynArray 6-9
DynEnum 6-11

Index

I1

DynFixed 6-12
DynSequence 6-12
DynStruct 6-13
DynUnion 6-14
DynValue 6-16
Environment 6-18
ExceptionDescription 7-22
ExceptionList 6-18
Fail 17-6
FullInterfaceDescription 7-28
generated 4-1
Helper 4-1,4-3
Holder 4-1, 4-6
ImplementationDef 8-7
InterfaceDescription 7-29
Invalid 6-20
InvalidName 5-8
InvalidSeq 6-21
IORValue 14-2
java.lang Runtime 11-1
ModuleDescription 7-31
NamedValue 6-21
NameValuePair 6-22
NVList 6-22
OperationDescription 7-34
OperationMode 7-35
Operations 4-3
operations 4-2
ORB 5-13
ParameterDescription 7-36
ParameterMode 7-37
POA 4-2
POATie 4-2
PortableServer.AdaptorActivator 5-25
PortableServer POAManager 5-36
PortableServer.ServantActivator 5-37
PortableServer.ServantLocator 5-38
PortableServer.ServantManager 5-40
PrimitiveKind 7-37
Principal 5-40
ProfileBody 14-1
ServiceContext 14-3
skeleton 4-7
stub 4-2,4-7
SystemException 11-1
TaggedProfile 14-4
TCKind 6-30
tie 4-8
TypeDescription 7-43
UnionMember 7-45
UnknownUserException 6-34
UserException 11-3
CLASSPATH 2-9
classPath 2-10
classpath 2-10

I-2 Reference

client

locating osagent via vbj command 2-9

property list 5-6
ClientInterceptor 12-7,12-8
Client-Side Connection

properties B-10
Client-Side In-Process Connection

properties B-10
Closure 12-14
commands

idI2ir 2-1,2-2

idl2java 2-3

java2idl 2-5

java2iiop 2-6

vbj 2-9
CompletionStatus class 5-5
connect_push_consumer

method 10-7
connection timeout 13-8
connections

idle time A-3, A-6

maximum number A-3, A-5
ConstantDef interface 7-8
ConstantDescription class 7-8
constants

mapping 3-10
constructed types

mapping 3-11
constructors

DynamicImplementation 6-17

NameValuePair in NameValuePair 6-22
ConsumerAdmin

interface 10-1

method 10-2
contacting Borland 1-5
contacting Inprise 1-5
Contained interface 7-10
ContainedPackage.Description class 7-12
Container interface 7-12
ContainerPackage.Description class 7-19
Context interface 5-6
ContextList class 6-5
conventions 1-4

platform 1-4

platform icons 1-4

typographic 1-4
CosEventChannel Admin 10-11
CosEventComm 10-10
CreationImplDef interface 8-3

D

DeferBindPolicy

interface 13-9
DefinitionKind class 7-20
delegation

with server implementations 3-22
Desc
interface 17-4
developer support 1-5
DII
generating portable stubs 2-7
disconnect_push_consumer()
method 10-8
DynamicImplementation
classes 6-17
DynAny class 6-6
DynAnyFactory
classes 6-10
DynArray
classes 6-9
DynEnum
classes 6-11
DynFixed
classes 6-12
DynSequence
classes 6-12
DynStruct
classes 6-13
DynUnion
classes 6-14
DynValue
classes 6-16

E

EnumDef interface 7-21
enums

Location 12-14

mapping 3-11
Environment

classes 6-18
Environment class 6-18
environment variables 8-5
environment variables in CreationImplDef 8-4
event handlers

interfaces 9-1, 10-1
Event Service

properties B-8
EventChannel

class 10-2

interface 10-2

methods 10-2
EventLibrary

class 10-3

interface 10-3

methods 10-3, 10-4

create 10-4

ExceptionDef interface 7-21
ExceptionDescription class 7-22
ExceptionList class 6-18
exceptions

class hierarchy 11-1
ForwardRequestException 12-10
list of attributes 11-2
mapping 3-23
Quality of Service 13-11
system 3-24
user-defined 3-23
executable
starting A-2
ExtendedNamingContextFactory
class 9-11
interface 9-11
method 9-12
extensions
VisiBroker ORB 5-22
extract method
in Helper classes 4-3

F

Fail

class 17-6
FixedDef

interface 7-23
floating point

mapping 3-9
FulllnterfaceDescription class 7-28
FullValueDescription

interface 7-24

G

generated classes 4-1

H

Helper classes 4-3
mapping 3-9
overview 4-1

Holder classes 4-6
mapping 3-5
overview 4-1

hostname A-4

IDL
creating from Java 2-5
generating Java code 2-3
mapping constants 3-10
mapping constructed types 3-11
mapping interfaces 3-18, 3-21
mapping modules 3-3
mapping names to Java 3-1
mapping nested types 3-25
mapping parameters 3-20

Index

1-3

mapping to Java 3-1

mapping typedefs 3-25

mapping types 3-3

reserved names 3-2

reserved words 3-2

type extensions 3-4

using Java to define IDL 2-6
IDL type

basic types 3-3

boolean 3-8

char 3-8

complex 3-26

floating point type 3-9

Holder classes 3-5

integer type 3-9

octet 3-8

simple 3-26

string 3-8

wstring 3-9
idl2ir 2-1

command info 2-1, 2-2

description 2-1,2-2

options 2-2
id12java

command info 2-3

generating portable stubs for DII 2-3

options 2-3
IDLType interface 7-25
ImplementationDef 8-7
ImplementationDef class 8-7
implementations

using delegation 3-22
ImplementationStatus

struct 8-8
ImplementationStatus struct 8-8
information, where to find 1-5
inheritance

implementing servers 3-21
InputStream interface 6-19
installation support 1-5
integer

mapping 3-9
interceptor

managers 12-1
InterceptorManager

interface 12-2
interceptors

Closure 12-14

Closure objects 12-14
Interface Repository

populating with idI2ir 2-1,2-2

properties B-9
interface scope

mapping 3-23
interface_name

I-4 Reference

operations 4-3

POA 4-7

POATie 4-8

stub 4-7
InterfaceDef interface 7-26
InterfaceDescription class 7-29
interfaces

AbstractInterfaceDef 7-1
ActivationImplDef 8-1

Activator 8-2
ActiveObjectLifeCycleInterceptor 12-9

ActiveObjectLifeCyclelnterceptorManager 12-9

Agent 17-1

AliasDef 7-3

Any 6-1

ARG_IN 6-4
ARG_INOUT 6-4
ARG_OUT 6-4
ArrayDef 7-4
AttributeDef 7-5
Binding 9-8
Bindinglterator 9-9
BindingList 9-8
BindIntercceptor 12-3
BindInterceptorManager 12-4
BOA 5-2

ChainUntypedObjectWrapperFactory 12-15

ClientRequestInterceptor 12-5
ClientRequestInterceptorManager 12-7
ConstantDef 7-8
ConsumerAdmin 10-1
Contained 7-10

Container 7-12

Context 5-6

CORBA Object 13-3
CreationImplDef 8-3
DeferBindPolicy 13-9

Desc 17-4

dynamic 6-1

EnumDef 7-21

EventChannel 10-2
EventLibrary 10-3
ExceptionDef 7-21
ExtendedNamingContextFactory 9-11
FullValueDescriptionf 7-24
IDLType 7-25

InputStream 6-19
InterceptorManager 12-2
InterceptorManagerControl 12-2
InterfaceDef 7-26
IORCreationInterceptor 12-13
IORInterceptorManager 12-13
IRObject 7-30

mapping 3-18, 3-21

ModuleDef 7-31

NamingContext

NamingContext

interface 9-1

NamingContextExt 9-6
NamingContextFactory 9-10
NativeDef 7-32
NVList 6-22
OAD 8-7
Object 5-8, 13-4
OperationDef 7-32
OutputStream 6-24
POA 5-26
POALifeCycleInterceptor 12-7
POALifeCyclelnterceptorManager 12-8
PolicyCurrent 13-3
PolicyManager 13-1
PortableRemoteObject 15-1
PortableServer. POAManager 5-36
PortableServer.ServantActivator 5-37
PortableServer.ServantLocator 5-38
PortableServer.ServantManager 5-40
PrimitiveDef 7-37
ProxyPullConsumer 10-4
ProxyPullSupplier 10-6
ProxyPushConsumer 10-5
ProxyPushSupplier 10-7
PullConsumer 10-8, 10-9
PullSupplier 10-9
PushConsumer 10-8
PushSupplier 10-10
RebindPolicy 13-5
Repository 7-38
Request 6-25
Resolver 16-1
SequenceDef 7-40
ServerRequest 6-29
ServerRequestInterceptor 12-10
ServerRequestInterceptorManager 12-12
StringDef 7-41
StructDef 7-42
StructMember 7-42
SupplierAdmin 10-11
TriggerHandler 17-8
TypeCode 6-31
TypedefDef 7-43
UnionDef 7-44
UntypedObjectWrapper 12-16
UntypedObjectWrapperFactory 12-18
ValueBoxDefValueBoxDef

interface 7-46
ValueDef 7-46
ValueDescription

interface 7-49

ValueDescription

interface 8-7

ValueMemberDef
interface 7-50

WstringDef 7-51
interfaces FixedDef 7-23
interfacesPrincipal 5-40
Inter-operable Object Reference (see IOR) 14-2
Invalid

classes 6-20
InvalidName class 5-8
InvalidSeq

classes 6-21
IOR

associating with a URL 16-2

templates 12-2
IORValue

class 14-2
IP address A-4, A-5
ir2idl 2-2

options 2-3
IRObject 7-30
IRObject interface 7-30

J

Java
creating an IDL file from Java 2-5
defining IDL interfaces 2-6
generating code from IDL file 2-3
mapping from IDL 3-1
null 3-8
RMI over IIOP properties B-1
starting the interpreter via vbj 2-9
java2idl
command info 2-5
description 2-5
options 2-5
java2iiop
command info 2-6
generating portable stubs for DII 2-7
options 2-7
JVM 2-11

L

List 9-6

Location
enum 12-14

Location Service
options A-7
properties B-7
query a Smart Agent 17-1
registering triggers 17-1
TriggerDesc 17-6

Index

I-5

manual

conventions 1-4

mapping 3-9

Any type 3-25
arrays 3-11
boolean type 3-8
char type 3-8
constants 3-10
constructed types 3-11
enums 3-11
exceptions 3-23
floating point 3-9
Holder classes 3-5
IDL names 3-1

IDL type 3-3
integer 3-9
interface scope 3-23
interfaces 3-18
modules 3-3
nested types 3-25
octet 3-8

absolute_name in Contained 7-10
abstract_base_values in ValueDef 7-47
access in ValueMemberDef 7-51
activate in Activator 8-2
activate in PortableServer.POAManager 5-37
activate_object in PortableServer. POA 5-26
activate_object_with_id in
PortableServer. POA 5-27
activation_policy in CreationImplDef 8-5
activator_obj in ActivationImplDef 8-1
add in ActiveObjectLifeCyclelnterceptor 12-10
add in BindInterceptorManager 12-5
add in
ChainUntypedObjectWrapperFactory 12-16
add in ClientRequestInterceptorManager 12-7
add in ContextList 6-5
add in ExceptionList 6-19
add in IORInterceptorManager 12-14
add in NVList 6-23
add in POALifeCycleInterceptorManager 12-8
add in ServerRequestInterceptorManager 12-12
add_in_arg in Request 6-26
add_inout_arg in Request 6-26

passing parameters 3-20 add_item in NVList 6-23
reserved names 3-2 add_named_in_arg in Request 6-26
reserved words 3-2 add_named_inout_arg in Request 6-27
sequences 3-11 add_named_out_arg in Request 6-27
string 3-8, 3-9 add_out_arg in Request 6-27
structs 3-11 add_value in NVList 6-23
typedefs 3-25 addClientObjectWrapper in Helper class 4-5
unions 3-11 addServerObjectWrapperClass in Helper
member data in Holder 4-7 class 4-5
messages all_agent_locations in Agent 17-2
broadcasting via vbj command 2-9 all_instances in Agent 17-2
method all_instances_descs in Agent 17-2
FullInterfaceDescription in all_replica in Agent 17-3
FulllnterfaceDescription 7-29 all_replica_descs in Agent 17-3
methods 4-5 all_repository_ids in Agent 17-3
_bind_options in Object 5-12 args in CreationImplDef 8-5
_boa in Object 5-12 arguments in Request 6-27
_create_array_tc in ORB 5-16 assign in DynAny 6-7
_create_request in Object 5-9 AttributeDescription in
_hash in Object 5-10 AttributeDescription 7-6
_is_a in Object 5-10 base_interfaces in InterfaceDef 7-1, 7-27
_is_bound in Object 5-12 base_value in ValueDef 7-47
_is_equivalent in Object 5-11 bind in BindInterceptor 12-3
_is_local in Object 5-12 bind in Helper 4-4
_is_persistent in Object 5-12 bind in NamingContext 9-2
_is_remote in Object 5-12 bind in ORB 5-23
_non_existent in Object 5-11 bind_context in NamingContext 9-3
_object_name in Object 5-12 bind_failed in BindInterceptor 12-4
_repository_id in Object 5-13 bind_new_context in NamingContext 9-5
_request in Object 5-11 bind_succeeded in BindInterceptor 12-4

_resolve_reference in Object 5-13 BindOptions in BindOptions 5-2
_work_pending in ORB 5-22 boa_activate_obj in OAD 8-9

I-6 Reference

boa_deactivate_obj in OAD 8-10

BOA_init in ORB 5-23, 5-24

bound in SequenceDef 7-40

bound in StringDef 7-41

bound in WstringDef 7-51

change_implementation in OAD 8-9

clear in Environment 6-18

completion status methods 5-5

connect in PortableRemoteObject 15-2

connect_push_supplier in
ProxyPushConsumer 10-5

containing_repository in Contained 7-10

content_type in TypeCode 6-32

contents in Container 7-14

context_name in Context 5-6

contexts in OperationDef 7-33

contexts in Request 6-27

copy in DynAny 6-7

count in
ChainUntypedObjectWrapperFactory 12-16

count in ContextList 6-5

count in ExceptionList 6-19

count in NVList 6-23

create in ActiveObjectLifeCycleInterceptor 12-9

create in EventLibrary 10-3

create in IORInterceptor 12-13

create in POALifeCyclelnterceptor 12-7

create in UntypedObjectWrapperFactory 12-18

create with specified boa 10-4

create_abstract_interface in Container 7-2

create_alias in Container 7-15

create_alias_tc in ORB 5-15

create_any in ORB 5-16

create_array in Repository 7-39

create_array_tc in ORB 5-16

create_attribute in ValueDef 7-48

create_channel in EventLibrary 10-4

create_child in Context 5-7

create_constant in Container 7-15

create_context in NamingContextFactory 9-11

create_context_list in ORB 5-16

create_CreationImplDef in OAD 8-10

create_dyn_any in DynAnyFactory 6-10

create_dyn_any_from_type_code in
DynAnyFactory 6-11

create_enum in Container 7-15

create_enum_tc in ORB 5-16

create_environment in ORB 5-16

create_exception in Container 7-16

create_exception_tc in ORB 5-17

create_id_assignment_policy in
PortableServer.POA 5-28

create_id_uniqueness_policy in
PortableServer.POA 5-28

create_implicit_activation_policy in
PortableServer.POA 5-27
create_input_stream in Any 6-1
create_input_stream in ORB 5-24
create_interface in Container 7-15,7-16
create_interface_tc in ORB 5-17
create_lifespan_policy in
PortableServer. POA 5-29
create_list in ORB 5-17
create_module in Container 7-16
create_named_value in ORB 5-17
create_operation_list in ORB 5-18
create_operations in ValueDef 7-48
create_output_stream in Any 6-1
create_output_stream in ORB 5-24
create_ POA in PortableServer.POA 5-29
create_recursive_sequence_tc in ORB 5-18
create_reference in PortableServer.POA 5-27
create_reference_with_id in
PortableServer. POA 5-28
create_request_processing_policy in
PortableServer. POA 5-29
create_sequence in Repository 7-39
create_sequence_tc in ORB 5-18
create_servant_retention_policy in
PortableServer.POA 5-30
create_string in Repository 7-39
create_string_tc in ORB 5-18
create_struct in Container 7-17, 7-18, 7-19
create_struct_tc in ORB 5-18
create_thread_policy in
PortableServer.POA 5-30
create_union in Container 7-17
create_union_tc in ORB 5-19
create_value_member in ValueDef 7-48
create_wstring in Repository 7-39
create_wstring_tc in ORB 5-19
ctx in Request 6-27
ctx in ServerRequest 6-29
current_component in DynAny 6-7
current_member_kind in DynStruct 6-14
current_member_kind in DynValue 6-16
current_member_name in DynStruct 6-14
current_member_name in DynValue 6-16
deactivate in Activator 8-2
deactivate in PortableServer.POAManager 5-37
deactivate_obj in BOA 5-3
deactivate_object in PortableServer.POA 5-31
def_kind in IRObject 7-31
default_bind_options in ORB 5-24
default_index in TypeCode 6-32
default_principal in ORB 5-25
defined_in in Contained 7-11
delegate in POATie 4-8
delete_values in Context 5-7

Index I-7

describe in Contained 7-11
describe_contents in Container 7-17
describe_interface in InterfaceDef 7-3, 7-28
describe_value in ValueDef 7-48
destroy in
ActiveObjectLifeCyclelnterceptor 12-9
destroy in Bindinglterator 9-10
destroy in DynAny 6-7
destroy in EventChannel 10-2
destroy in IRObject 7-31
destroy in NamingContext 9-6
destroy in POALifeCyclelnterceptor 12-8
destroy in PortableServer.POA 5-31
destroy_on_unregister in OAD 8-10
disconnect_pull_supplier 10-10, 10-11
disconnect_push_consumer in
PullConsumer 10-8, 10-9
disconnect_push_supplier in
PushSupplier 10-10
discriminator_kind in DynUnion 6-15
discriminator_type in TypeCode 6-32
discriminator_type in UnionDef 7-44
discriminator_type_def in UnionDef 7-44
element_type in ArrayDef 7-4
element_type in SequenceDef 7-41
element_type_def in ArrayDef 7-4,7-5
element_type_def in SequenceDef 7-41
env in CreationImplDef 8-6
env in Request 6-27
equal in Any 6-2
equal in TypeCode 6-32
etherealize in
PortableServer.ServantActivator 5-37
except in ServerRequest 6-30
exception in Environment 6-18
exception_ocurred in BindInterceptor 12-4
exceptions in OperationDef 7-33
exceptions in Request 6-27
extract in Helper 4-3
extraction methods in Any 6-2, 6-8
find_POA in PortableServer.POA 5-32
flags in NamedValue 6-21
for_suppliers in EventChannel 10-2
force_register_url in Resolver 16-2
from_any in DynAny 6-7
from_int in TCKind 6-31
generated_command in OAD 8-10
generated_environment in OAD 8-10
get__policy_overrides in Object 13-4
get_as_string in DynEnum 6-11
get_as_ulong in DynEnum 6-11
get_client_policy in Object 13-4
get_cluster_manager in
NamingContextFactory 9-11
get_default_context in ORB 5-19

I-8 Reference

get_discriminator in DynUnion 6-15
get_elements in DynArray 6-10
get_elements in DynSequence 6-13
get_implementation in OAD 8-11
get_manager in
InterceptorManagerControl 12-3
get_members in DynStruct 6-14
get_members in DynValue 6-16
get_members_as_dyn_any in DynStruct 6-14
get_members_as_dyn_any in DynValue 6-16
get_next_response in ORB 5-19
get_object in PortableServer.Current 5-26
get_POA in PortableServer.Current 5-26
get_policy in Object 13-3
get_policy_overrides in PolicyManager 13-2
get_primitive in Repository 7-40
get_primitive_tc in ORB 5-19
get_principal in BOA 5-4
get_response in Request 6-28
get_servant in PortableServer POA 5-32
get_servant_manager in
PortableServer. POA 5-32
get_status in OAD 8-11
get_status_all in OAD 8-11, 8-12
get_status_interface in OAD 8-11
get_value in DynFixed 6-12
get_values in Context 5-7
has_no_active_member in DynUnion 6-16
hold requests in
PortableServer. POAManager 5-37
Holder in Holder 4-7
id in ActivationImplDef 8-1
id in Contained 7-11
id in CreationImplDef 8-6
id in Helper 4-3
id in TypeCode 6-32
id_to_reference in Portable Server.POA 5-32
id_to_servant in PortableServer.POA 5-32
impl_is_down in TriggerHandler 17-8
impl_is_ready in BOA 5-4
impl_is_ready in TriggerHandler 17-8
incarnate in
PortableServer.ServantActivator 5-38
init in ORB 5-20, 5-25
initializers in ValueDef 7-47
insert in Helper 4-3
insertion methods in Any 6-3, 6-8
invoke in DynamicImplementation 6-17
invoke in Request 6-28
is_a in InterfaceDef 7-3,7-28
is_a in ValueDef 7-48
is_abstract in ValueDef 7-47
is_custom in ValueDef 7-47
is_trucatable in ValueDef 7-47
item in ContextList 6-5

item in ExceptionList 6-19

item in N'VList 6-24

kind in PrimitiveDef 7-37

kind in TypeCode 6-33

length in ArrayDef 7-4

length in TypeCode 6-33

list in NamingContext 9-6

list_all_roots in NamingContextFactory 9-11

list_initial_services in ORB 5-20

locate in Resolver 16-2

lookup in Container 7-18

lookup_id in Repository 7-40

lookup_name in Container 7-18

member in DynUnion 6-15

member_count in TypeCode 6-33

member_kind in DynUnion 6-15

member_label in TypeCode 6-33

member_name in DynUnion 6-15

member_name in TypeCode 6-33

member_type in TypeCode 6-34

members in EnumDef 7-21

members in ExceptionDef 7-22

members in StringDef 7-41

members in StructDef 7-42

members in UnionDef 7-45

members in WstringDef 7-51

mode in AttributeDef 7-5

mode in OperationDef 7-33

move in Contained 7-11

name in Contained 7-11

name in NamedValue 6-21

name in Principal 5-41

name in StructMember 7-43

name in TypeCode 6-34

narrow in Helper 4-5

narrow in PortableRemoteObject 15-2

new_context in NamingContext 9-5

next in DynAny 6-7

next_n in Bindinglterator 9-10

next_one in BindinglIterator 9-10

nil in ORB 5-25

obj_is_ready in BOA 5-5

object_name in CreationImplDef 8-6

object_to_string in ORB 5-20

obtain_pull_consumer in SupplierAdmin 10-11

obtain_pull_consumer() 10-11

obtain_pull_supplier 10-2

obtain_push_consumer in
SupplierAdmin 10-11

obtain_push_consumer() 10-11

obtain_push_supplier 10-2

op_name in ServerRequest 6-30

operation in Request 6-28

ORB 5-23, 5-25

ORB_init()

-ORBshmsize 2-9
original_type_def in AliasDef 7-4
original_type_def in ValueBoxDef 7-46
params in OperationDef 7-33
params in ServerRequest 6-30
parent in Context 5-7
path_name in CreationImplDef 8-6
perform_work in ORB 5-20
POA 5-26
poa in POATie 4-8
poll_next_response in ORB 5-20
poll_response in Request 6-28
post_method in UntypedObjectWrapper 12-17
postinvoke in ClientRequestInterceptor 12-6
postinvoke in
PortableServer.ServantLocator 5-39
postinvoke_premarshal in
ServerRequestInterceptor 12-11
pre_method in UntypedObjectWrapper 12-17
preinvoke in
PortableServer.ServantLocator 5-39
preinvoke in ServerRequestInterceptor 12-11
preinvoke_postmarshal in
ClientRequestInterceptor 12-6
preinvoke_premarshal in
ClientRequestInterceptor 12-5
pull in PullSupplier 10-10
read in Helper 4-3
read methods in InputStream 6-19
read_estruct in InputStream 6-20
read_value in Any 6-2
rebind in NamingContext 9-3
rebind_context in NamingContext 9-4
reference_to_id in PortableServer>POA 5-33
reference_to_servant in
PortableServer.POA 5-33
reg_implementation in OAD 8-12, 8-13
reg_trigger in Agent 17-4
register_url in Resolver 16-2
Remote toStub in PortableRemoteObject 15-2
remove in
ChainUntypedObjectWrapperFactory 12-16
remove in ContextList 6-6
remove in ExceptionList 6-19
remove in NVList 6-24
remove_state_contexts in
NamingContextFactory 9-11
removeServerObjectWrapperClass in Helper
class 4-6
repository_id in CreationImplDef 8-7
resolve in NamingContext 9-4
resolve_initial_references in ORB 5-20
resolve_str in NamingContextExt 9-8
result in OperationDef 7-33
result in Request 6-28

Index 19

result in ServerRequest 6-30
result_def in OperationDef 7-33
return_value in Request 6-28
rewind in DynAny 6-7
root_context in
ExtendedNamingContextFactory 9-12
run in ORB 5-21
seek in DynAny 6-7
send_deferred in Request 6-28
send_multiple_requests_deferred in ORB 5-21
send_multiple_requests_oneway in ORB 5-22
send_oneway in Request 6-28
servant_to_id in PortableServer.POA 5-33
servant_to_reference in
PortableServer. POA 5-34
service_name in ActivationImplDef 8-1
set_as_string in DynEnum 6-11
set_as_ulong in DynEnum 6-12
set_discriminator in DynUnion 6-15
set_elements in DynArray 6-10
set_elements in DynSequence 6-13
set_length in DynSequence 6-13
set_member in DynStruct 6-14
set_members_as_dyn_any in DynStruct 6-14
set_members_as_dyn_any in DynValue 6-16
set_one_value in Context 5-7
set_policy_overrides in Object 13-4
set_policy_overrides in PolicyManager 13-2
set_return_type in Request 6-29
set_servant in PortableServer. POA 5-34
set_servant_manager in
PortableServer. POA 5-35
set_to_default_ member in DynUnion 6-15
set_to_no_active_member in DynUnion 6-16
set_value in DynFixed 6-12
set_values in Context 5-8
shutdown in NamingContextFactory 9-11
string_to_object in ORB 5-22
supported_interfaces in ValueDef 7-47
target in Request 6-29
the_activator in PortableServer.POA 5-35
the_name in PortableServer.POA 5-35
the_parent in PortableServer.POA 5-35
the_POAManager in PortableServer.POA 5-35
the_policies in PortableServer.POA 5-36
to_any in DynAny 6-8
to_name in NamingContextExt 9-7
to_string in NamingContextExt 9-7
to_url in NamingContextExt 9-8
toString in Desc 17-6
toString in TriggerDesc 17-7
try_pull in PullSupplier 10-10
type in Any 6-2
type in AttributeDef 7-5
type in ConstantDef 7-8

I-10 Reference

type in DynAny 6-8
type in ExceptionDef 7-22
type in Helper 4-4
type in IDLType 7-26
type in ValueMemberDef 7-50
type_def in AttributeDef 7-5
type_def in ConstantDef 7-8
type_def in ValueMemberDef 7-50
TypeDescription in TypedefDef 7-44
unbind in NamingContext 9-5
unexportedObject in
PortableRemoteObject 15-2
UnionMember in UnionMember 7-45
unknown_adaptor in
PortableServer.AdapterActivator 5-25
unreg_implementation in OAD 8-13
unreg_interface in OAD 8-14
unreg_trigger in Agent 17-4
unregister_all in OAD 8-14
validate_connection in Object 13-4
value in ConstantDef 7-8
value in DefinitionKind 7-20
value in NamedValue 6-21
value in PrimitiveKind 7-38
value in TCKind 6-31
ValueDescription in ValueDescription 7-50
ValueMember in ValueMemberDef 7-50
version in Contained 7-11
void length in ArrayDef 7-4
void type in Any 6-2
void_the_activator in PortableServer.POA 5-35
write in Helper 4-4
write methods in OutputStream 6-24
write_estruct in OutputStream 6-25
write_value in Any 6-2
ModuleDef interface 7-31
ModuleDescription class 7-31
modules
mapping 3-3

N

NamedValue class 6-21
NameValuePair
classes 6-22
NamingContext 9-3, 9-4, 9-5, 9-6
class 9-1
methods
bind 9-2
rebind 9-3
NamingContextExt
interface 9-6
NamingContextFactory
class 9-10
interface 9-10
methods 9-11

NativeDef

interface 7-32
nested types

mapping 3-25
null

Java 3-8
NVList

classes 6-22
NVList interface 6-22

o)

OAConnectionMax

ORB initialization option A-3
OAconnectionMaxIdle

ORB initialization option A-3, A-6
OAD

properties B-8
OAD interface 8-7
OAid

BOA initialization option A-3
OAipaddr A-4
OAport

ORB initialization option A-4
OAtcpNoDelay

ORB initialization option A-7
OAThreadMax

ORB initialization option A-4
OAthreadMaxIdle

ORB initialization option A-4
OAThreadMin

ORB initialization option A-4
Object

vbroker. CORBA interface 13-4

VisiBroker extension 5-11
Object interface 5-8
object server

activation policies 8-3
object wrappers

adding typed object wrappers for clients 4-5
adding typed object wrappers for servers 4-5

generated interfaces 4-5

removing typed object wrappers for clients 4-5
removing typed object wrappers for servers 4-6

objects
activating 5-2
CORBA interface 13-3
deactivating 5-2
obtain_pull_consumer()
method 10-11
obtain_push_consumer()
method 10-11
octet
mapping 3-8
OMG
ORB definition 5-22

OperationDef interface 7-32
OperationDescription class 7-34
OperationMode class 7-35
operations

interface_name 4-3

reporting status 5-5
operations classes

description 4-2
options

BOA A-3

Location Service A-7

ORB A-5
ORB

backward compatibility A-5, A-6

initialization options A-1, A-4

methods 5-23 to 5-25

OMG definition 5-22

options A-5

properties B-3

VisiBroker extensions 5-22
ORB class 5-13
ORB.init A-4
ORB_init() method

-ORBshmsize 2-9
ORBagentaddr

ORB initialization option A-5
ORBagentPort A-5
ORBagentport

ORB initialization option A-5
ORBbackcompat

description of behavior A-7

ORB initialization option A-5, A-6
ORBconnectionMax

ORB initialization option A-5
ORBdebug

ORB initialization option A-6
ORBdisableLocator

ORB initialization option A-6
ORBgatekeeper]OR

ORB initialization option A-6
ORBmbufSize A-6
ORBmbufsize

ORB initialization option A-6
ORBservices

ORB initialization option A-6
ORBtcpTimeout

ORB initialization option A-7
OSAgent

locating via vbj command 2-9

properties B-2
OSAGENT_ADDR 2-9
OSAGENT_PORT 2-9
OutputStream interface 6-24

Index

P

ParameterDescription class 7-36
ParameterMode class 7-37
parameters
mapping 3-20
platform designation with icons 1-4
POA
classes 4-2
interface_name 4-7
interfaces 5-26
methods 5-26
PortableObject Adaptor 5-26

PortableServer.AdaptorActivator 5-25

properties B-7
POATie
classes 4-2
interface_name 4-8
policy values
Quality of Service 13-6
PolicyCurrent
interface 13-3
PolicyManager
interface 13-1
port number A-4, A-5
PortableRemoteObject
interface 15-1
PortableServer.AdaptorActivator
classes 5-25
PrimitiveDef interface 7-37
PrimitiveKind class 7-37
Principal class 5-40
ProfileBody
class 14-1
programmer tools
idI2ir 2-1
ir2idl 2-2
programming interface
BindInterceptor 12-3
ClientInterceptor 12-7, 12-8
properties
Client-Side Connection B-10

Client-Side In-Process Connection B-10

Event Service B-8

Interface Repository B-9

Java RMI over IIOP B-1

Location Service B-7

OAD B-8

ORB B-3

OSAgent B-2

POA B-7

Server Manager B-7

Server-Side Server Engine B-11, B-14

Server-Side Thread Pool BOA_TP
Connection B-14

I-12 Reference

Server-Side Thread Pool IIOP_TP
Connection B-13
Server-Side Thread Session BOA_TS
Connection B-12
Server-Side Thread Session IIOP_TS
Connection B-11
setting with BOA A-2
URL Naming B-9
ProxyPullConsumer
class 10-4
interface 10-4
ProxyPullSupplier
interface 10-6, 10-7
ProxyPushConsumer
interface 10-5
ProxyPushSupplier
interface 10-7
ProxyPushSupplier methods
connect_push_consumer 10-7
PullConsumer
interface 10-7, 10-8, 10-9
PullSupplier
interface 10-9
methods 10-10, 10-11
push()
method 10-8
PushConsumer
interface 10-8
PushConsumer methods
disconnect_push_consumer() 10-8
push() 10-8
PushSupplier
interface 10-10

Q

QoS

Quality of Service 13-1
Quality of Service

QoS 13-1

R

RebindPolicy

interface 13-5
references 1-5
RelativeConnectionTimeout 13-8

removeClientObjectWrapperClass in Helper

class 4-5

Repository interface 7-38
Request interface 6-25
RequestHeader 14-1
reserved

keywords 3-2
reserved names

mapping 3-2

reserved words

mapping 3-2
resolve_initial_references 5-20
Resolver interface 16-1

S

send_multiple_requests_oneway 5-22
SequenceDef interface 7-40
sequences
mapping 3-11
Server Manager
properties B-7
ServerRequest interface 6-29
servers
using inheritance 3-21
Server-Side Server Engine
properties B-11, B-14
Server-Side Thread Pool BOA_TP Connection
properties B-14
Server-Side Thread Pool IIOP_TP Connection
properties B-13

Server-Side Thread Session BOA_TS Connection

properties B-12

Server-Side Thread Session IIOP_TS Connection

properties B-11
ServiceContext

class 14-3
sockets

batching requests A-7
string

mapping 3-8
StringDef interface 7-41
struct

ImplementationStatus 8-8
StructDef interface 7-42
StructMember

interface 7-42
structs

mapping 3-11
structure

GIOP::RequestHeader 14-1

TriggerDesc 17-6
stub

interface_name 4-7
stubs

classes 4-2

generating portable for DII 2-3, 2-7
SupplierAdmin

interface 10-11
support options 1-5
symbols

ellipsis (...) 1-4

vertical bar | 1-4
SystemException class 11-1

T

TaggedProfile

class 14-4
TCKind class 6-30
technical support 1-5
templates

IOR 12-2
threading A-4

idle time A-4

thread policy A-3
timeout policy 13-8
tools

idl2ir 2-1,2-2

idl2java 2-3

java2idl 2-5

java2iiop 2-6

vbj 2-9
TriggerDesc 17-6
TriggerHandler interface 17-8
TSession A-4
type extensions 3-4
TypeCode interface 6-31
TypedefDef interface 7-43
typedefs

mapping 3-25
TypeDescription class 7-43
types

mapping 3-3
typographic conventions 1-4

U

UnionDef interface 7-44
UnionMember class 7-45
unions

mapping 3-11
UnknownUserException class 6-34
URL associating with IOR 16-2
URL Naming

properties B-9

Resolver interface 16-1
UserException class 11-3

vV

ValueDef
interfaces 7-46

valuetype
ActivationImplDef 8-1

variables
defined_in in AttributeDescription 7-6
id in NameValuePAir 6-22
mode in AttributeDescription 7-6
name in AttributeDescription 7-6
string Id in AttributeDescription 7-6

Index

I-13

type in AttributeDescription 7-6

value in NameValuePair 6-22

version in AttributeDescription 7-6
vbj

using A-2

using command-line arguments A-1
vbj command

description 2-9
version of product 2-1, 2-2, 2-3, 2-5, 2-6, 2-9
VisiBroker for Java

additional information 1-5

I-14 Reference

w

web naming

Resolver interface 16-1
web sites

CORBA specification 1-5
What's New 1-1
words

reserved 3-2
wstring

mapping 3-9
WstringDef interface 7-51

	Reference
	Contents
	Ch 1: Preface
	What’s new in 4.1
	What’s new in 4.5
	Manual conventions
	Typographic conventions
	Platform conventions

	Where to find additional information
	Contacting developer support
	Programmer tools

	Options
	General options

	Ch 2: Programmer tools
	ir2idl
	idl2java
	java2idl
	java2iiop
	vbj
	vbjc
	Specifying the classpath
	Specifying the JVM
	Other tools
	IDL to Java mapping

	Ch 3: IDL to Java mapping
	Reserved names
	Reserved words
	Modules
	Basic types
	IDL type extensions
	Holder classes
	Boolean
	Char
	Octet
	String
	WString
	Integer types
	Floating point types

	Helper classes
	Constants
	Constants within an interface
	Constants NOT within an interface

	Constructed types
	Enum
	Struct
	Union
	Sequence
	Array

	Interfaces
	Passing parameters
	Server implementation with inheritance
	Server implementation with delegation
	Interface scope

	Mapping for exceptions
	User-defined exceptions
	System exceptions
	Mapping for the Any type
	Mapping for certain nested types
	Mapping for Typedef
	Simple IDL types
	Complex IDL types
	Generated interfaces and classes

	Ch 4: Generated interfaces and classes
	<interface_name>Operations
	<type_name>Helper
	Methods for all Helper classes
	Methods generated for interfaces
	Methods generated for object wrappers

	<type_name>Holder
	Member data
	Methods

	_<interface_name>Stub
	<interface_name>POA
	<interface_name>POATie
	Methods
	Core interfaces and classes

	Signature and operations classes
	Ancillary classes
	Portability stub and skeleton interfaces

	Ch 5: Core interfaces and classes
	BOA
	IDL definition
	BOA methods

	CompletionStatus
	IDL definition
	CompletionStatus methods

	Context
	IDL definition
	Context methods

	InvalidName
	Object
	org.omg.CORBA Object definition
	org.omg.Object methods
	VisiBroker extension to Object
	VisiBroker extension to Object methods

	ORB
	JDK’s ORB definition
	JDK ORB methods
	OMG ORB definition
	VIsiBroker ORB extensions
	VisiBroker ORB methods

	PortableServer.AdapterActivator
	PortableServer.AdapterActivator methods

	PortableServer.Current
	PortableServer.Current methods

	PortableServer.POA
	PortableServer.POA methods

	PortableServer.POAManager
	PortableServer.POAManager methods

	PortableServer.ServantActivator
	PortableServer.ServantActivator methods

	PortableServer.ServantLocator
	PortableServer.ServantLocator methods

	PortableServer.ServantManager
	Principal
	IDL definition
	Principal methods
	Dynamic interfaces and classes

	IDL definition
	BindOptions constructors

	Ch 6: Dynamic interfaces and classes
	ARG_IN
	Variables

	ARG_INOUT
	Variables

	ARG_OUT
	Variables

	ContextList
	IDL definition
	ContextList methods

	DynAny
	Important usage restrictions
	DynAny methods
	DynAny Extraction methods
	DynAny Insertion methods

	DynArray
	Important usage restrictions
	DynArray methods

	DynAnyFactory
	Important usage restrictions
	DynAnyFactory methods

	DynEnum
	Important usage restrictions
	DynEnum methods

	DynFixed
	DynFixed methods

	DynSequence
	Important usage restrictions
	DynSequence methods

	DynStruct
	Important usage restrictions
	DynStruct methods

	DynUnion
	Important usage restrictions
	DynUnion methods

	DynValue
	DynValue methods

	DynamicImplementation
	Constructors
	DynamicImplementation methods

	Environment
	Environment methods

	ExceptionList
	IDL definition
	ExceptionList methods

	InputStream
	InputStream methods

	Invalid
	InvalidSeq
	NamedValue
	IDL definition
	NameValue methods

	NameValuePair
	NameValuePair variables
	NameValuePair constructors

	NVList
	IDL definition
	NVList methods

	OutputStream
	OutputStream methods

	Request
	IDL definition
	Request methods

	ServerRequest
	IDL definition
	ServerRequest methods

	TCKind
	IDL definition
	TCKind methods

	TypeCode
	IDL definition
	TypeCode methods

	Any methods
	Any extraction methods
	Any Insertion methods
	UnknownUserException
	Interface repository interfaces�and�classes

	Ch 7: interface repository, interfaces and classes
	AliasDef
	AliasDef methods

	ArrayDef
	ArrayDef methods

	AttributeDef
	AttributeDef methods

	AttributeDescription
	AttributeDescription variables
	AttributeDescription methods

	AttributeMode
	AttributeMode enumeration elements

	ConstantDef
	ConstantDef methods

	ConstantDescription
	ConstantDescription variables
	Constant Description methods

	Contained
	IDL definition
	Contained methods

	ContainedPackage.Description
	ContainedPackage.Description variables
	ContainedPackage.Description methods

	Container
	IDL definition
	Container methods

	ContainerPackage.Description
	ContainerPackage.Description variables
	ContainerPackage.Description methods

	DefinitionKind
	DefinitionKind methods
	DefinitionKind enumeration values

	EnumDef
	EnumDef methods

	ExceptionDef
	ExceptionDef methods

	ExceptionDescription
	ExceptionDescription variables
	ExceptionDescription methods

	FixedDef
	FixedDef methods

	FullValueDescription
	FullValueDescription variables
	FullValueDescription methods

	IDLType
	IDL definition
	IDLType methods

	InterfaceDef
	IDL definition
	InterfaceDef methods

	InterfaceDefPackage.FullInterfaceDescription
	InterfaceDefPackage.FullInterfaceDescription variables
	InterfaceDefPackage.FullInterfaceDescription methods

	InterfaceDescription
	InterfaceDescription variables
	InterfaceDescription methods

	IRObject
	IDL definition
	IORObject methods

	ModuleDef
	ModuleDescription
	ModuleDescription variables
	ModuleDescription methods

	NativeDef
	OperationDef
	OperationDef methods

	OperationDescription
	OperationDescription variables
	OperationDescription methods

	OperationMode
	ParameterDescription
	ParameterDescription variables
	ParameterDescription methods

	ParameterMode
	PrimitiveDef
	PrimitiveDef method

	PrimitiveKind
	PrimitiveKind methods
	PrimitiveKind constants

	Repository
	Repository methods

	SequenceDef
	SequenceDef methods

	StringDef
	StringDef methods

	StructDef
	StructDef methods

	StructMember
	StructMember variables
	StructMember methods

	TypedefDef
	TypeDescription
	TypeDescription variables
	TypeDescription methods

	UnionDef
	UnionDef methods

	UnionMember
	UnionMember variables
	UnionMember methods

	ValueBoxDef
	ValueBoxDef methods

	ValueDef
	ValueDef methods

	ValueDescription
	ValueDescription variables
	ValueDescription methods

	ValueMemberDef
	ValueMemberDef methods

	WstringDef
	WStringDef methods
	Activation interfaces and classes

	AbstractInterfaceDef methods

	Ch 8: Activation interfaces and classes
	Activator
	Activator methods

	CreationImplDef
	IDL definition
	Activation policy
	Examples
	Environment variables
	Environment variables that are propagated or passed explicitly
	CreationImplDef methods

	ImplementationDef
	OAD
	ImplementationStatus
	OAD methods
	Naming service interfaces and�classes

	ActivationImplDef methods

	Ch 9: Naming service interfaces and classes
	NamingContextExt
	IDL definition
	NamingContextExt methods

	Binding and BindingList
	IDL definition

	BindingIterator
	IDL definition
	BindingIterator methods

	NamingContextFactory
	IDL definition
	NamingContextFactory methods

	ExtendedNamingContextFactory
	IDL definition
	ExtendedNamingContextFactory methods
	Event service interfaces�and�classes

	IDL definition
	NamingContext methods

	Ch 10: Event service interfaces and classes
	EventChannel
	Java definition
	EventChannel methods

	EventLibrary (Java)
	Java definition
	EventLibrary methods

	ProxyPullConsumer
	IDL definition
	Java definition
	ProxyPullConsumer method

	ProxyPushConsumer
	IDL definition
	Java definition
	ProxyPushConsumer method

	ProxyPullSupplier
	IDL definition
	Java definition
	ProxyPullSupplier method

	ProxyPushSupplier
	IDL definition
	Java definition
	ProxyPushSupplier method

	PullConsumer
	IDL definition
	Java definition
	PullConsumer method

	PushConsumer
	IDL definition
	Java definition
	PushConsumer methods

	PullSupplier
	IDL definition
	Java definition
	PullSupplier methods

	PushSupplier
	IDL definition
	Java definition
	PushSupplier method

	SupplierAdmin
	IDL definition
	Java definition
	SupplierAdmin methods
	Exceptions classes

	IDL definition
	Java definition
	ConsumerAdmin methods

	Ch 11: Exceptions classes
	SystemException
	SystemException attributes

	UserException
	UserException constructor
	Interceptor and object wrapper interfaces and classes

	Ch 12: Interceptor and object wrapper interfaces and classes
	InterceptorManagers
	IOR templates
	InterceptorManager
	InterceptorManagerControl
	Import statement
	InterceptorManagerControl method

	BindInterceptor
	Import statement
	BindInterceptor methods

	BindInterceptorManager
	Import statement
	BindInterceptorManager method

	ClientRequestInterceptor
	Import statement
	ClientRequestInterceptor methods

	ClientRequestInterceptorManager
	Import statement
	ClientRequestInterceptorManager methods

	POALifeCycleInterceptor
	Import statement
	POALifeCycleInterceptor methods

	POALifeCycleInterceptorManager
	Import statement
	POALifeCycleInterceptorManager method

	ActiveObjectLifeCycleInterceptor
	Import statement
	ActiveObjectLifeCycleInterceptor methods

	ActiveObjectLifeCycleInterceptorManager
	Import statement
	ActiveObjectLifeCycleInterceptorManager method

	ForwardRequestException
	Variables

	ServerRequestInterceptor
	Import statement
	ServerRequestInterceptor methods

	ServerRequestInterceptorManager
	Import statement
	ServerRequestInterceptorManager method

	IORCreationInterceptor
	Import statement
	IORInterceptor method

	IORInterceptorManager
	Import statement
	IORInterceptorManager method

	Location
	Closure
	ExtendedClosure
	ChainUntypedObjectWrapperFactory
	Import statement
	ChainUntypedObjectWrapperFactory methods

	UntypedObjectWrapper
	UntypedObjectWrapper methods

	UntypedObjectWrapperFactory
	Import statement
	UntypedObjectWrapperFactory method
	Quality of Service interfaces�and�classes

	Ch 13: Quality of Service interfaces and classes
	PolicyCurrent
	IDL definition

	Object
	org.omg.CORBA.Object methods
	com.inprise.vbroker.CORBA.Object methods

	RebindPolicy
	IDL definition
	Policy Values

	RelativeConnectionTimeoutPolicy
	IDL definition

	DeferBindPolicy
	IDL definition

	ExclusiveConnectionPolicy
	IDL definition

	SyncScopePolicy
	IDL definition

	QoS exceptions
	IOP and IIOP interfaces�and�classes

	IDL definition
	Policy Manager methods

	Ch 14: IOP and IIOP interfaces and classes
	IIOP.IORValue
	IDL definition
	IIOP.IORValue variables

	IOP.ServiceContext
	IDL definition
	IIOP.ServiceContext variables
	IIOP.ServiceContext constructors

	IOP.TaggedProfile
	IDL definition
	IIOP.TaggedProfile variables
	IIOP.TaggedProfile constructors
	RMI interfaces and classes

	IDL definition
	IIOP.ProfileBody variables
	IIOP.ProfileBody constructors

	Ch 15: RMI interfaces and classes
	Constructors
	PortableRemoteObject methods
	URL Naming interfaces�and�classes

	Ch 16: URL Naming interfaces and classes
	Resolver methods
	Location Service interfaces�and�classes

	Ch 17: Location Service interfaces and classes
	Desc
	IDL definition
	Desc variables
	Desc constructor
	Desc methods

	Fail
	Fail variables

	TriggerDesc
	IDL definition
	TriggerDesc variables
	TriggerDesc constructor
	TriggerDesc methods

	TriggerHandler
	IDL definition
	TriggerHandler methods
	Using command-line options

	IDL definition
	Agent methods

	App A: Using command-line options
	BOA_init() method
	BOA options

	ORB.init() method
	ORB options
	ORBbackcompat option

	Location Service options
	Using VisiBroker properties

	Using vbj with command-line arguments
	Using vbj and starting your executable
	Applets
	Setting properties programmatically using methods

	App B: Using VisiBroker properties
	OSAgent properties
	ORB properties
	POA properties
	Server Manager properties
	Location Service properties
	Event Service properties
	Naming Service properties
	OAD properties
	Interface Repository properties
	URL Naming properties
	Client-Side Connection properties
	Client-Side In Process Connection properties
	Server-Side Server Engine properties
	Server-Side Thread Session IIOP_TS/IIOP_TS Connection properties
	Server-Side Thread Session BOA_TS/BOA_TS Connection�properties
	Server-Side Thread Pool IIOP_TP/IIOP_TP Connection properties
	Server-Side Thread Pool BOA_TP/BOA_TP Connection properties
	Properties that support bidirectional communication
	Index

