

Distributed Systems, Edition 3: Chapter 15 solutions 1

Last updated: 21 September 2000 4:08 pm

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

Chapter 15 Solutions

15.1 Outline a system to support a distributed music rehearsal facility. Suggest suitable QoS
requirements and a hardware and software configuration that might be used.

15.1 Ans.

.

This is a particularly demanding interactive distributed multimedia application. Konstantas

et al.

 [1997] report
that a round-trip delay of less than 50 ms is required for it. Clearly, video and sound should be tightly
synchronized so that the musicians can use visual cues as well as audio ones. Bandwidths should be suitable
for the cameras and audio inputs used, e.g. 1.5 Mbps for video streams and 44 kbps for audio streams. Loss
rates should be low, but not necessarily zero.

The QoS requirements are much stricter than for conventional videoconferencing – music performance is
impossible without strict synchronization. A software environment that includes QoS management with
resource contracts is required. The operating systems and networks used should provide QoS guarantees. Few
general-purpose OS’s provide them at present. Dedicated real-time OS’s are available but they are difficult to
use for high-level application development.

Current technologies that should be suitable:

• ATM network.

• PC’s with hardware for MPEG or MJPEG compression.

• Real-time OS with support for high-level software development, e.g. in CORBA or Java.

15.2 The Internet does not currently offer any resource reservation or quality of service management
facilities. How do the existing Internet-based audio and video streaming applications achieve
acceptable quality? What limitations do the solutions they adopt place on multimedia
applications?

15.2 Ans.

.

There are two types of Internet-based applications:

a) Media delivery systems such as music streaming, Internet radio and TV applications.

b) Interactive applications such as Internet phone and video conferencing (NetMeeting, CuSeemMe).

For type (a), the main technique used is

traffic shaping

, and more specifically, buffering at the
destination.Typically, the data is played out some 5–10 seconds after its delivery at the destination. This masks
the uneven latency and delivery rate (jitter) of Internet protocols and masks the delays incurred in the network
and transport layers of the Internet due to store-and-forward transmission and TCP’s reliability mechanisms.

For type (b), the round trip delay must be kept below 100 ms so the above technique is ruled out. Instead,

stream adaptation

 is used. Specifically, video is transmitted with high levels of compression and reduced
frame rates. Audio requires less adaptation. UDP is generally used.

Overall, type (a) systems work reasonably well for audio and low-resolution video only. For type (b) the
results are usually unsatisfactory unless the network routes and operating system priorities are explicitly
managed.

Distributed Systems: Concepts and Design

Edition 3

By George Coulouris, Jean Dollimore and Tim Kindberg
Addison-Wesley, ©Pearson Education 2001.

Distributed Systems, Edition 3: Chapter 15 solutions 2

Last updated: 21 September 2000 4:08 pm

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

15.3 Explain the distinctions between the three forms of synchronization (synchronous distributed
state, media synchronization and external synchronization) that may be required in distributed
multimedia applications. Suggest mechanisms by which each of them could be achieved, for
example in a videoconferencing application.

15.3 Ans.

.

synchronous distributed state:

All users should see the same application state. For example, the results of
operation on controls for a video, such as start and pause should be synchronized, so that all users see the same
frame. This can be done by associating the current state (sample number) of the active multimedia streams with
each state-change message. This constitutes a form of logical vector timestamp.

media synchronization:

Certain streams are closely coupled. E.g. the audio that accompanies a video stream.
They should be synchronised using timestamps embedded in the media data.

 external synchronization:

This is really an instance of synchronous distributed state. The messages that
update shared whiteboards and other shared objects should carry vector timestamps giving the states of media
streams.

15.4 Outline the design of a QoS manager to enable desktop computers connected by an ATM network
to support several concurrent multimedia applications. Define an API for your QoS manager,
giving the main operations with their parameters and results.

15.4 Ans.

.

Each multimedia application requires a resource contract for each of its multimedia streams. Whenever a new
stream is to be started, a request is made to the QoS manager specifying CPU resources, memory and network
connections with their Flow Specs. The QoS manager performs an analysis similar to Figure 15.6 for each end-
to-end stream. If several streams are required for a single application, there is a danger of deadlock – resources
are allocated for some of the streams, but the needs of the remaining streams cannot be satisfied. When this
happens, the QoS negotiation should abort and restart, but if the application is already running, this is
impractical, so a negotiation takes place to reduce the resources of existing streams.

API:

QoSManager.QoSRequest(FlowID, FlowSpec) –> ResourceContract

The above is the basic interface to the QoS Manager. It reserves resources as specified in the

FlowSpec

 and
returns a corresponding

ResourceContract

.

A

FlowSpec

 is a multi-valued object, similar to Figure 15.8.

A

ResourceContract

 is a token that can be submitted to each of the resource handlers (CPU scheduler,
memory manager, network driver, etc.).

Application.ScaleDownCallback(FlowID, FlowSpec) -> AcceptReject

The above is a callback from the QoS Manager to an application, requesting a change in the

FlowSpec

 for
a stream. The application can return a value indicating acceptance or rejection.

15.5 In order to specify the resource requirements of software components that process multimedia
data, we need estimates of their processing loads. How should this information be obtained?

15.5 Ans.

.

The main issue is how to measure or otherwise evaluate the resource requirements (CPU, memory, network
bandwidth, disk bandwidth) of the components that handle multimedia streams without a lot of manual testing.
A test framework is required that will evaluate the resource utilization of a running component. But there is
also a need for resource requirement models of the components – so that the requirements can be extrapolated
to different application contexts and stream characteristics and different hardware environments (hardware
performance parameters).

15.6 How does the Tiger system cope with a large number of clients all requesting the same movie at
random times?

Distributed Systems, Edition 3: Chapter 15 solutions 3

Last updated: 21 September 2000 4:08 pm

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

15.6 Ans.

.

 If they arrive within a few seconds of each other, then they can be placed sufficiently close together in the
schedule to take advantage of caching in the cubs, so a single disk access for a block can service several clients.
If they are more widely spaced, then they are placed independently (in an empty slot near the disk holding he
first block of the movie at the time each request is received). There will be no conflict for resources because
different blocks of the movie are stored on different disks and cubs.

15.7 The Tiger schedule is potentially a large data structure that changes frequently, but each cub needs
an up-to-date representation of the portions it is currently handling. Suggest a mechanism for the
distribution of the schedule to the cubs.

15.7 Ans.

.

In the first implementation of Tiger the controller computer was responsible for maintaining an up-to-date
version of the schedule and replicating it to all of the cubs. This does not scale well – the processing and
communication loads at the controller grow linearly with the number of clients – and is likely to limit the scale
of the service that Tiger can support. In a later implementation, the cubs were made collectively responsible
for maintaining the schedule. Each cub holds a fragment of the schedule – just those slots that it will be playing
processing in the near future. When slots have been processed they are updated to show the current viewer
state and then they are passed to the next ‘downstream’ cub. Cubs retain some extra fragments for fault-
tolerance purposes.

When the controller needs to modify the schedule – to delete or suspend an existing entry or to insert a
viewer into an empty slot – it sends a request to the cub that is currently responsible for the relevant fragment
of the schedule to make the update. The cub then uses the updated schedule fragment to fulfil its
responsibilities and passes it to the next downstream cub.

15.8 When Tiger is operating with a failed disk or cub, secondary data blocks are used in place of
missing primaries. Secondary blocks are

n

 times smaller than primaries (where

n

 is the decluster
factor), how does the system accommodate this variability in block size?

15.8 Ans.

.

Whether they are large primary or smaller secondary blocks, they are always identified by a play sequence
number. The cubs simply deliver the blocks to the clients in order via the ATM network. It is the clients’
responsibility to assemble them in the correct sequence and then to extract the frames from the incoming
sequence of blocks and play the frames according to the play schedule.

