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Chapter 11 Exercise Solutions

 

11.1 Is it possible to implement either a reliable or an unreliable (process) failure detector using an unreliable
communication channel?

 

11.1 Ans.

 

An unreliable failure detector can be constructed from an unreliable channel – all that changes from use of a
reliable channel is that dropped messages may increase the number of false suspicions of process failure.

A reliable failure detector requires a synchronous system. It cannot be built on an unreliable channel since a
dropped message and a failed process cannot be distinguished – unless the unreliability of the channel can be
masked while providing a guaranteed upper bound on message delivery times. A channel that dropped
messages with some probability but, say, guaranteed that at least one message in a hundred was not dropped
could, in principle, be used to create a reliable failure detector.

11.2 If all client processes are single-threaded, is mutual exclusion condition ME3, which specifies entry in
happened-before order, relevant? 

 

11.2 Ans.

 

ME3 is not relevant if the interface to requesting mutual exclusion is synchronous. For a single-threaded
process could not send a message to another process while awaiting entry, and ME3 does not arise.

11.3 Give a formula for the maximum throughput of a mutual exclusion system in terms of the synchronization
delay.

 

11.3 Ans.

 

If 

 

s

 

 = synchronization delay and 

 

m

 

 = minimum time spent in a critical section by any process, then the
maximum throughput is  critical-section-entries per second.

11.4 In the central server algorithm for mutual exclusion, describe a situation in which two requests are not
processed in happened-before order.

 

11.4 Ans.

 

Process 

 

A

 

 sends a request  for entry then sends a message 

 

m

 

 to 

 

B

 

. On receipt of 

 

m

 

, 

 

B

 

 sends request  for
entry. To satisfy happened-before order,  should be granted before . However, due to the vagaries of
message propagation delay,  arrives at the server before , and they are serviced in the opposite order.

11.5 Adapt the central server algorithm for mutual exclusion to handle the crash failure of any client (in any state),
assuming that the server is correct and given a reliable failure detector. Comment on whether the resultant
system is fault tolerant. What would happen if a client that possesses the token is wrongly suspected to have
failed?

 

11.5 Ans.

 

 The server uses the reliable failure detector to determine whether any client has crashed. If the client has been
granted the token then the server acts as if the client had returned the token. In case it subsequently receives
the token from the client (which may have sent it before crashing), it ignores it. 

The resultant system is not fault-tolerant. If a token-holding client crashed then the application-specific data
protected by the critical section (whose consistency is at stake) may be in an unknown state at the point when
another client starts to access it.

If a client that possesses the token is wrongly suspected to have failed then there is a danger that two processes
will be allowed to execute in the critical section concurrently.
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11.6 Give an example execution of the ring-based algorithm to show that processes are not necessarily granted entry

to the critical section in happened-before order.

 

11.6 Ans.

 

Consider three processes in a ring, in the order P1, P2 and P3. Note that processes may send messages to one 
another independently of the token-passing protocol. 

P1 ---------------> P2
| |
| |
P3 <----------------|

The token is initially with P2. P1 requests the token, then sends a message to P3, which also requests the token.
The message passes the token at P2. Then P2 sends on the token. P3 gets it, but the token should have been
granted to P1 first.

11.7 In a certain system, each process typically uses a critical section many times before another process requires
it. Explain why Ricart and Agrawala’s multicast-based mutual exclusion algorithm is inefficient for this case,
and describe how to improve its performance. Does your adaptation satisfy liveness condition ME2? 

 

11.7 Ans.

 

In Ricart and Agrawala’s multicast-based mutual exclusion algorithm, a client issues a multicast request every
time it requires entry. This is inefficient in the case described, of a client that repeatedly enters the critical
section before another needs entry.

Instead, a client that finishes with a critical section and which has received no outstanding requests could mark
the token as 

 

JUST_RELEASED

 

, meaning that it has not conveyed any information to other processes that it
has finished with the critical section. If the client attempts to enter the critical section and finds the token to be

 

JUST_RELEASED

 

, it can change the state to 

 

HELD

 

 and re-enter the critical section. 

To meet liveness condition ME2, a 

 

JUST_RELEASED

 

 token should become 

 

RELEASED

 

 if a request for entry
is received. 

11.8 In the Bully algorithm, a recovering process starts an election and will become the new coordinator if it has a
higher identifier than the current incumbent. Is this a necessary feature of the algorithm?

 

11.8 Ans.

 

First note that this is an undesirable feature if there is no advantage to using a higher-numbered process: the
re-election is wasteful. However, the numbering of processes may reflect their relative advantage (for
example, with higher-numbered processes executing at faster machines). In this case, the advantage may be
worth the re-election costs. Re-election costs include the message rounds needed to implement the election;
they also may include application-specific state transfer from the old coordinator to the new coordinator.

To avoid a re-election, a recovering process could merely send a 

 

requestStatus

 

 message to successive lower-
numbered processes to discover whether another process is already elected, and elect itself only if it receives
a negative response. Thereafter, the algorithm can operate as before: if the newly-recovered process discovers
the coordinator to have failed, or if it receives an 

 

election

 

 message, it sends a 

 

coordinator

 

 message to the
remaining processes.

11.9 Suggest how to adapt the Bully algorithm to deal with temporary network partitions (slow communication)
and slow processes.

 

11.9 Ans.

 

With the operating assumptions stated in the question, we cannot guarantee to elect a unique process at any
time. Instead, we may find it satisfactory to form subgroups of processes that agree on their coordinator, and
allow several such subgroups to exist at one time. For example, if a network splits into two then we could form
two subgroups, each of which elects the process with the highest identifier among its membership. However,
if the partition should heal then the two groups should merge back into a single group with a single coordinator.

The algorithm known as the ‘invitation algorithm’ achieves this. It elects a single coordinator among each
subgroup whose members can communicate, but periodically a coordinator polls other members of the entire
set of processes in an attempt to merge with other groups. When another coordinator is found, a coordinator
sends it an ‘invitation’ message to invite it to form a merged group. As in the Bully algorithm, when a process
suspects the unreachability or failure of its coordinator it calls an election.

For details see Garcia-Molina [1982].
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11.10 Devise a protocol for basic multicast over IP multicast.

 

11.10 Ans.

 

We can use the algorithm for reliable multicast, except that processes do not retain copies of the messages that
they have delivered (and nor do they piggy back acknowledgements on the messages that they multicast). If
the sender is correct, a receiver can fetch a missing message from the sender; but if the sender crashes then a
message may be delivered to some members of the group but not others.

11.11 How, if at all, should the definitions of integrity, agreement and validity for reliable multicast change for the
case of open groups?

 

11.11 Ans.

 

For open groups, the definitions of integrity and agreement do not change. The validity property is not
appropriately defined for open groups, since senders are not necessarily members of the group.

For open groups we can define validity as follows: ‘If a correct process multicasts message 

 

m

 

, then some
member of 

 

group

 

(

 

m

 

) will eventually deliver 

 

m

 

.’

11.12 Explain why reversing the order of the lines ‘

 

R-deliver m

 

’ and ‘

 

if

 

 ( ) 

 

then

 

 

 

B-multicast

 

(

 

g, m

 

); 

 

end if

 

’ in
Figure 11.10 makes the algorithm no longer satisfy uniform agreement. Does the reliable multicast algorithm
based on IP multicast satisfy uniform agreement? 

 

11.12 Ans.

 

Reversing the order of those lines means that a process can deliver a message and then crash before sending it
to the other group members – which might, in that case, not receive the message at all. This contradicts the
uniform agreement property.

The reliable multicast algorithm based on IP multicast does not satisfy uniform agreement. A recipient delivers
a message as soon as it receives it; if the sender was to fail during transmission and that same message was not
to have reached the other group members then the uniform agreement property would not be met.

11.13 Explain why the algorithm for reliable multicast over IP multicast does not work for open groups. Given any
algorithm for closed groups, how, simply, can we derive an algorithm for open groups?

 

11.13 Ans.

 

‘Does not work’ is putting it a little strongly: ‘requires more work for correct operation’ would be better.

Amongst open groups we include, for example, a group of ‘subscribers’ with the sender as a publisher. It is
possible for one member of the group to receive a message from the publisher just before the latter crashes,
but for no other members to receive the same message. Since the group members do not themselves send
messages, the other members will remain in ignorance. Our assumption that every process ‘multicasts
messages’ indefinitely is not appropriate in the context of such a group. The fix is for processes to send regular
‘heartbeat’ messages to one another, telling about which messages they have received (see the next exercise).

We obtain an algorithm for open groups by having senders pick a member of the closed group and sending the
message to it, which it then sends to the group.

11.14 Consider how to address the impractical assumptions we made in order to meet the validity and agreement
properties for the reliable multicast protocol based on IP multicast. Hint: add a rule for deleting retained
messages when they have been delivered everywhere; and consider adding a dummy ‘heartbeat’ message,
which is never delivered to the application, but which the protocol sends if the application has no message to
send.

 

11.14 Ans.

 

A process can delete a retained message when it is known to have been received by all group members. The
latter condition can be determined from the acknowledgements that group members piggy back onto the
messages they send. (This is one of the main purposes of those acknowledgments; the other is that a process
may learn sooner that it has missed a message than if it had to wait for the sender of that message to send
another one.)

A group member can send periodic heartbeat messages if it has no application-level messages to send. A
heartbeat message records the last sequence number sent and sequence numbers received from each sender,
enabling receivers to delete message they might otherwise retain, and detect missing messages.

q p≠
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11.15 Show that the FIFO-ordered multicast algorithm does not work for overlapping groups, by considering two

messages sent from the same source to two overlapping groups, and considering a process in the intersection
of those groups. Adapt the protocol to work for this case. Hint: processes should include with their messages
the latest sequence numbers of messages sent to 

 

all

 

 groups.

 

11.15 Ans.

 

Let 

 

p

 

 send a message 

 

m1

 

 with group-specific sequence number 1 to group 

 

g1

 

 and a message 

 

m2

 

 with group-
specific sequence number 1 to group 

 

g2

 

. (The sequence numbers are independent, hence it is possible for two
messages to have the same sequence number.) Now consider process 

 

q

 

 in the intersection of 

 

g1

 

 and 

 

g2

 

. How
is 

 

q

 

 to order 

 

m1

 

 and 

 

m2

 

? It has no information to determine which should be delivered first.

The solution is for the sender 

 

p

 

 to include with its message the latest sequence numbers for each group that it
sends to. Thus if 

 

p

 

 sent 

 

m1

 

 before 

 

m2

 

, 

 

m1

 

 would include <

 

g1

 

, 1> and <

 

g2

 

, 0> whereas 

 

m2

 

 would include <

 

g1

 

,
1> and <

 

g2

 

, 1>. Process 

 

q

 

 is in a position to know that 

 

m1

 

 is to be delivered next; it would also know that it
had missed a message if it received 

 

m2

 

 first.

11.16 Show that, if the basic multicast that we use in the algorithm of Figure 11.14 is also FIFO-ordered, then the
resultant totally-ordered multicast is also causally ordered. Is it the case that any multicast that is both FIFO-
ordered and totally ordered is thereby causally ordered?

 

11.16 Ans.

 

We show that causal ordering is achieved for the simplest possible cases of the happened-before relation; the
general case follows trivially.

First, suppose 

 

p

 

 TO-multicasts a message 

 

m1

 

 which 

 

q

 

 receives; 

 

q

 

 then TO-multicasts message 

 

m2

 

. The
sequencer must order 

 

m2

 

 after 

 

m1

 

, so every process will deliver 

 

m1

 

 and 

 

m2

 

 in that order.

Second, suppose 

 

p

 

 TO-multicasts a message 

 

m1

 

 then TO-multicasts message 

 

m2

 

. Since the basic multicast is
FIFO-ordered, the sequencer will receive 

 

m1

 

 and 

 

m2

 

 in that order; so every group member will receive them
in that order.

It is clear that the result is generally true, as long as the implementation of total ordering guarantees that the
sequence number of any message sent is greater than that of any received by the sending process. See Florin
& Toinard [1992].

[Florin & Toinard 1992] Florin, G. and Toinard, C. (1992). A new way to design causally and totally ordered
multicast protocols. Operating Systems Review, ACM, Oct. 1992. 

11.17  Suggest how to adapt the causally ordered multicast protocol to handle overlapping groups.

 

11.17 Ans.

 

A process maintains a different vector timestamp 

 

Vg

 

 for each group 

 

g

 

 to which it belongs and attaches all of
its vector timestamps when it sends a message.

When a process 

 

p

 

 receives a message destined for group 

 

g

 

 from member 

 

i

 

 of that group, it checks, as in the
single-group case, that 

 

Vg

 

(

 

message

 

)[

 

i

 

] = 

 

Vg

 

(

 

p

 

)[

 

i] + 1; also, all other entries in the vector timestamps contained
in the message must be less than or equal to p’s vector timestamp entries. Process p keeps the message on the
hold-back queue if this check fails, since it is temporarily missing some messages that happened-before this
one.  

11.18 In discussing Maekawa’s mutual exclusion algorithm, we gave an example of three subsets of a set of three
processes that could lead to a deadlock. Use these subsets as multicast groups to show how a pairwise total
ordering is not necessarily acyclic.

11.18 Ans.

The three groups are G1 = {p1, p2}; G2 = {p2, p3}; G3 = {p1, p3}.

A pairwise total ordering could operate as follows: m1 sent to G1 is delivered at p2 before m2 sent to G2; m2
is delivered to p3 before m3 sent to G3. But m3 is delivered to p1 before m1. Therefore we have the cyclic
delivery ordering  We would expect from a global total order that a cycle such as
this cannot occur.

11.19 Construct a solution to reliable, totally ordered multicast in a synchronous system, using a reliable multicast
and a solution to the consensus problem.

11.19 Ans.

To RTO-multicast (reliable, totally-ordered multicast) a message m, a process attaches a totally-ordered,
unique identifier to m and R-multicasts it.

m1 m2 m3 m1…→→→
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Each process records the set of message it has R-delivered and the set of messages it has RTO-delivered. Thus
it knows which messages have not yet been RTO-delivered. 

From time to time it proposes its set of not-yet-RTO-delivered messages as those that should be delivered next.
A sequence of runs of the consensus algorithm takes place, where the k’th proposals (k = 1, 2, 3, ...) of all the
processes are collected and a unique decision set of messages is the result. 

When a process receives the k’th consensus decision, it takes the intersection of the decision value and its set
of not-yet-RTO-delivered messages and delivers them in the order of their identifiers, moving them to the
record of messages it has RTO-delivered. 

In this way, every process delivers messages in the order of the concatenation of the sequence of consensus
results. Since the consensus results given to different correct processes are identical, we have a RTO multicast.

11.20 We gave a solution to consensus from a solution to reliable and totally ordered multicast, which involved
selecting the first value to be delivered. Explain from first principles why, in an asynchronous system, we
could not instead derive a solution by using a reliable but not totally ordered multicast service and the
‘majority’ function. (Note that, if we could, then this would contradict the impossibility result of Fischer et
al.!) Hint: consider slow/failed processes.

11.20 Ans.

If we used a reliable but not totally ordered multicast, the majority function can only be used meaningfully if
it is applied to the same set of values. But, in an asynchronous system, we cannot know how long to wait for
the set of all values – the source of a missing message might be slow or it might have crashed. Waiting for the
first message delivered by a reliable totally ordered multicast finesses that problem.

11.21 Show that byzantine agreement can be reached for three generals, with one of them faulty, if the generals
digitally sign their messages.

11.21 Ans.

Any lieutenant can verify the signature on any message. No lieutenant can forge another signature. The correct
lieutenants sign what they each received and send it to one another.

A correct lieutenant decides x if it receives messages [x](signed commander) and either [[x](signed
commander)](signed lieutenant) or a message that either has a spoiled lieutenant signature or a spoiled
commander signature.

Otherwise, it decides on a default course of action (retreat, say).

A correct lieutenant either sees the proper commander’s signature on two different courses of action (in which
case both correct lieutenants decide ‘retreat’); or, it sees one good signature direct from the commander and
one improper commander signature (in which case it decides on whatever the commander signed to do); or it
sees no good commander signature (in which case both correct lieutenants decide ‘retreat’). 

In the middle case, either the commander sent an improperly signed statement to the other lieutenant, or the
other lieutenant is faulty and is pretending that it received an improper signature. In the former case, both
correct lieutenants will do whatever the (albeit faulty) commander told one of them to do in a signed message.
In the latter case, the correct lieutenant does what the correct commander told it to do.


