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Chapter 10 Exercise Solutions

 

10.1 Why is computer clock synchronization necessary? Describe the design requirements for a system to
synchronize the clocks in a distributed system. 

 

10.1 Ans.

 

See Section 10.1 for the necessity for clock synchronization.

Major design requirements:

i) there should be a limit on deviation between clocks or between any clock and UTC;

ii) clocks should only ever advance;

iii) only authorized principals may reset clocks (See Section 7.6.2 on Kerberos)

In practice (i) cannot be achieved unless only benign failures are assumed to occur and the system is
synchronous.

10.2 A clock is reading 10:27:54.0 (hr:min:sec) when it is discovered to be 4 seconds fast. Explain why it is
undesirable to set it back to the right time at that point and show (numerically) how it should be adjusted so as
to be correct after 8 seconds has elapsed.

 

10.2 Ans.

 

Some applications use the current clock value to stamp events, on the assumption that clocks always advance.

We use 

 

E

 

 to refer to the ‘errant’ clock that reads 10:27:54.0 when the real time is 10:27:50. We assume that 

 

H

 

advances at a perfect rate, to a first approximation, over the next 8 seconds. We adjust our software clock 

 

S

 

 to
tick at rate chosen so that it will be correct after 8 seconds, as follows: 

 

S

 

 = 

 

c

 

(

 

E

 

 - 

 

Tskew

 

) + 

 

Tskew

 

, where 

 

Tskew

 

 = 10:27:54 and 

 

c

 

 is to be found.

But 

 

S

 

 = 

 

Tskew

 

+4 (the correct time) when 

 

E

 

 = 

 

Tskew

 

+8, so: 

 

Tskew

 

+ 4 = 

 

c

 

(

 

Tskew

 

 + 8 - 

 

Tskew

 

) + 

 

Tskew

 

, and 

 

c

 

 is 0.5. Finally: 

 

S

 

 = 0.5(

 

E 

 

- 

 

Tskew

 

) + 

 

Tskew

 

 (when 

 

Tskew

 

 

 

≤

 

 

 

E

 

 

 

≤

 

 

 

Tskew

 

+8).

10.3 A scheme for implementing at-most-once reliable message delivery uses synchronized clocks to reject
duplicate messages. Processes place their local clock value (a ‘timestamp’) in the messages they send. Each
receiver keeps a table giving, for each sending process, the largest message timestamp it has seen. Assume that
clocks are synchronized to within 100 ms, and that messages can arrive at most 50 ms after transmission.

(i) When may a process ignore a message bearing a timestamp 

 

T

 

, if it has recorded the last message received 
from that process as having timestamp ?

(ii) When may a receiver remove a timestamp 175,000 (ms) from its table? (Hint: use the receiver’s local 
clock value.)

(iii) Should the clocks be internally synchronized or externally synchronized?

 

10.3 Ans.

 

i) If 

 

T

 

 

 

≤

 

  then the message must be a repeat.

ii) The earliest message timestamp that could still arrive when the receiver’s clock is 

 

r

 

 is 

 

r

 

 - 100 - 50. If
this is to be at least 175,000 (so that we cannot mistakenly receive a duplicate), we need 

 

r

 

 -150 = 175,000, i.e.

 

r

 

 = 175,150.
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iii) Internal synchronisation will suffice, since only time 

 
differences

 
 are relevant.

10.4 A client attempts to synchronize with a time server. It records the round-trip times and timestamps returned by
the server in the table below.

Which of these times should it use to set its clock? To what time should it set it? Estimate the accuracy of the 
setting with respect to the server’s clock. If it is known that the time between sending and receiving a message 
in the system concerned is at least 8 ms, do your answers change?

 

10.4 Ans.

 

The client should choose the minimum round-trip time of 20 ms = 0.02 s. It then estimates the current time to
be 10:54:28.342 + 0.02/2 = 10:54:28.352. The accuracy is ± 10 ms.

If the minimum message transfer time is known to be 8 ms, then the setting remains the same but the accuracy 
improves to ± 2 ms.

10.5 In the system of Exercise 10.4 it is required to synchronize a file server’s clock to within ±1 millisecond.
Discuss this in relation to Cristian’s algorithm.

 

10.5 Ans.

 

To synchronize a clock within ± 1 ms it is necessary to obtain a round-trip time of no more than 18 ms, given
the minimum message transmission time of 8 ms. In principle it is of course possible to obtain such a round-
trip time, but it may be improbable that such a time could be found. The file server risks failing to synchronize
over a long period, when it could synchronize with a lower accuracy.

10.6 What reconfigurations would you expect to occur in the NTP synchronization subnet?

 

10.6 Ans.

 

A server may fail or become unreachable. Servers that synchronize with it will then attempt to synchronize to 
a different server. As a result, they may move to a different stratum. For example, a stratum 2 peer (server) 
loses its connection to a stratum 1 peer, and must thenceforth use a stratum 2 peer that has retained its 
connection to a stratum 1 peer. It becomes a stratum 3 peer.

Also, if a primary server’s UTC source fails, then it becomes a secondary server.

10.7 An NTP server B receives server A’s message at 16:34:23.480 bearing a timestamp 16:34:13.430 and replies
to it. A receives the message at 16:34:15.725, bearing B’s timestamp 16:34:25.7. Estimate the offset between
B and A and the accuracy of the estimate.

 

10.7 Ans.

 

Let 

 

a

 

 

 

=

 

 

 

Ti-2

 

 

 

– Ti-3

 

 = 23.48 - 13.43 = 10.05; 

 

b

 

 

 

=

 

 

 

Ti-1

 

 – 

 

Ti

 

 = 25.7- 15.725 =9.975.

Then the estimated offset  = (

 

a

 

+

 

b

 

)/2 = 10.013s, with estimated accuracy =  = ± (

 

a

 

-

 

b

 

)/2 = 0.038s
(answers expressed to the nearest millisecond).

10.8 Discuss the factors to be taken into account when deciding to which NTP server a client should synchronize
its clock.

 

10.8 Ans.

 

The main factors to take into account are the intrinsic reliability of the server as a source of time values, and
the quality of the time information as it arrives at the destination. Sanity checks are needed, in case servers
have bugs or are operated maliciously and emit spurious time values. Assuming that servers emit the best time
values known to them, servers with lower stratum numbers are closest to UTC, and therefore liable to be the
most accurate. On the other hand, a large network distance from a source can introduce large variations in
network delays. The choice involves a trade-off between these two factors, and servers may synchronize with
several other servers (peers) to seek the highest quality data.

10.9 Discuss how it is possible to compensate for clock drift between synchronization points by observing the drift
rate over time. Discuss any limitations to your method. 

 

Round-trip (ms) Time (hr:min:sec)

22 10:54:23.674

25 10:54:25.450

20 10:54:28.342

oi di± 2⁄
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10.9 Ans.

 

If we know that the drift rate is constant, then we need only measure it between synchronization points with
an accurate source and compensate for it. For example, if the clock loses a second every hour, then we can add
a second every hour, in smooth increments, to the value returned to the user. The difficulty is that the clock’s
drift rate is liable to be variable – for example, it may be a function of temperature. Therefore we need an
adaptive adjustment method, which guesses the drift rate, based on past behaviour, but which compensates
when the drift rate is discovered to have changed by the next synchronisation point.

10.10 By considering a chain of zero or more messages connecting events 

 

e

 

 and  and using induction, show that
.

 

10.10 Ans.

 

If 

 

e

 

 and  are successive events occurring at the same process, or if there is a message 

 

m

 

 such that 

 

e

 

 = 

 

send

 

(

 

m

 

)
and  = 

 

rcv

 

(

 

m

 

), then the result is immediate from LC1 and LC2. Assume that the result to be proved is true
for all pairs of events connected in a sequence of events (in which either 

 

HB1

 

 or 

 

HB2

 

 applies between each
neighbouring pair) of length 

 

N

 

 or less (

 

N

 

 

 

≥

 

 2). Now assume that 

 

e

 

 and  are connected in a series of events

 

e

 

1

 

, 

 

e

 

2

 

, 

 

e

 

3

 

, .., 

 

e

 

N+1

 

 occurring at one or more processes such that 

 

e

 

 = 

 

e

 

1

 

 and  = 

 

e

 

N+1

 

. Then 

 

e 

 

→

 

 e

 

N

 

 and so C(

 

e

 

)
< C(

 

e

 

N

 

) by the induction hypothesis. But by LC1 and LC2, C(

 

e

 

N

 

) <C( ). Therefore C(

 

e

 

) < C( ).

10.11 Show that  (NB erratum in this exercise in first printing)

 

10.11 Ans.

 

Rule VC2 (p. 399) tells us that  is the ‘source’ of increments to , which it makes just before it sends
each message; and that  increments  only as it receives messages containing timestamps with larger
entries for . The relationship  follows immediately.

10.12 In a similar fashion to Exercise 10.10, show that .

 

10.12 Ans.

 

If 

 

e

 

 and  are successive events occurring at the same process, or if there is a message 

 

m

 

 such that 

 

e

 

 = 

 

send

 

(

 

m

 

)
and  = rcv(m), then the result follows from VC2–VC4. In the latter case the sender includes its timestamp
value and the recipient increases its own vector clock entry; all of its other entries remain at least as great as
those in the sender’s timestamp. 

Assume that the result to be proved is true for all pairs of events connected in a sequence of events (in which
either HB1 or HB2 applies between each neighbouring pair) of length N or less (N ≥ 2). Now assume that e
and  are connected in a series of events e1, e2, e3, .., eN+1 occurring at one or more processes such that e =
e1 and  = eN+1. Then e → eN and so V(e) < V(eN) by the induction hypothesis. But by VC2–VC4, V(eN) <
V( ). Therefore V(e) < V( ).

10.13 Using the result of Exercise 10.11, show that if events e and  are concurrent then neither  nor
. Hence show that if  then .

10.13 Ans.

Let e and  be concurrent and let e occur at  and  at . Because the events are concurrent (not related
by happened-before) we know that no message sent from  at or after event e has propagated its timestamp
to  by the time  occurs at , and vice versa. By the reasoning for Exercise 10.11, it follows that

 and  (strict inequalities) and therefore that neither  nor
. 

Therefore if  the two events are not concurrent – they must be related by happened-before. Of
the two possibilities, it obviously must be that .

10.14 Two processes P and Q are connected in a ring using two channels, and they constantly rotate a message m.
At any one time, there is only one copy of m in the system. Each process’s state consists of the number of times
it has received m, and P sends m first. At a certain point, P has the message and its state is 101. Immediately
after sending m, P initiates the snapshot algorithm. Explain the operation of the algorithm in this case, giving
the possible global state(s) reported by it.

10.14 Ans.

P sends msg m

P records state (101)

P sends marker (see initiation of algorithm described on p. 406)

e ′
e e ′→ L e( ) L e ′( )<⇒

e ′
e ′

e ′
e ′

e ′ e ′

V j i[ ] V i i[ ]≤

pi V i i[ ]
p j V j i[ ]

pi V j i[ ] V i i[ ]≤

e e ′→ V e( ) V e ′( )<⇒

e ′
e ′

e ′
e ′

e ′ e ′

e ′ V e( ) V e ′( )≤
V e ′( ) V e( )≤ V e( ) V e ′( )< e e ′→

e ′ pi e ′ p j
pi

p j e ′ p j
V j i[ ] V i i[ ]< V i j[ ] V j j[ ]< V e( ) V e ′( )≤
V e ′( ) V e( )≤

V e( ) V e ′( )<
e e ′→
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Q receives m, making its state 102

Q receives the marker and by marker-receiving rule, records its state (102) and the state of the channel from P
to Q as {}

Q sends marker (marker-sending rule)

(Q sends m again at some point later)

P receives marker

P records the state of the channel from Q to P as set of messages received since it saved its state = {} (marker-
receiving rule).

10.15 The figure above shows events occurring for each of two processes, p1 and p2. Arrows between processes
denote message transmission.

Draw and label the lattice of consistent states (p1 state, p2 state), beginning with the initial state (0,0).
10.15 Ans.

10.16 Jones is running a collection of processes . Each process  contains a variable .
She wishes to determine whether all the variables  were ever equal in the course of
the execution.

(i) Jones’ processes run in a synchronous system. She uses a monitor process to determine 
whether the variables were ever equal. When should the application processes communicate 
with the monitor process, and what should their messages contain?

(ii) Explain the statement possibly ( ). How can Jones determine whether 
this statement is true of her execution?

10.16 Ans.

(i) communicate new value when local variable  changes;

with this value send: current time of day C(e) and vector timestamp V(e) of the event of the change, e.

(ii) possibly (...): there is a consistent, potentially simultaneous global state in which the given predicate is true. 

Monitor process takes potentially simultaneous events which correspond to a consistent state, and checks
predicate .

Simultaneous: estimate simultaneity using bound on clock synchronization and upper limit on message
propagation time, comparing values of C (see p. 415).

Consistent state: check vector timestamps of all pairs of potentially simultaneous events , : check
.

Time

P1

P2

The lattice of global states for the execution of Figure of exercise 10.15

Sij= global state after i events at p1
       and j events at p2

S00

S03

S13

Level 0

1

2

3

4

5

6

7

S01

S11 S02

S12S21

S31 S22

S32

S42 S33

S43

S23

S34

S44

p1 p2 … pN, , , pi vi
v1 v2 … vN, , ,

v1 v2 … vN= = =

vi

v1 v2 … vN= = =

ei e j
V ei( ) i[ ] V e j( ) i[ ]≥


