Distributed Systems: Concepts and Design
Edition 3

Prorpinrire By George Coulouris, Jean Dollimore and Tim Kindberg
. Addison-Wesley, ©Pearson Education 2001

Chapter 14 Exercise Solutions

14.1 Three computers together provide a replicated service. The manufacturers claim that each computer has a
mean time between failure of five days; afailure typically takes four hoursto fix. What is the availability of
the replicated service?

14.1 Ans.

The probability that an individual computer is down is 4/(5*24 + 4) ~ 0.03. Assuming failure-independence
of the machines, the availability is therefore 1 —0.03% = 0.999973.

14.2 Explain why a multi-threaded server might not qualify as a state machine.
14.2 Ans.

The order in which operations are applied within such a server might differ from the order in which they are
initiated. This is because operations could be delayed waiting for some other resource, and the resource
scheduling policy could, in principle, reverse the order of two operations.

14.3 Inamulti-user game, the players move figures around a common scene. The state of the gameisreplicated at
the players workstations and at a server, which contains services controlling the game overal, such as
collision detection. Updates are multicast to all replicas.

(i) The figures may throw projectiles at one another and a hit debilitates the unfortunate recipient for a
limited time. What type of update ordering is required here? Hint: consider the ‘throw’, ‘collide’ and
‘revive’ events.

(i) The gameincorporates magic devices which may be picked up by aplayer to assist them. What type of
ordering should be applied to the pick-up-device operation?
14.3 Ans.

i) The event of the collision between the projectile and the figure, and the event of the player being
debilitated (which, we may assume, is represented graphically) should occur in causal order. Moreover,
changes in the vel ocity of the figure and the projectile chasing it should be causally ordered. Assume that the
workstation at which the projectile was launched regularly announces the projectile' s coordinates, and that the
workstation of the player corresponding to the figure regularly announces the figure' s coordinates and
announces the figure' s debilitation. These announcements should be processed in causal order. (The reader
may care to think of other ways of organising consistent views at the different workstations.)

i) If two players move to pick up a piece at more-or-less the same time, only one should succeed and
the identity of the successful player should be agreed at all workstations. Therefore total ordering is required.

The most promising architecture for agame such asthisisapeer group of game processes, one at each player’s
workstation. Thisisthe architecture most likely to meet the real -time update propagation requirements; it also
isrobust against the failure of any one workstation (assuming that at least two players are playing at the same
time).

14.4 A router separating process p from two others, g and r, fails immediately after p initiates the multicasting of

message m. If the group communication system is view-synchronous, explain what happensto p next.
14.4 Ans.

The case of partitions was excluded from the description of view-synchronous communication in the chapter,
but we can describe “reasonable” behaviour for thiscase. Process p must receive anew group view containing

Distributed Systems, Edition 3: Chapter 14 Solutions 1
Last updated: 26 February 2003 ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

only itself, and it must receive the message it sent. The question is: in what order should these events be
delivered to p?

The answer is that they may be delivered in any order. In view-synchronous communication, a process may
conclude that another process received a given message, if that other process is in the view following the
delivery of that message. However, there is no converse implication: a process that is absent from the next
view may or may not have received a message delivered just before that view.

145 Youaregivenagroup communication system with atotally ordered multicast operation, and afailure detector.
Isit possible to construct view-synchronous group communication from these components a one?
14.5 Ans.

If the multicast isreliable, yes. Then we can solve consensus. In particular, we can decide, for each message,
the view of the group to deliver it to. Since both messages and new group views can be totally ordered, the
resultant communication will be view-synchronous. If the multicast is unreliable, then we do not have away
of ensuring the consistency of view delivery to all of the processes involved.

146 A sync-ordered multicast operation is one whose delivery ordering semantics are the same as those for
delivering views in a view-synchronous group communication system. In a thingumajig service, operations
upon thingumajigs are causally ordered. The service supportslists of users able to perform operations on each
particular thingumajig. Explain why removing a user from alist should be a sync-ordered operation.

14.6 Ans.

Sync-ordering the remove-user update ensures that al processes handle the same set of operations on a
thingumajig before the user isremoved. If removal were only causally ordered, there would not be any definite
delivery ordering between that operation and any other on the thingumajig. Two processes might receive an
operation from that user respectively before and after the user was removed, so that one process would reject
the operation and the other would not.

14.7 What isthe consistency issue raised by state transfer?
14.7 Ans.

When a process joins a group it acquires state S from one or more members of the group. It may then start
receiving messages destined for the group, which it processes. The consistency problem consists of ensuring
that no update message that is already reflected in the value Swill be applied to it again; and, conversdly, that
any update message that is not reflected in Swill be subsequently received and processed.

14.8 Anoperation X upon an object o causes o to invoke an operation upon another object o'. It is now proposed to
replicate o but not o'. Explain the difficulty that this raises concerning invocations upon o', and suggest a
solution.

14.8 Ans.

The danger is that all replicas of o will issue invocations upon o', when only one should take place. Thisis
incorrect unless the invocation upon o’ isidempotent and all replicas issue the same invocation.

One solution is for the replicas of o to be provided with smart, replication-aware proxies to o'. The smart
proxies run a consensus algorithm to assign a unique identifier to each invocation and to assign one of them
to handle the invocation. Only that smart proxy forwards the invocation request; the others wait for it to
multicast the response to them, and pass the results back to their replica

149 Explainthe difference between linearizability and sequential consistency, and why the latter is more practical
to implement, in general.
14.9 Ans.

See pp. 566-567 for the difference. In the absence of clock synchronization of sufficient precision,
linearizability can only be achieved by funnelling al requests through a single server — making it a
performance bottleneck.

14.10 Explain why allowing backups to process read operations leads to sequentially consistent rather than
linearizable executionsin a passive replication system.
14.10 Ans.

Dueto delaysin update propagation, aread operation processed at abackup could retrieve resultsthat are older
than those at the primary —that is, resultsthat are older than those of an earlier operation requested by another
process. So the execution is not linearizable.

Distributed Systems, Edition 3: Chapter 14 Solutions 2
Last updated: 26 February 2003 ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

The system is sequentially consistent, however: the primary totally orders all updates, and each process sees
some consistent interleaving of reads between the same series of updates.

14.11 Could the gossip architecture be used for a distributed computer game as described in Exercise 14.3?
14.11 Ans.

As far as ordering is concerned, the answer is ‘yes’ — gossip supports causal and total ordering. However,
gossip introduces essentially arbitrary propagation delays, instead of the best-effort propagation of multicast.
Long delays would tend to affect the interactivity of the game.

14.12 Inthe gossip architecture, why does a replica manager need to keep both a‘replica’ timestamp and a‘value'
timestamp?
14.12 Ans.

The value timestamp reflects the operations that the replica manager has applied. Replica managers also need
to manage operationsthat they cannot yet apply. In particular, they need to assign identifiersto new operations,
and they need to keep track of which updates they have received in gossip messages, whether or not they have
applied them yet. The replicatimestamp reflects updates that the replicamanager has received, whether or not
it has applied them all yet.

14.13 In a gossip system, a front end has vector timestamp (3, 5, 7) representing the data it has received from
members of a group of three replica managers. The three replica managers have vector timestamps (5, 2, 8),
(4,5, 6)and (4, 5, 8), respectively. Which replicamanager(s) could immediately satisfy aquery from the front
end and what is the resultant time stamp of the front end? Which could incorporate an update from the front
end immediately?

14.13 Ans.

The only replica manager that can satisfy a query from thisfront end is the third, with (value) timestamp
(4,5,8). The others have not yet processed at |east one update seen by the front end. The resultant time stamp
of the front end will be (4,5,8).

Similarly, only the third replica manager could incorporate an update from the front-end immediately.

14.14 Explain why making some replica managers read-only may improve the performance of a gossip system.
14.14 Ans.

First, read operations may be satisfied by local read-only replicamanagers, while updates are processed by just
afew other replicamanagers. Thisis an efficient arrangement if on average there are many read operations to
every write operation. Second, since read-only replicas do not accept updates, they need no vector timestamp
entries. Vector timestamp sizes are therefore reduced.

14.15 Write pseudocodefor dependency checks and merge procedures (as used in Bayou) suitablefor asimple room-
booking application.
14.15 Ans.

Operation: room.book(booking).

let timeSlot = booking.getPreferredTimeSl ot();

Dependency check:

existingBooking = room.getBooking(timeSlot);

if (existingBooking !=null) return “conflict” else return “no conflict”;

Merge procedure:

existingBooking = room.getBooking(timeSlot);

/I Choose the booking that should take precedence over the other

if (greatestPriority(existingBooking, booking) == booking)
then { room.setBooking(timeSlot, booking); existingBooking.setStatus(“failed”);}
else {booking.setStatus(“failed”);}

—inamore sophisticated version of this scheme, bookings have alternative time slots. When a booking
cannot be made at the preferred time slot, the merge procedure runs through the alternative time slots and only
reportsfailure if none isavailable. Similarly, alternative rooms could be tried.

14.16 In the Coda file system, why is it sometimes necessary for users to intervene manually in the process of
updating the copies of afile at multiple servers?

Distributed Systems, Edition 3: Chapter 14 Solutions 3
Last updated: 26 February 2003 ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

14.16 Ans.

Conflicts may be detected between the timestamps of versions of files at a Codafile server and a disconnected
workstation when the workstation is reintegrated, Conflicts arise because the versions have diverged, that is,
the version on the file server may have been updated by one client and the version on the workstation by
another. When such conflicts occur, the version of the file from the workstation is placed in a covolume — an
off-line version of thefile volume that is awaiting manual processing by a user. The user may either reject the
new version, install the new version in preference to the one on the server, or merge the two files using a tool
appropriate to the format of thefile.

14.17 Deviseascheme for integrating two replicas of afile system directory that underwent separate updates during
disconnected operation. Use either Bayou’'s operational transformation approach, or supply a solution for
Coda.

14.17 Ans.

The updates possible on a directory are () changing protection settings on existing entries or the directory
itself, (b) adding entries and (c) deleting entries.

Many updates may be automatically reconciled, e.g. if two entries with different names were added in
different partitions then both are added; if an entry was removed in one partition and not updated in the other
then the removal is confirmed; if an entry’ s permissions were updated in one partition and it was not updated
(including deletion) in the other, then the permissions-update is confirmed.

Otherwise, two updates, in partitions A and B, respectively, may conflict in such away that automatic
reconciliation is not possible. e.g. an entry was removed in A and the same entry in B had its permissions
changed; entries were created with the same name (but referring to a different file) in A and B; an entry was
added in A but in B the directory’ s write permissions were removed.

We leave the details to the reader.

14.18 Available copiesreplication is applied to dataitems A and B with replicas A, Ay and Byy,, By,. The transactions
T and U are defined as:

T: Read(A); Write(B, 44). U: Read(B); Write(A, 55).

Show an interleaving of T and U, assuming that two-phase locks are applied to the replicas. Explain why locks
alone cannot ensure one copy serializability if one of the replicasfails during the progress of T and U. Explain
with reference to this example, how local validation ensures one copy serializability.

14.18 Ans.

Aninterleaving of T and U at the replicas assuming that two-phase locks are applied to the replicas:
T U
x:= Read (AX) lock Ax
Write(Bm, 44) lock Bm
x:=Read (Bm) Wait
Write(Bn, 44) lock Bn .
Commit unlock Ax,Bm,Bn .
Write(Ax, 55) lock Ax
Write(Ay, 55) lock Ay

Suppose Bm fails before T locks it, then U will not be delayed. (It will get alost update). The problem arises
because Read can use one of the copies before it fails and then Write can use the other copy. Local validation
ensures one copy serializability by checking before it commits that any copy that failed has not yet been
recovered. In the case of T, which observed the failure of Bm, Bm should not yet have been recovered, but it
has, so T is aborted.

14.19 Gifford's quorum consensus replication isin use at servers X, Y and Z which all hold replicas of dataitems A
and B. Theinitial values of all replicas of A and B are 100 and the votes for A and B are 1 at each of X, Y and
Z. Also R=W=2for both A and B. A client reads the value of A and then writesit to B.

(i) At the time the client performs these operations, a partition separates servers X and Y from server Z.

Distributed Systems, Edition 3: Chapter 14 Solutions 4
Last updated: 26 February 2003 ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

Describe the quora obtained and the operations that take place if the client can access servers X and .
(ii) Describe the quora obtained and the operations that take place if the client can access only server Z.

(iii) Thepartitionisrepaired and then another partition occurs so that X and Z are separated from Y. Describe
the quora obtained and the operations that take place if the client can access servers X and Z.

14.19 Ans.
i) Partition separates X and Y from Z when all dataitems have version vO say:
X Y z
A=100 (vo) A= 100(vo) A= 100(vo)
B=100(vo) B=100(vo) B=100(vo)

A client reads the value of A and then writesit to B:
read quorum = 1+1 for A and B - client Reads A from X or Y
write quorum = 1+1 for B client WritesB at X and Y

ii) Client can access only server Z: read quorum = 1, so client cannot read, write quorum = 1 so client cannot
write, therefore neither operation takes place.

iii) After the partition is repaired, the values of A and B at Z may be out of date, due to clients having written
new values at servers X and Y. e.g. versions v1:

X Y Z
A=200(v1) A=200(v1) A= 100(vo)
B=300(v1) B=300(v1) B= 100(vo)

Then another partition occurs so that X and Z are separated from Y.

The client Read request causes an attempt to obtain aread quorum from X and Z. This notes that the versions
(vO) at Z are out of date and then Z gets up-to-date versions of A and B from X.

Now the read quorum = 1+1 and the read operation can be done. Similarly the write operation can be done.

Distributed Systems, Edition 3: Chapter 14 Solutions 5
Last updated: 26 February 2003 ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

