Distributed Systems: Concepts and Design

Edition 3

SISTRIRITED SYSTON By George Coulouris, Jean Dollimore and Tim Kindberg
- Addison-Wesley, ©Pearson Education 2001

Chapter 6 Exercise Solutions

6.1 Discuss each of the tasks of encapsulation, concurrent processing, protection, name resol ution,
communication of parameters and results, and scheduling in the case of the UNIX file service (or
that of another kernel that isfamiliar to you).

6.1 Ans.

We discuss the case of asingle computer running Unix.
Encapsulation: a process may only access file data and attributes through the system call interface.

Concurrent processing: several processes may access the same or different files concurrently; a process that
has made a system call executes in supervisor mode in the kernel; processes share all file-system-related data,
including the block cache.

Protection: users set access permissions using the familiar user/group/other, rwx format. Address space
protection and processor privilege settings are used to restrict accessto file dataand file system datain memory
and prevent direct access to storage devices. Processes bear user and group identifiers in protected kernel
tables, so the problem of authentication does not arise.

Name resol ution: pathnames (for example, /usr/fred) are resolved by looking up each component in turn. Each
component is looked up in a directory, which is a table containing path name components and the
corresponding inodes. If the inode is that of a directory then thisis retrieved; and the process continues until
the final component has been resolved or an error has occurred. Special cases occur when a symbolic link or
mount point is encountered.

Parameter and result communication: parameters and results can be communicated by a) passing them in
machine registers, b) copying them between the user and kernel address spaces, or ¢) by mapping data blocks
simultaneously in the two address spaces.

Scheduling: there are no separate file system threads; when a user process makes afile system call, it continues
execution in the kernel.

NFSisdiscussed in Section 8.2.

6.2 Why are some system interfaces implemented by dedicated system calls (to the kernel), and others on top of
message-based system calls?
6.2 Ans.

Dedicated system calls are more efficient for smple calls than message-based calls (in which a system action
isinitiated by sending a message to the kernel, involving message construction, dispatch etc.).

However, the advantage of implementing a system call asan RPC isthat then a process can perform operations
transparently on either remote or local resources.

6.3 Smith decidesthat every thread in his processes ought to have its own protected stack — all other regionsin a
process would be fully shared. Does this make sense?
6.3 Ans.

If every thread has its own protected stack, then each must have its own address space. Smith’sideais better
described as a set of single-threaded processes, most of whose regions are shared. The advantage of sharing
an address space has thus been lost.

Distributed Systems, Edition 3: Chapter6Answers 1

6.4 Should signal (software interrupt) handlers belong to a process or to a thread?
6.4 Ans.

When a process experiences a signal, should any currently running thread handle it, or should a pre-arranged
thread handleit? And do threads have their own tables of signal handlers? Thereisno’ correct’ answer to these
questions. For example, it might be convenient for threads within a process to use their own SIGALARM
signal handlers. On the other hand, a process only needs one SIGINT handler.

6.5 Discusstheissue of naming applied to shared memory regions.
6.5 Ans.

Memory regions may be given textual names. Two or more processes may then share a region by supplying
its name and requesting it to be mapped into their address spaces. Mapped files are examples of thisidea, in
which the contents of the shared region are maintained on persistent store.

The second naming issue is that of the addresses used to access a shared region. In principle, a shared region
may be mapped as different address ranges in different processes. However, it is more convenient if the same
address ranges are used, for the region may then contain pointers into itself, without the need for trandlation.
Unfortunately, in the absence of global address space management, some addresses belonging to a particular
region might already be occupied in some processes.

6.6 Suggest ascheme for balancing the load on a set of computers. Y ou should discuss:
i) what user or system requirements are met by such a scheme;
ii) towhat categories of applicationsit is suited;
iii) how to measure load and with what accuracy; and

iv) how to monitor load and choose the location for anew process. Assume that processes may not be
migrated.

How would your design be affected if processes could be migrated between computers? Would you expect
process migration to have a significant cost?
6.6 Ans.

The following brief comments are given by way of suggestion, and are not intended to be comprehensive:

i) Examples of requirements, which an implementation might or might not be designed to meet: good
interactive response times despite load level; rapid turnaround of individua compute-intensive jobs;
simultaneous scheduling of a set of jobs belonging to a parallel application; limit on load difference between
least- and most-loaded computers; jobs may be run on otherwise idle or under-utilized workstations; high
throughput, in terms of number of jobs run per second; prioritization of jobs.

ii) A load-balancing scheme should be designed according to ajob profile. For example, job behaviour (total
execution time, resource requirements) might be known or unknown in advance; jobs might be typically
interactive or typically compute-intensive or a mixture of the two; jobs may be parts of single parallel
programs. Their total run-time may on average be one second or ten minutes. The efficacy of load balancing
is doubtful for very light jobs; for short jobs, the system overheads for a complex a gorithm may outweigh the
advantages.

iii) A simple and effective way to measure a computer’sload isto find the length of its run queue. Measuring
load using a crude set of categories such as LIGHT and HEAVY is often sufficient, given the overheads of
collecting finer-grained information, and the tendency for loads to change over short periods.

iv) A useful approach isfor computers whose load is LIGHT to advertise this fact to others, so that new jobs
are started on these computers.

Because of unpredictable job run times, any algorithm might lead to unbalanced computers, with atemporary
dearth of new jobsto place onthe LIGHT computers. If process migration is available, however, then jobs can
be relocated from HEAVY computersto LIGHT computers at such times. The main cost of process migration
is address space transfer, although techniques exist to minimise this [Kindberg 1990]. It can take in the order
of seconds to migrate a process, and this time must be short in relation to the remaining run times of the
processes concerned.

6.7 Explain the advantage of copy-on-write region copying for UNIX, where a call to fork is typically followed
by a call to exec. What should happen if aregion that has been copied using copy-on-write isitself copied?

Distributed Systems, Edition 3: Chapter6Answers 2

6.7 Ans.

It would be wasteful to copy the forked process' s address space contents, sincethey areimmediately replaced.
With copy-on-write, only those few pages that are actually needed before calling exec will be copied.

Assume now that exec is not called. When a process forks, its child may in turn fork a child. Call these the
parent, child and grandchild. Pages in the grandchild are logically copied from the child, whose pages are in
turn logically copied from the parent. Initially, the grandchild’s pages may share a frame with the parent’s
page. If, say, the child modifies a page, however, then the grandchild’ s page must be made to share the child's
frame. A way must be found to manage chains of page dependencies, which have to be altered when pages are
modified.

6.8 A fileserver uses caching, and achieves a hit rate of 80%. File operationsin the server cost 5 ms of CPU time
when the server finds the requested block in the cache, and take an additional 15 msof disk 1/0 time otherwise.
Explaining any assumptionsyou make, estimate the server’ sthroughput capacity (average requests/sec) if itis:

i) single-threaded;
i) two-threaded, running on a single processor;

iii) two-threaded, running on a two-processor computer.
6.8 Ans.

80% of accesses cost 5 ms; 20% of accesses cost 20 ms.
average request time is 0.8*5+.2* 20 = 4+4=8ms.
i) single-threaded: rate is 1000/8 = 125 reqs/sec

ii) two-threaded: serving 4 cached and 1 uncached requests takes 25 ms. (overlap 1/0O with computation).
Therefore throughput becomes 1 request in 5 ms. on average, = 200 reqs/sec

iii) two-threaded, 2 CPUs. Processors can serve 2 rgsts in 5 ms => 400 reqgs/sec. But disk can serve the 20%
of requests at only 1000/15 reqs/sec (assume disk rgsts serialised). Thisimpliesatotal rate of 5* 1000/15 = 333
requests/sec (which the two CPUs can service).

6.9 Compare the worker pool multi-threading architecture with the thread-per-request architecture.
6.9 Ans.

Theworker pool architecture saves on thread creation and destruction costs compared to the thread-per-request
architecture but (a) the pool may contain too few threads to maximise performance under high workloads or
too many threads for practical purposes and (b) threads contend for the shared work queue.

6.10 What thread operations are the most significant in cost?
6.10 Ans.

Thread switching tends to occur many timesin thelifetime of threads and istherefore the most significant cost.
Next come thread creation/destruction operations, which occur often in dynamic threading architectures (such
as the thread-per-request architecture).

6.11 A spinlock (see Bacon [1998]) is aboolean variable accessed via an atomic test-and-set instruction, which is
used to obtain mutual exclusion. Would you use a spin lock to obtain mutual exclusion between threads on a
single-processor computer?

6.11 Ans.

The problem that might arise is the situation in which a thread spinning on alock uses up its timeslice, when
meanwhile the thread that is about to free the lock lies idle on the READY queue. We can try to avoid this
problem by integrating lock management with the scheduling mechanism, but it is doubtful whether thiswould
have any advantages over a mutual exclusion mechanism without busy-waiting.

6.12 Explain what the kernel must provide for a user-level implementation of threads, such as Javaon UNIX.
6.12 Ans.

A thread that makes a blocking system call provides no opportunity for the user-level scheduler to intervene,
and so all threads become blocked even though somemay beinthe READY state. A user-level implementation
requires (a) non-blocking (asynchronous) I/O operations provided by the kernel, that only initiate I/O; and (b)
away of determining when the I/O has completed -- for example, the UNIX select system call. The threads
programmer should not use native blocking system calls but calls in the threading APl which make an
asynchronous call and then invoke the scheduler.

Distributed Systems, Edition 3: Chapter6Answers 3

6.13 Do page faults present a problem for user-level threads implementations?
6.13 Ans.

If a process with a user-level threads implementation takes a page fault, then by default the kernel will
deschedulethe entire process. In principle, the kernel could instead generate a softwareinterrupt in the process,
notifying it of the page fault and allowing it to schedule another thread while the page is fetched.

6.14 Explainthe factorsthat motivate the hybrid scheduling approach of the ‘ scheduler activations' design (instead
of pure user-level or kernel-level scheduling).
6.14 Ans.

A hybrid scheduling scheme combines the advantages of user-level scheduling with the degree of control of
allocation of processors that comes from kernel-level implementations. Efficient, custom scheduling takes
place inside processes, but the allocation of a multiprocessor's processors to processes can be globally
controlled.

6.15 Why should athreads package be interested in the events of athread’ s becoming blocked or unblocked? Why
should it be interested in the event of a virtual processor’s impending preemption? (Hint: other virtual
processors may continue to be allocated.)

6.15 Ans.

If athread becomes blocked, the user-level scheduler may have a READY thread to schedule. If a thread
becomes unblocked, it may become the highest-priority thread and so should be run.

If avirtual processor is to be preempted, then the user-level scheduler may re-assign user-level threads to
virtual processors, so that the highest-priority threads will continue to run.

6.16 Network transmission time accounts for 20% of anull RPC and 80% of an RPC that transmits 1024 user bytes
(less than the size of a network packet). By what percentage will the times for these two operations improve
if the network is upgraded from 10 megabits/second to 100 megabits/second?

6.16 Ans.

T = null RPC time = f + wy,,, wheref = fixed OS costs, wy,; = time on wire at 10 megabits-per-second.
Similarly, T10p4 = time for RPC transferring 1024 bytes = f + wqpq.

Let T'y and T'1gp4 be the corresponding figures at 100 megabits per second. Then

Toun = F+ 0.Iwny, and T'ygpg = f + 0.1,

Percentage change for the null RPC = 100(T i - T'nutt)/ Trun = 100%0.9W 1 /Toun = 90%0.2 = 18%.
Similarly, percentage change for 1024-byte RPC = 100*0.9*0.8 = 72%.

6.17 A ‘null’ RMI that takes no parameters, calls an empty procedure and returns no values delaysthe caller for 2.0
milliseconds. Explain what contributes to thistime.

In the same RMI system, each 1K of user data adds an extra 1.5 milliseconds. A client wishesto fetch 32K of
datafrom afile server. Should it use one 32K RMI or 32 1K RMIs?
6.17 Ans.

Page 236 details the costs that make up the delay of anull RMI.
one 32K RMI: total delay is2 + 321.5 =50 ms.
32 1K RMIs: total delay is 32(2+1.5) = 112 ms -- one RMI is much cheaper.

6.18 Which factorsidentified in the cost of aremote invocation also feature in message passing?
6.18 Ans.

Most remote invocation costs also feature in message passing. However, if a sender uses asynchronous
message passing then it is not delayed by scheduling, data copying at the receiver or waiting for
acknowledgements

6.19 Explain how a shared region could be used for a process to read data written by the kernel. Include in your
explanation what would be necessary for synchronization.

Distributed Systems, Edition 3: Chapter6Answers 4

6.19 Ans.

The shared region is mapped read-only into the process' s address space, but is writable by the kernel.The
process reads data from the region using standard LOAD instructions (avoiding a TRAP). The process may
poll the data in the region from time to time to see if it has changed. However, we may require away for the
kernel to notify the process when it has written new data. A software interrupt can be used for this purpose.

6.20 i) Can aserver invoked by lightweight procedure calls control the degree of concurrency within it?

ii) Explainwhy and how aclient is prevented from calling arbitrary code within a server under lightweight
RPC.

iii) DoesLRPC expose clients and serversto greater risks of mutual interference than conventional RPC
(given the sharing of memory)?
6.20 Ans.

i) Although a server using LRPC does not explicitly create and manage threads, it can control the degree of
concurrency within it by using semaphores within the operations that it exports.

ii) A client must not be allowed to call arbitrary code within the server, since it could corrupt the server’ s data.
The kernel ensures that only valid procedures are called when it mediates the thread’ s upcall into the server,
as explained in Section 6.5.

iii) In principle, a client thread could modify a cal’s arguments on the A-stack, while another of the client’s
threads, executing within the server, reads these arguments. Threads within servers should therefore copy all
arguments into a private region before attempting to validate and use them. Otherwise, a server's data is
entirely protected by the LRPC invocation mechanism.

6.21 A client makes RMIsto a server. The client takes 5 ms to compute the arguments for each request, and the
server takes 10ms to process each request. The local OS processing time for each send or receive operation is
0.5 ms, and the network time to transmit each request or reply messageis 3 ms. Marshalling or unmarshalling
takes 0.5 ms per message.

Estimate the time taken by the client to generate and return from 2 requests (i) if it is single-threaded, and (ii)
if it has two threads which can make requests concurrently on a single processor. |s there aneed for
asynchronous RMI if processes are multi-threaded?

6.21 Ans.

(i) Single-threaded time: 2(5 (prepare) + 4(0.5 (marsh/unmarsh) + 0.5 (local 0OS)) + 2* 3 (net)) + 10 (serv))
=50 ms.

(i) Two-threaded time: (see figure 6.14) because of the overlap, the total is that of the time for the first
operation’s request message to reach the server, for the server to perform all processing of both request and
reply messages without interruption, and for the second operation’s reply message to reach the client.
Thisis: 5+ (0.5+0.5+3) + (0.5+0.5+10+0.5+0.5) + (0.5+0.5+10+0.5+0.5) + (3 + 0.5+0.5)
=37ms.

6.22 Explain what is security policy and what are the corresponding mechanisms in the case of a multi-user
operating system such as UNIX.
6.22 Ans.

Mechanisms. see answer to 6.1.

Policy concerns the application of these mechanisms by a particular user or in a particular working
environment. For example, the default access permissions on new files might be "rw------- " in the case of an
environment in which security isahigh priority, and "rw-r--r--" where sharing is encouraged.

6.23 Explain the program linkage requirements that must be met if a server is to be dynamically loaded into the
kernel’ s address space, and how these differ from the case of executing a server at user level.
6.23 Ans.

Portions of the kernel’ s address space must be allocated for the new code and data. Symbols within the new
code and data must be resolved to items in the kernel’ s address space. For example, it would use the kernel’s
message-handling functions.

By contragt, if the server was to execute as a separate process then it would run from a standard address in its
own address space and, apart from references to shared libraries, its linked image would be self-contained.

6.24 How could an interrupt be communicated to a user-level server?

Distributed Systems, Edition 3: Chapter6Answers 5

6.24 Ans.

The interrupt handler creates a message and sends it, using a specia non-blocking primitive, to a
predetermined port which the user-level server owns.

6.25 Onacertain computer we estimate that, regardless of the OSit runs, thread scheduling costs about
50 ps, anull procedure call 1 ps, a context switch to the kernel 20 ps and a domain transition 40
ps. For each of Mach and SPIN, estimate the cost to a client of calling a dynamically loaded null
procedure.

6.25 Ans.

Mach, by default, runs dynamically loaded code in a separate address space. So invoking the code involves
control transfer to athread in aseparate address space. Thisinvolvesfour (context switch + domain transitions)
to and from the kernel aswell as two schedulings (client to server thread and server thread to client thread) --
in addition to the null procedure itself.

Estimated cost: 4(20 + 40) + 250 + 1 = 341 ps

In SPIN, the call involve two (context switch + domain transitions) and no thread scheduling.
Estimated cost: 2(20 + 40) + 1 = 121 ps.

Distributed Systems, Edition 3: Chapter6Answers 6

