

Distributed Systems, Edition 3: Chapter 13 Solutions 1

Last updated: 21 July 2000 11:44 am

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

Chapter 13 Exercise Solutions

13.1 In a decentralized variant of the two-phase commit protocol the participants communicate directly
with one another instead of indirectly via the coordinator. In Phase 1, the coordinator sends its vote
to all the participants. In Phase 2, if the coordinator's vote is

No

, the participants just abort the
transaction; if it is

Yes

, each participant sends its vote to the coordinator and the other participants,
each of which decides on the outcome according to the vote and carries it out. Calculate the
number of messages and the number of rounds it takes. What are its advantages or disadvantages
in comparison with the centralized variant?

13.1 Ans.

In both cases, we consider the normal case with no time outs.
In the decentralised version of the two-phase commit protocol:

No of messages:

Phase 1: coordinator sends its vote to

N

 workers =

N

Phase 2: each of

N

 workers sends its vote to (

N

-1) other workers + coordinator =

N

*(

N

 - 1).

Total =

N

*

N

.

No. of rounds:

coordinator to workers + workers to others = 2 rounds.

Advantages: the number of rounds is less than for normal two-phase commit protocol which requires 3.
Disadvantages: the number of messages is far more:

N

*

N

 instead of 3

N

.

13.2 A three-phase commit protocol has the following parts:

Phase 1:

 is the same as for two-phase commit.

Phase 2:

 the coordinator collects the votes and makes a decision; if it is

No

, it

aborts

 and informs
participants that voted

Yes

; if the decision is

Yes

, it sends a

preCommit

 request to all the participants.
participants that voted

Yes

 wait for a

preCommit

 or

doAbort

 request. They acknowledge

preCommit

requests and carry out

doAbort

 requests.

Phase 3:

 the coordinator collects the acknowledgments. When all are received, it

Commits

 and sends

doCommit

 to the participants. participants wait for a

doCommit

 request. When it arrives they

Commit

.

Explain how this protocol avoids delay to participants during their ‘uncertain’ period due to the failure of the
coordinator or other participants. Assume that communication does not fail.

13.2 Ans.

In the two-phase commit protocol: the ‘uncertain’ period occurs because a worker has voted

yes

 but has not
yet been told the outcome. (It can no longer abort unilaterally).

In the three-phase commit protocol: the workers ‘uncertain’ period lasts from when the worker votes

yes

 until
it receives the

PreCommit

 request. At this stage, no other participant can have committed. Therefore if a group
of workers discover that they are all ‘uncertain’ and the coordinator cannot be contacted, they can decide
unilaterally to abort.

Distributed Systems: Concepts and Design

Edition 3

By George Coulouris, Jean Dollimore and Tim Kindberg
Addison-Wesley, ©Pearson Education 2001.

Distributed Systems, Edition 3: Chapter 13 Solutions 2

Last updated: 21 July 2000 11:44 am

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

13.3 Explain how the two-phase commit protocol for nested transactions ensures that if the top-level
transaction commits, all the right descendents are committed or aborted.

13.3 Ans.

Whenever a nested transaction commits, it reports its status and the status of its descendants to its parent.
Therefore when a transaction enters the committed state, it has a correct list of its committed descendants.
Therefore when the top-level transaction starts the two-phase commit protocol, its list of committed
descendants is correct. It checks the descendants and makes sure they can still commit or must abort. There
may be nodes that ran unsuccessful descendants which are not included in the two-phase commit protocol.
These will discover the outcome by querying the top-level transaction.

13.4 Give an example of the interleavings of two transactions that is serially equivalent at each server
but is not serially equivalent globally.

13.4 Ans.

Schedule at server

X

:

T

: Read(

A

); Write(

A

);

U

:Read(

A

); Write(

A

); serially equivalent with

T

 before

U

Schedule at Server

Y

:

U

: Read(

B

); Write(

B

);

T

: Read(

B

); Write(

B

); serially equivalent with

U

 before

T

This is not serially equivalent globally because there is a cycle

T

→

U

→

T

.

13.5 The

getDecision

 procedure defined in Figure 13.4 is provided only by coordinators. Define a new
version of

getDecision

 to be provided by participants for use by other participants that need to
obtain a decision when the coordinator is unavailable.

Assume that any active participant can make a

getDecision

 request to any other active participant. Does this
solve the problem of delay during the ‘uncertain’ period? Explain your answer.

At what point in the two-phase commit protocol would the coordinator inform the participants of the other
participants’ identities (to enable this communication)?

13.5 Ans.

The signature for the new version is:

getDecision (trans) -> Yes/ No/ Uncertain

The worker replies as follows:

If it has already received the

doCommit

 or

doAbort

 from the coordinator or received the result via another
worker, then reply

Yes

 or

No;

if it has not yet voted, reply

No

 (the workers can abort because a decision cannot yet have been reached);

if it is uncertain, reply

uncertain.

This does not solve the problem of delay during the ‘uncertain’ period. If all of the currently active workers
are uncertain, they will remain uncertain.

The coordinator can inform the workers of the other workers’ identities when it sends out the

canCommit

request.

13.6 Extend the definition of two-phase locking to apply to distributed transactions. Explain how this
is ensured by distributed transactions using strict two-phase locking locally.

13.6 Ans.

Two-phase locking in a distributed transaction requires that it cannot acquire a lock at any server after it has
released a lock at any server.

A client transaction will not request

commit

 (or

abort

) (at the coordinator) until after it has made all its requests
and had replies from the various servers involved, by which time all the locks will have been acquired. After
that, the coordinator sends on the

commit

 or

abort

 to the other servers which release the locks. Thus all locks
are acquired first and then they are all released, which is two-phase locking

Distributed Systems, Edition 3: Chapter 13 Solutions 3

Last updated: 21 July 2000 11:44 am

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

13.7 Assuming that strict two-phase locking is in use, describe how the actions of the two-phase
commit protocol relate to the concurrency control actions of each individual server. How does
distributed deadlock detection fit in?

13.7 Ans.

Each individual server sets locks on its own data items according to the requests it receives, making
transactions wait when others hold locks.

When the coordinator in the two-phase commit protocol sends the

doCommit

 or

doAbort

 request for a
particular transaction, each individual server (including the coordinator) first carries out the commit or abort
action and then releases all the local locks held by that transaction.

(Workers in the uncertain state may hold locks for a very long time if the coordinator fails)

Only transactions that are waiting on locks can be involved in deadlock cycles. When a transaction is waiting
on a lock it has not yet reached the client request to commit, so a transaction in a deadlock cycle cannot be
involved in the two-phase commit protocol.

When a transaction is aborted to break a cycle, the coordinator is informed by the deadlock detector. The
coordinator then sends the

doAbort

 to the workers.

13.8 A server uses timestamp ordering for local concurrency control. What changes must be made to
adapt it for use with distributed transactions? Under what conditions could it be argued that the
two-phase commit protocol is redundant with timestamp ordering?

13.8 Ans.

Timestamps for local concurrency control are just local counters. But for distributed transactions, timestamps
at different servers must have an agreed global ordering. For example, they can be generated as (local
timestamp, server-id) to make them different. The local timestamps must be roughly synchronized between
servers.

With timestamp ordering, a transaction may be aborted early at one of the servers by the read or write rule, in
which case the

abort

 result is returned to the client. If a server crashes before the client has done all its actions
at that server, the client will realise that the transaction has failed. In both of these cases the client should the
send an

abortTransaction

 to the coordinator.

When the client request to

commit

 arrives, the servers should all be able to commit, provided they have not
crashed after their last operation in the transaction.

The two-phase commit protocol can be considered redundant under the conditions that (i) servers are assumed
to make their changes persistent before replying to the client after each successful action and (ii) the client does
not attempt to commit transactions that have failed.

13.9 Consider distributed optimistic concurrency control in which each server performs local backward
validation sequentially (that is, with only one transaction in the validate and update phase at one
time), in relation to your answer to Exercise 13.4. Describe the possible outcomes when the two
transactions attempt to commit. What difference does it make if the servers use parallel validation?

13.9 Ans.

At server

X

,

T

 precedes

U

. At server

Y

,

U

 precedes

T

. These are not serially equivalent because there are Read/
Write conflicts.

T

 starts validation at server

X

 and passes, but is not yet committed. It requests validation at server

Y

. If

U

 has
not yet started validation,

Y

 can validate

T

. Then

U

 validates after

T

 (at both). Similarly for

T

 after

U

.

T

 starts validation at server

X

 and passes, but is not yet committed. It requests validation at server

Y

. If

U

 has
started validation,

T

 will be blocked. When

U

 requests validation at

X

, it will be blocked too. So there is a
deadlock.

If parallel validation is used,

T

 and U can be validated (in different orders) at the two servers, which is wrong.

Distributed Systems, Edition 3: Chapter 13 Solutions 4
Last updated: 21 July 2000 11:44 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

13.10 A centralized global deadlock detector holds the union of local wait-for graphs. Give an example
to explain how a phantom deadlock could be detected if a waiting transaction in a deadlock cycle
aborts during the deadlock detection procedure.

13.10 Ans.

A centralized global deadlock detector holds the union of local wait-for graphs. Give an example to explain
how a phantom deadlock could be detected if a waiting transaction in a deadlock cycle aborts during the
deadlock detection procedure.

Suppose that at servers X, Y and Z we have:

when U aborts, Y knows first, then X finds out, eventually the global detector finds out, but by then it may be
too late (it will have detected a deadlock).

13.11 Consider the edge chasing algorithm (without priorities). Give examples to show that it could
detect phantom deadlocks.

13.11 Ans.

Transaction U, V and W perform operations on a data item at each of the servers X, Y and Z in the following
order:

U gets data item at Y

V gets data item at X and then blocks at Y.

W gets data item at Z

U blocks at Y.

W blocks at X.

V aborts at Y

The table below shows three servers X, Y and Z, the transactions they coordinate, the holders and requesters of
their data items and the corresponding wait-for relationships before V aborts:

Now consider the probes sent out by the three servers:

At server X: W → V (which is blocked at Y); probe <W → V> sent to Y; then

At Y: probe <W → V> received; observes V → U (blocked at Z), so adds to probe to get <W → V→ U> and
sends it to Z.

When V aborts at Y; Y tells X - the coordinator of V, but V has not visited Z, so Z will not be told about the fact
that V has aborted!

At Z: probe <W → V→ U> is received; Z observes U → W and notes the cycle W → V→ U→ W and as a result
detects phantom deadlock. It picks a victim, (presumably not V).

13.12 A server manages the objects a1, a2,... an. The server provides two operations for its clients:

X Y Z global detector

T → U U→ V V→ T

U aborts T → UU→ VV→ T

T → U - V→ T

- - V→ T V→ T

X (coordinator of: V) Y (coordinator of: U) Z (coordinator of: W)

held by: V requested by: W held by: U requested by: V held by: W requested by: U

W → V (blocked at Y) V → U (blocked at Z) U → W (blocked at X)

Distributed Systems, Edition 3: Chapter 13 Solutions 5
Last updated: 21 July 2000 11:44 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

Read (i) returns the value of ai

Write(i, Value) assigns Value to ai

The transactions T, U and V are defined as follows:

T: x= Read (i); Write(j, 44);

U: Write(i, 55);Write(j, 66);

V: Write(k, 77);Write(k, 88);

Describe the information written to the log file on behalf of these three transactions if strict two-phase locking
is in use and U acquires ai and aj before T. Describe how the recovery manager would use this information to
recover the effects of T, U and V when the server is replaced after a crash. What is the significance of the order
of the commit entries in the log file?

13.12 Ans.

As transaction U acquires aj first, it commits first and the entries of transaction T follow those of U. For
simplicity we show the entries of transaction V after those of transaction T.

The diagram is similar to Figure 13.9. It shows the information placed at positions P0, P1, ...P10 in the log file.

On recovery, the recovery manager sets default values in the data items a1...an. It then starts at the end of the
log file (at position P10). It sees V has committed, finds P9 and V's intentions list <k,P8> and restores ak=88.
It then goes back to P7 (T commit), back to P6 for T's intentions list <j,P5> and restores aj=44. It then goes
back to P4 (U commit), back to P3 for U's intentions list <i,P1><j, P2>. It ignores the entry for aj because it
has already been recovered, but it gets ai=55. The values of the other data items are found earlier in the log file
or in a checkpoint.

The order of the commit entries in the log file reflect the order in which transactions committed. More recent
transactions come after earlier ones. Recovery starts from the end, taking the effects of the most recent
transactions first.

13.13 The appending of an entry to the log file is atomic, but append operations from different
transactions may be interleaved. How does this affect the answer to Exercise 13.12?

13.13 Ans.

As there are no conflicts between the operations of transaction V and those of T and U, the log entries due to
transaction V could be interleaved with those due to transactions T and U. In contrast, the entries due to T and
U cannot be interleaved because the locks on ai and aj ensure that U precedes T.

P0: ... P1: Data: i
 55

P2: Data: j
 66

P3: Trans: U
 prepared
<i, P1>
<j, P2>
P0

P4: Trans: U
commit

 P3;

P5: Data: j
 44

P6: Trans: T
 prepared
<j, P5>
 P4

P7: Trans: T
commit

P6;

P8: Data: k
88

P9: Trans: V
prepared
<k,P8>
P7

P10: Trans: V
commit
P9

Distributed Systems, Edition 3: Chapter 13 Solutions 6
Last updated: 21 July 2000 11:44 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

13.14 The transactions T, U and V of Exercise 13.12 use strict two-phase locking and their requests are
interleaved as follows:

Assuming that the recovery manager appends the data entry corresponding to each Write operation to the log
file immediately instead of waiting until the end of the transaction, describe the information written to the log
file on behalf of the transactions T, U and V. Does early writing affect the correctness of the recovery
procedure? What are the advantages and disadvantages of early writing?

13.14 Ans.

 As T acquires a read lock on ai, U’s Write(i,55) waits until T has committed and released the lock:

We have shown a possible interleaving of V’s Write(k,88) and prepared entries between T’s prepared and
commit entries. Early writing does not affect the correctness of the recovery procedure because the commit
entries reflect the order in which transactions were committed.

Disadvantages of early writing: a transaction may abort after entries have been written, due to deadlock. Also
there can be duplicate entries (like k=77 and k=88) if the same data item is written twice by the same
transaction.

Advantages of early writing: commitment of transactions is faster.

T U V

x = Read(i);

Write(k, 77);

Write(i, 55)

Write(j, 44)

Write(k,88)

Write(j, 66)

P0: ...
P1:Data: k

 77

P2:Data: j

44

P3:Trans: T

prepared

<j, P2>

P0

P4:Data: k

88

P5: Trans: V

prepared

<k,P4>

P3

P6: Trans: T

commit

P5

P7: Trans: V

commit

P6

P8:Data: i

55;

P9: Data: j

66

P10: Trans: U

prepared

<i,P8>

<j,P9>

P7

P11: Trans: U

commit

P10

Distributed Systems, Edition 3: Chapter 13 Solutions 7
Last updated: 21 July 2000 11:44 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

13.15 The transactions T and U are run with timestamp ordering concurrency control. Describe the
information written to the log file on behalf of T and U, allowing for the fact that U has a later
timestamp than T and must wait to commit after T. Why is it essential that the commit entries in
the log file should be ordered by timestamps? Describe the effect of recovery if the server crashes
(i) between the two Commits and (ii) after both of them.

What are the advantages and disadvantages of early writing with timestamp ordering?
13.15 Ans.

The timestamps of T and U are put in the recovery file. Call them t(T) and t(U), where t(T)<t(U).

The entry at P5 shows that U has committed, but must be ordered after T. If the transaction T aborts or the
server fails before T commits, this entry indicates that U has committed.

It essential that the commit entries in the log file should be ordered by timestamps because recovery works
through the log file backwards. The effects of later transactions must be over write the effects of earlier ones.

The effect of recovery:

(i) if the server crashes between the two commits, we lose the entry at P8, but we have P6: Trans t(U)
waiting to commit. Transaction U can be committed as the transaction it waits for has either committed,
or if it has not yet committed, it will be aborted.

(ii)if the server crashes after both the commits, both will be recovered.

The advantage of early writing with timestamp ordering is that commitment is quicker. Transactions can
always commit if they get that far (clients don't abort them). There do not appear to be any important
disadvantages.

13.16 The transactions T and U in Exercise 13.15 are run with optimistic concurrency control using
backward validation and restarting any transactions that fail. Describe the information written to
the log file on their behalf. Why is it essential that the commit entries in the log file should be
ordered by transaction numbers? How are the write sets of committed transactions represented in
the log file?

T U

x= Read(i);

Write(i, 55);

Write(j, 66);

Write(j, 44);

Commit

Commit

P0: ...
P1: Data: i

55

P2: Data: j

66

P3: Data: j

44

P4:Trans: t(U)

prepared

<i,P1>

<j,P2>

 P0

P5:Trans: t(U)

waiting to

commit

P4

P6:Trans: t(T)

prepared

<j,P4>

P5

P7: Trans: t(T)

commit

P6

P8: Trans: t(U)

commit

P7

Distributed Systems, Edition 3: Chapter 13 Solutions 8
Last updated: 21 July 2000 11:44 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

13.16 Ans.

Transaction numbers rather than transaction identifiers (or timestamps) go in the recovery file after a
transaction has passed its validation. U passes validation because it has no read operations. Suppose U is given
the transaction number TU. Transaction T fails validation because its read set {i} overlaps with U's Write set
{i,j}. T is restarted after U. It passes validation with transaction number TT. where TT>TU

It essential that the commit entries in the log file should be ordered by transaction number because transaction
numbers reflect the order in which transactions are committed at the server. Recovery takes transactions from
newest to oldest by reading the log file backwards.

Write sets are represented in the log file in the prepared entries.

13.17 Suppose that the coordinator of a transaction crashes after it has recorded the intentions list entry
but before it has recorded the participant list or sent out the canCommit? requests. Describe how
the participants resolve the situation. What will the coordinator do when it recovers? Would it be
any better to record the participant list before the intentions list entry?

13.17 Ans.

As the coordinator is the only server to receive the closeTransaction request from the client, the workers will
not know the transaction has ended, but they can time out and unilaterally decide to abort the transaction (see
pages 521-3). They are allowed to do this because they have not yet voted. When the coordinator recovers it
also aborts the transaction.

An apparent advantage of recording a worker list earlier (before the coordinator fails), is that it could be used
to notify the workers when a coordinator recovers, with a view to avoiding the need for timeouts in workers.
Unfortunately workers cannot avoid the need for timeouts because the coordinator may not recover for a very
long time.

Next question was omitted from the third edition, because it would have been alone on an odd numbered page.

13.18 Consider the distributed transaction T in Figure 13.3. Describe the information concerning
transaction T that would be written to the log files at each of the servers if the two-phase commit
protocol is completed and T is committed.

Suppose that the server BranchY crashes when it is ‘uncertain’: will this affect the progress of BranchX and
BranchZ? Describe the recovery at BranchY relating to transaction T; what is the responsibility of BranchX
with respect to the recovery at BranchY?

Suppose that BranchX crashes after sending out the vote requests, but BranchY and BranchZ are still active:
describe the effect on the three logs and describe the recovery of BranchX.

13.18 Ans..

Each server will have its own log file. These are shown in the rows of the table below. We assume that the
balances of A, B, C and D are initially $100, $200, $300 and $400.

P0: ...
P1: Data: i

55

P2: Data: j

66

P3: Trans: TU

prepared

<i,P1>

<j,P2>

P0

P4: Trans: TU

commit

P3

P5: Data: j

44

P6:Trans TT

prepared

<j,P4>

P5

P7: Trans TT

commit

P6

Distributed Systems, Edition 3: Chapter 13 Solutions 9
Last updated: 21 July 2000 11:44 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

If the server BranchY crashes when it is ‘uncertain’ this will not affect BranchX and BranchZ because all
servers have voted yes and the coordinator can decide to commit the transaction. It sends DoCommit to
BranchY (which does not reply) and BranchZ which does.

When BranchY recovers, the T uncertain entry will be found. A getDecision request will be sent to BranchX
which will inform BranchY that the transaction has committed. The responsibility of BranchX is to record the
outcome of T until it gets an acknowledgement from all the servers (including BranchY). It will not record T
done until this is the case, meanwhile it will not remove T committed if checkpointing takes place.

If BranchX crashes after sending out the vote requests, but BranchY and BranchZ are still active then BranchY
and BranchZ will reply yes and become uncertain. When BranchX recovers it is prepared and will decide to
abort the transaction and will inform the other two servers. All three will record T aborted in their logs.

BranchX:

P0...
P1: Data: A

96

P2: Trans: T

 prepared

<A,P1>

P0

P3: Coord’r: T

workers:

BranchY

BranchZ

P2

P4: Trans: T

committed

P3

P5: Trans: T

 done

P4

BranchY:

P0... P1: Data: B

197

P2: Trans: T

prepared

<B,P1>

P0

P3: Worker: T

coordinator:

BranchX

P2

P4: Trans: T

uncertain

P3

P5:Trans: T

committed

P4

BranchZ:

P0... P1: Data: C

304

P2: Data: D

 403

P3: Trans: T

prepared

<C,P1>

<D,P2>

P0

P4: Worker: T

coordinator:

BranchX

P3

P5: Trans: T

uncertain

P4

P6: Trans T:

committed

P5

