

Distributed Systems, Edition 3: Chapter 12 Solutions 1

Last updated: 21 July 2000 11:43 am

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

Chapter 12 Exercise Solutions

12.1 The TaskBag is a service whose functionality is to provide a repository for ‘task descriptions’. It
enables clients running in several computers to carry out parts of a computation in parallel. A

master

 process places descriptions of sub-tasks of a computation in the TaskBag, and

worker

processes select tasks from the TaskBag and carry them out, returning descriptions of results to the
TaskBag. The

master

 then collects the results and combines them to produce the final result.

The TaskBag service provides the following operations:

setTask

 allows clients to add task descriptions to the bag;

takeTask

 allows clients to take task descriptions out of the bag.

A client makes the request

takeTask

, when a task is not available but may be available soon. Discuss the
advantages and drawbacks of the following alternatives:

(i) the server can reply immediately, telling the client to try again later;

(ii) make the server operation (and therefore the client) wait until a task becomes available.

(iii) use callbacks.

12.1 Ans.

This is a straight-forward application of the ideas on synchronising server operations. One of the projects in
the Project Work section is based on the

TaskBag service

.

12.2 A server manages the objects

a

1

,

a

2

,...

a

n

. The server provides two operations for its clients:

 read (i)

returns the value of

 a

i

;

 write(i, Value)

 assigns

Value

 to

a

i

.

The transactions

T

 and

U

 are defined as follows:

 T: x= read (j); y = read (i); write(j, 44); write(i, 33);
 U: x= read(k); write(i, 55); y = read (j); write(k, 66).

Give three serially equivalent interleavings of the transactions

T

 and

U

.

12.2 Ans.

The interleavings of

T

 and

U

 are serially equivalent if they produce the same outputs (in x and y) and have the
same effect on the objects as some serial execution of the two transactions. The two possible serial executions
and their effects are:

If

T

 runs before

U

:

x

T

 =

a

j0

;

y

T

=

a

i0

;

x

U

 =

a

k0

;

y

U

=

44

;

a

i

=55;

a

j

=44;

a

k

= 66.

If

U

 runs before

T

:

x

T

 =

a

j0

;

y

T

=

55

;

x

U

 =

a

k0

;

y

U

=

a

j0

;

a

i

=33;

a

j

=44;

a

k

= 66,

where

x

T

 and

y

T

are the values of x and y in transaction

T

;

x

U

 and

y

U

are the values of x and y in transaction

U

and

a

i0

,

a

j0

 and

a

k0

,

are the initial values of

 a

i

,

a

j

and

a

k

Distributed Systems: Concepts and Design

Edition 3

By George Coulouris, Jean Dollimore and Tim Kindberg
Addison-Wesley, ©Pearson Education 2001.

Distributed Systems, Edition 3: Chapter 12 Solutions 2

Last updated: 21 July 2000 11:43 am

©George Coulouris, Jean Dollimore and Tim Kindberg 2000

We show two examples of serially equivalent interleavings:

A

 is equivalent to

U

 before

T

.

y

T

 gets the value of 55 written by

U

 and at the end

a

i

=33;

a

j

=44;

a

k

= 66.

B

 is equivalent to

T

 before

U

.

y

U

 gets the value of 44 written by

T

 and at the end

a

i

=55;

a

j

=44;

a

k

= 66.

12.3 Give serially equivalent interleaving of

T

 and

U

 in Exercise 12.2 with the following properties: (i)
that is strict; (ii) that is not strict but could not produce cascading aborts; (iii) that could produce
cascading aborts.

12.3 Ans.

i) For strict executions, the

reads

 and

writes

 of a transaction are delayed until all transactions that have
previously written the same objects are either committed or aborted. We therefore indicate the commit
of the earlier transaction in our solution (a variation of B in the Answer to 12.6):

Note that

U

’s

write(i, 55)

 and

read(j)

 are delayed until after

T

’s commit, because

T

write

s

a

i

 and aj.

ii) For serially equivalent executions that are not strict but cannot produce cascading aborts, there must be
no dirty reads, which requires that the reads of a transaction are delayed until all transactions that have
previously written the same objects are either committed or aborted (we can allow writes to overlap).
Our answer is based on B in Exercise 12.2.

Note that U’s write(i, 55) is allowed to overlap with T, whereas U’s read (j) is delayed until after T
commits.

A T U B T U

x:=read(j) x:=read(j)

x:= read(k) y:=read (i)

write(i, 55) x:= read(k)

y:=read (i) write(j, 44)

y:=read (j) write(i, 33)

write(k, 66) write(i, 55)

write(j, 44) y:=read (j)

write(i, 33) write(k, 66)

B T U

x:=read(j)

y:=read (i)

x:= read(k)

write(j, 44)

write(i, 33)

Commit

write(i, 55)

y:=read (j)

write(k, 66)

B T U

x:=read(j)

y:=read (i)

x:= read(k)

write(j, 44)

write(i, 33)

write(i, 55)

Commit

y:=read (j)

write(k, 66)

Distributed Systems, Edition 3: Chapter 12 Solutions 3
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

iii)For serially equivalent executions that can produce cascading aborts, that is, dirty reads are allowed.
Taking A from Exercise 12.2 and adding a commit immediately after the last operation of U, we get:

Note that T’s read (i) is a dirty read because U might abort before it reaches its commit operation.

12.4 The operation create inserts a new bank account at a branch. The transactions T and U are defined
as follows:

 T: aBranch.create("Z");
 U: z.deposit(10); z.deposit(20).

Assume that Z does not yet exist. Assume also that the deposit operation does nothing if the account given as
argument does not exist. Consider the following interleaving of transactions T and U:

State the balance of Z after their execution in this order. Are these consistent with serially equivalent
executions of T and U?

12.4 Ans.

In the example, Z’s balance is $20 at the end.

Serial executions of T and U are:

T then U: aBranch.create(“Z”); z.deposit(10);z.deposit(20). Z’s final balance is $30.

U then T: z.deposit(10); z.deposit(20); aBranch.create(“Z”). Z’s final balance is $0.

Therefore the example is not a serially equivalent execution of T and U.

12.5 A newly created data item like Z in Exercise 12.4 is sometimes called a phantom. From the point
of view of transaction U, Z is not there at first and then appears (like a ghost). Explain with an
example, how a phantom could occur when an account is deleted.

12.5 Ans.

The point in Exercise 12.4 is that the insertion of a data item like Z should not be interleaved with operations
on the same data item by another transaction. Suppose that we define transaction V as: aBranch.delete(“Z”)
and consider the following interleavings of V and U:

A T U

x:=read(j)

x:= read(k)

 write(i, 55)

y:=read (i)

y:=read (j)

write(k, 66)

commit

write(j, 44)

write(i, 33)

T U
z.deposit(10);

aBranch.create(Z);

z.deposit(20);

V U

z.deposit(10);

aBranch.delete(“Z”)

z.deposit(20);

Distributed Systems, Edition 3: Chapter 12 Solutions 4
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

Then we have a phantom because Z is there at first and then disappears. It can be shown (as in Exercise 12.10)
that these interleavings are not serially equivalent.

12.6 The ‘Transfer’ transactions T and U are defined as:

T: a.withdraw(4); b.deposit(4);

U: c.withdraw(3); b.deposit(3);

Suppose that they are structured as pairs of nested transactions:

T1: a.withdraw(4); T2: b.deposit(4);

U1: c.withdraw(3); U2: b.deposit(3);

Compare the number of serially equivalent interleavings of T1, T2, U1 and U2 with the number of serially
equivalent interleavings of T and U. Explain why the use of these nested transactions generally permits a larger
number of serially equivalent interleavings than non-nested ones.

12.6 Ans.

Considering the non-nested case, a serial execution with T before U is:

We can derive some serially equivalent interleavings of the operations, in which T’s write on B must be before
U’s read. Let us consider all the ways that we can place the operations of U between those of T.

All the interleavings must contain T2; U2. We consider the number of permutations of U1 with the operations
T1-T2 that preserve the order of T and U. This gives us (3!)/(2!*1!) = 3 serially equivalent interleavings.

We can get another 3 interleavings that are serially equivalent to an execution of U before T. They are different
because they all contain U2; T2. The total is 6.

Now consider the nested transactions. The 4 transactions may be executed in any (serial) order, giving us 4! =
24 orders of execution.

Nested transactions allow more serially equivalent interleavings because: i) there is a larger number of serial
executions, ii) there is more potential for overlap between transactions (iii) the scope of the effect of conflicting
operations can be narrowed.

12.7 Consider the recovery aspects of the nested transactions defined in Exercise 12.6. Assume that a
withdraw transaction will abort if the account will be overdrawn and that in this case the parent
transaction will also abort. Describe serially equivalent interleavings of T1, T2, U1 and U2 with the
following properties: (i) that is strict; (ii) that is not strict. To what extent does the criterion of
strictness reduce the potential concurrency gain of nested transactions?

12.7 Ans.

 If a child transaction’s abort can cause the parent to abort, with the effect that the other children abort, then
strict executions must delay reads and writes until all the relations (siblings and ancestors) of transactions that
have previously written the same objects are either committed or aborted. Our deposit and withdraw operations
read and then write the balances.

T: a.withdraw(4);
b.deposit(4));

U: c.withdraw(3); b.deposit(3);

T1 a.withdraw(4);

T2 b.deposit(4)

U1 c.withdraw(3)

U2 b.deposit(3)

Distributed Systems, Edition 3: Chapter 12 Solutions 5
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

i) For strict executions serially equivalent to T1; T2; U1; U2 we note that T2 has written B. We then delay
U2’s deposit until after the commit of T2 and its sibling T1. The following is an example of such an
interleaving:

ii) Exercise 12.6 discusses all possible serially equivalent executions. They are non-strict if they do not
obey the constraints discussed in part (i).

The criterion of strictness does not in any way reduce the possible concurrency between siblings (e.g. T1
and T2). It does make unrelated transactions wait for entire families to commit instead of single members
with which it is in conflict over access to a data item.

12.8 Explain why serial equivalence requires that once a transaction has released a lock on an object, it
is not allowed to obtain any more locks.

A server manages the objects a1, a2, ... an. The server provides two operations for its clients:

read (i) returns the value of ai

write(i, Value) assigns Value to ai

The transactions T and U are defined as follows:

T: x= read (i); write(j, 44);

U: write(i, 55);write(j, 66);

Describe an interleaving of the transactions T and U in which locks are released early with the effect that the
interleaving is not serially equivalent.

12.8 Ans.

Because the ordering of different pairs of conflicting operations of two transactions must be the same.

For an example where locks are released early:

T conflicts with U in access to ai. Order of access is T then U.

T conflicts with U in access to aj. Order of access is U then T. These interleavings are not serially equivalent.

T1:
 a.withdraw(4)

T2:
b.deposit(4);

U1:
c.withdraw(3)

U2:
 b.deposit(3)

a.withdraw(3)

b.deposit(4)

c.withdraw(3)

commit

commit

b.deposit(3)

T T’s locks U U’s locks

lock i

x:= read (i);

unlock i

lock i

write(i, 55);

lock j

write(j, 66);

commit unlock i, j

lock j

write(j, 44);

unlock j

commit

Distributed Systems, Edition 3: Chapter 12 Solutions 6
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

12.9 The transactions T and U at the server in Exercise 12.8 are defined as follows:

T: x= read (i); write(j, 44);
U: write(i, 55);write(j, 66);

Initial values of ai and aj are 10 and 20. Which of the following interleavings are serially equivalent and which
could occur with two-phase locking?

12.9 Ans.

a) serially equivalent but not with two-phase locking.

b) serially equivalent and with two-phase locking.

c) serially equivalent and with two-phase locking.

d) serially equivalent but not with two-phase locking.

12.10 Consider a relaxation of two-phase locks in which read only transactions can release read locks
early. Would a read only transaction have consistent retrievals? Would the objects become
inconsistent? Illustrate your answer with the following transactions T and U at the server in
Exercise 12.8:

T: x = read (i); y= read(j);

U: write(i, 55);write(j, 66);

in which initial values of ai and aj are 10 and 20.
12.10 Ans.

There is no guarantee of consistent retrievals because overlapping transactions can alter the objects after they
are unlocked.

(a) T U (b) T U

x= read (i); x= read (i);

write(i, 55); write(j, 44);

write(j, 44); write(i, 55);

write(j, 66); write(j, 66);

(c) T U (d) T U

write(i, 55); write(i, 55);

write(j, 66); x= read (i);

x= read (i); write(j, 66);

write(j, 44); write(j, 44);

Distributed Systems, Edition 3: Chapter 12 Solutions 7
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

The database does not become inconsistent.

In the above example T is read only and conflicts with U in access to ai and aj. ai is accessed by T before U
and aj by U before T. The interleavings are not serially equivalent. The values observed by T are x=10, y= 66,
and the values of the objects at the end are ai=55, aj= 66.

Serial executions give either (T before U) x=10, y=20, ai=55, aj=66; or (U before T) x=55, y=66, ai=55, aj=66).
This confirms that retrievals are inconsistent but that the database does not become inconsistent.

12.11 The executions of transactions are strict if read and write operations on an object are delayed until
all transactions that previously wrote that object have either committed or aborted. Explain how
the locking rules in Figure 12.16 ensure strict executions.

12.11 Ans.

If a previous transaction has written a data item, it holds its locks until after it has committed, therefore no
other transaction may either read or write that data item (which is the requirement for serial executions).

12.12 Describe how a non-recoverable situation could arise if write locks are released after the last
operation of a transaction but before its commitment.

12.12 Ans.

An earlier transaction may release its locks but not commit, meanwhile a later transaction uses the objects and
commits. Then the earlier transaction may abort. The later transaction has done a dirty read and cannot be
recovered because it has already committed.

12.13 Explain why executions are always strict even if read locks are released after the last operation of
a transaction but before its commitment. Give an improved statement of Rule 2 in Figure 12.16.

12.13 Ans.

Strict executions require that read and write operations on a data item are delayed until all transactions that
previously wrote that data item have either committed or aborted. The holding of a write lock is sufficient to
protect future transactions from non-strictness because we are concerned only with previous write operations.

Rule 2: When the client indicates that the last operation has been done (by a request to commit or abort), release
read locks. Hold write locks until commit or abort is completed.

12.14 Consider a deadlock detection scheme for a single server. Describe precisely when edges are
added to and removed from the wait-for-graph.

T T’s locks U U’s locks

lock i

x:= read (i);

unlock i

lock i

write(i, 55)

lock j

write(j, 66)

Commit unlock i, j

lock j

y:= read(j)

Commit unlock j

Distributed Systems, Edition 3: Chapter 12 Solutions 8
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

Illustrate your answer with respect to the following transactions T, U and V at the server of Exercise 12.8.

When U releases its write lock on ai, both T and V are waiting to obtain write locks on it. Does your scheme
work correctly if T (first come) is granted the lock before V? If your answer is ‘No’, then modify your
description.

12.14 Ans.

Scheme:

When transaction T blocks on waiting for transaction U, add edge T → U

When transaction T releases a lock, remove all edges leading to T.

Illustration: U has write lock on ai.

T requests write ai. Add T → U

V requests write ai. Add V → U

U releases ai. Delete both of above edges.

No it does not work correctly! When T proceeds, the graph is wrong because V is waiting for T and it should
indicate V →T.

Modification: we could make the algorithm unfair by always releasing the last transaction in the queue.

To make it fair: store both direct and indirect edges when conflicts arise. In our example, when transaction T
blocks on waiting for transaction U add edge T → U then, when V starts waiting add V → U and V → T

12.15 Consider hierarchic locks as illustrated in Figure 12.26. What locks must be set when an
appointment is assigned to a time-slot in week w, day d, at time, t? In what order should these locks
be set? Does the order in which they are released matter?

What locks must be set when the time slots for every day in week w are viewed?

Can this be done when the locks for assigning an appointment to a time-slot are already set?
12.15 Ans.

Set write lock on the time-slot t, intention-to-write locks on week w and day d in week w. The locks should be
set from the top downwards (i.e. week w then day d then time t). The order in which locks are released does
matter - they should be released from the bottom up.

When week w is viewed as a whole, a read lock should be set on week w. An intention-to-write lock is already
set on week w (for assigning an appointment), the read lock must wait (see Figure 12.27).

12.16 Consider optimistic concurrency control as applied to the transactions T and U defined in Exercise
12.9. Suppose that transactions T and U are active at the same time as one another. Describe the
outcome in each of the following cases:

i) T's request to commit comes first and backward validation is used;

ii) U's request to commit comes first and backward validation is used;

iii) T's request to commit comes first and forward validation is used;

iv) U's request to commit comes first and forward validation is used.

In each case describe the sequence in which the operations of T and U are performed, remembering that writes

T U V
write(i, 66)

write(i, 55)

write(i, 77)

commit

Distributed Systems, Edition 3: Chapter 12 Solutions 9
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

are not carried out until after validation.
12.16 Ans.

i) T's read(i) is compared with writes of overlapping committed transactions: OK (U has not yet
committed).

U - no read operations: OK.

ii) U - no read operations: OK.

T's read(i) is compared with writes of overlapping committed transactions (U’s write(i)): FAILS.

iii)T's write(j) is compared with reads of overlapping active transactions (U): OK.

U's write(i) is compared with reads of overlapping active transactions (none): OK (T is no longer active).

iv)U's write(i) is compared with reads of overlapping active transactions (T’s read(i)): FAILS.

T's write(j) is compared with reads of overlapping active transactions (none): OK.

12.17 Consider the following interleaving of transactions T and U:

The outcome of optimistic concurrency control with backward validation is that T will be aborted because its
read operation conflicts with U's write operation on ai, although the interleavings are serially equivalent.
Suggest a modification to the algorithm that deals with such cases.

12.17 Ans.

Keep ordered read sets for active transactions. When a transaction commits after passing its validation, note
the fact in the read sets of all active transactions. For example, when U commits, note the fact in T’s read set.

Thus, T’s read set = {U commit, i}

Then the new validate procedure becomes:

(i) T U (ii) T U

x:= read (i); write(i, 55);

write(j, 44); x:= read (i); write(j, 66);

write(i, 55); Abort

write(j, 66);

(iii) T U (iv) T U

x:= read (i);

write(j, 44); x:= read (i);

write(i, 55); Abort

write(j, 66); write(j, 44);

T U
openTransaction openTransaction

y= read(k);

write(i, 55);

write(j, 66);

commit

x= read(i);

write(j, 44);

Distributed Systems, Edition 3: Chapter 12 Solutions 10
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

boolean valid = true
for (Ti = startTn + 1; Ti++; Ti <= finishTn) {

let S = set of members of read set of Tj before commit Ti
IF S intersects write set of T1

THEN valid := false
}

12.18 Make a comparison of the sequences of operations of the transactions T and U of Exercise 12.8
that are possible under two-phase locking (Exercise 12.9) and under optimistic concurrency
control (Exercise 12.16).

12.18 Ans.

The order of interleavings allowed with two-phase locking depends on the order in which T and U access ai.
If T is first we get (b) and if U is first we get (c) in Exercise 12.9.

The ordering of 12.9b for two-phase locking is the same as 12.16 (i) optimistic concurrency control.

The ordering of 12.9c for two-phase locking is the same as 12.16 (ii) optimistic concurrency control if we
allow transaction T to restart after aborting.

In this example, the sequences of operations are the same for both methods.

.

12.19 Consider the use of timestamp ordering with each of the example interleavings of transactions T
and U in Exercise 12.9. Initial values of ai and aj are 10 and 20, respectively, and initial read and
write timestamps are t0. Assume each transaction opens and obtains a timestamp just before its
first operation, for example, in (a) T and U get timestamps t1 and t2 respectively where 0 < t1 < t2.
Describe in order of increasing time the effects of each operation of T and U. For each operation,
state the following:

i) whether the operation may proceed according to the write or read rule;

ii) timestamps assigned to transactions or objects;

iii) creation of tentative objects and their values.

What are the final values of the objects and their timestamps?
12.19 Ans.

a) Initially:

ai: value = 10; write timestamp =max read timestamp = t0
aj: value = 20; write timestamp =max read timestamp = t0

T: x:= read (i); T timestamp = t1;

read rule: t1> write timestamp on committed version (t0) and Dselected is committed:
 allows read x = 10; max read timestamp(ai) = t1. (see Figure 12.31a and read rule page 500)

U: write(i, 55); U timestamp = t2

write rule: t2 >= max read timestamp (t1) and t2> write timestamp on committed version (t0):
 allows write on tentative version ai: value = 55; write timestamp =t. (See write rule page 499)

T: write(j, 44);

write rule: t1 >= max read timestamp (t0) and t1 > write timestamp on committed version (t0):
 allows write on tentative version aj: value = 44; write timestamp(aj) =t1

U: write(j, 66);

write rule: t2 >= max read timestamp (t0) and t2 > write timestamp on committed version (t0)
 allows write on tentative version aj: value = 66; write timestamp =t2

T commits first:

aj: committed version: value = 44; write timestamp =t1; read timestamp = t0

Distributed Systems, Edition 3: Chapter 12 Solutions 11
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

U commits:

ai: committed version: value = 55; write timestamp =t2; max read timestamp = t1
aj: committed version: value = 66; write timestamp =t2; max read timestamp = t0

b) Initially as (a);

T: x:= read (i); T timestamp = t1;

read rule: t1> write timestamp on committed version (t0) and Dselected is committed:
allows read, x = 10; max read timestamp(ai) = t1

T: write(j,44)

write rule: t1 >= max read timestamp (t0) and t1 > write timestamp on committed version (t0):
 allows write on tentative version aj: value = 44; write timestamp =t1

U: write(i, 55); U timestamp = t2

write rule: t2 >= max read timestamp (t1) and t2> write timestamp on committed version (t0):
 allows write on tentative version ai: value = 55; write timestamp =t2

U: write(j, 66);

write rule: t2 >= max read timestamp (t0) and t2 > write timestamp on committed version (t0):
 allows write on tentative version aj: value = 66; write timestamp =t2

T commits first:

aj: committed version: value = 44; write timestamp =t1; max read timestamp = t0

U commits:

ai: committed version: value = 55; write timestamp =t2; max read timestamp = t1
aj: committed version: value = 66; write timestamp =t2; max read timestamp = t0

c) Initially as (a);

U: write(i, 55); U time stamp = t1;

write rule: t1 >= max read timestamp (t0) and t2 > write timestamp on committed version (t0):
 allows write on tentative version ai: value = 55; write timestamp =t1

U: write(j, 66);

write rule: t2 >= max read timestamp (t0) and t2 > write timestamp on committed version (t0):
 allows write on tentative version aj: value = 66; write timestamp =t1

T: x:= read (i); T time stamp = t2

read rule: t2> write timestamp on committed version (t0), write timestamp of Dselected = t1 and Dselected
is not committed: WAIT for U to commit or abort. (See Figure 12.31 c)

U commits:

ai: committed version: value = 55; write timestamp =t1; max read timestamp(ai) = t0
aj: committed version: value = 66; write timestamp =t1; max read timestamp(aj) = t0

T continues by reading version made by U x = 55; write timestamp(ai) =t1; read timestamp(ai) = t2t2

T: write(j,44)

write rule: t2 >= max read timestamp (t0) and t2 > write timestamp on committed version (t1):
 allows write on tentative version aj: value = 44; write timestamp =t2

T commits:

ai: committed version: value = 55; write timestamp =t1; max read timestamp = t2

aj: committed version: value =44; write timestamp =t2; max read timestamp = t0

d) Initially as (a);

U: write(i, 55); U time stamp = t1;

write rule: t1 >= max read timestamp (t0) and t2> write timestamp on committed version (t0)
 allows write on tentative version ai: value = 55; write timestamp(ai) =t1

Distributed Systems, Edition 3: Chapter 12 Solutions 12
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

T: x:= read (i); T time stamp = t2

read rule: t2> write timestamp on committed version (t0), write timestamp of Dselected = t1 and Dselected
is not committed: Wait for U to commit or abort. (See Figure 12.31 c)

U: write(j, 66);

write rule: t2 >= max read timestamp (t0) and t2 > write timestamp on committed version(t0)
 allows write on tentative version aj: value = 66; write timestamp =t1

U commits:

ai: committed version: value = 55; write timestamp =t1; max read timestamp = t0
aj: committed version: value = 66; write timestamp =t1; max read timestamp = t0

T continues by reading version made by U, x = 55; max read timestamp(ai) = t2

T: write(j,44)

write rule: t2 >= max read timestamp (t0) and t2 > write timestamp on committed version (t1)
 allows write on tentative version aj: value = 44; write timestamp=t2

T commits:

ai: committed version: value = 55; write timestamp =t1; max read timestamp = t2
aj: committed version: value = 44; write timestamp =t2; max read timestamp = t0

12.20 Repeat Exercise 12.19 for the following interleavings of transactions T and U:

12.20 Ans.

The difference between this exercise and the interleavings for Exercise 12.9(c) is that T gets its timestamp
before U. The difference between the two orderings in this exercise is the time of the commit requests. Let t1
and t2 be the timestamps of T and U. The initial situation is as for 12.9 (a).

U: write(i, 55);

write rule: t2 >= max read timestamp (t0) and t2> write timestamp on committed version (t0)
 allows write on tentative version ai: value = 55; write timestamp =t2

U: write(j, 66);

write rule: t2 >= max read timestamp (t0) and t2 > write timestamp on committed version (t0)
 allows write on tentative version aj: value = 66; write timestamp =t2

T: x:= read (i);

read rule: t1> write timestamp t0 on committed version and Dselected is committed:
allows read, x = 10; max read timestamp(ai) = t1

T: write(j,44)

write rule: t1 >= max read timestamp (t1) and t1 > write timestamp on committed version (t0)
 allows write on tentative version aj: value = 44; write timestamp =t2

U commits:

ai: committed version: value = 55; write timestamp =t2; max read timestamp = t1

T U T U

openTransaction openTransaction

openTransaction openTransaction

write(i, 55); write(i, 55);

write(j, 66); write(j, 66);

x= read (i); commit

write(j, 44); x= read (i);

commit write(j, 44);

Distributed Systems, Edition 3: Chapter 12 Solutions 13
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

aj: T has a tentative version with write timestamp = t1. U’s version with value = 66 and write
timestamp =t2 cannot be committed until after T’s version.

T commits:

aj: committed version: value = 44; write timestamp =t1; max read timestamp = t0; T’s version is
replaced with U’s version: value = 66; write timestamp =t2; max read timestamp = t0

The second ordering proceeds in the same way as the first until U has performed both its write operations and
commits. At this stage we have

ai: committed version: value = 55; write timestamp =t2; max read timestamp = t0

aj: committed version: value = 66; write timestamp =t2; max read timestamp = t0

T: x:= read (i);

read rule: NOT t1> write timestamp t2 on committed version
T is Aborted (see Figure 12.31 d)

12.21 Repeat Exercise 12.20 using multiversion timestamp ordering.
12.21 Ans.

The main difference for multiversion timestamp ordering is that read operations can use old committed
versions of objects instead of aborting when they are too late (see Page 502). The read rule is:

let Dselected be the version of D with the maximum write timestamp <= Tj

IF Dselected is committed THEN

perform read operation on the version Dselected

ELSE Wait until the transaction that made version Dselected commits or aborts

write operations cannot be too late, but writes are checked against potentially conflicting read operations. The
write rule is taken from page 402. Recall that each data item has a history of committed versions.

For the ordering on the left of Exercise 12.20, we show that the outcome is the same. Timestamps are
 T: t1 and U:t2. Initial state as in Exercise 12.9 a. Call these committed versions Vt0.

U: write(i, 55);

write rule: read timestamp of DmaxEarlier t0 <=t2
allows write on tentative version ai: value = 55; write timestamp =t2

U: write(j, 66);

write rule: read timestamp of DmaxEarlier t0 <= t2
 allows write on tentative version aj: value = 66; write timestamp =t2

T: x:= read (i);

Select version with write timestamp t0 read x = 10; its read timestamp becomes t1

T: write(j,44)

write rule: read timestamp of DmaxEarlier t1 <= t1
 allows write on tentative version aj: value = 44; write timestamp =t1

U commits:

ai: committed version Vt2: value = 55; write timestamp =t2;
aj: committed version Vt2: value = 66 and write timestamp =t2

T commits:

aj: committed version Vt1: value = 44; write timestamp =t1

For the ordering on the right of Exercise 12.20, we show that the outcome is different in that T does not abort.
It proceeds in the same way as the first until U has performed both its write operations and commits. At this
stage we have:

Distributed Systems, Edition 3: Chapter 12 Solutions 14
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

ai: committed version Vt2: value = 55; write timestamp =t2
aj: committed version Vt2: value = 66; write timestamp =t2

T: x:= read (i);

The read selects the committed version Vt0 and gets x=10 and the read timestamp = t1

T: write(j,44)

write rule: read timestamp of DmaxEarlier t1 <= t1
 allows write on tentative version. aj: value = 44; write timestamp =t2

T commit:

aj: committed version Vt1: value = 44; write timestamp =t1

12.22 In multiversion timestamp ordering, read operations can access tentative versions of objects. Give
an example to show how cascading aborts can happen if all read operations are allowed to proceed
immediately.

12.22 Ans.

The answer to Exercise 12.21 gives the read rule for multiversion timestamp ordering. read operations are
delayed to ensure recoverability. In fact this delay also prevents dirty reads and cascading aborts.

Suppose now that read operations are not delayed, but that commits are delayed as follows to ensure
recoverability. If a transaction, T has observed one of U’s tentative objects, then T’s commit is delayed until
U commits or aborts (see page 503). Cascading aborts can occur when U aborts because T has done a dirty
read and will have to abort as well.

To find an example, look for an answer to Exercise 12.19 where a read operation was delayed (i.e. (c) or (d)).
Consider the diagram for (c) in Exercise 12.2. With delays, T’s x := read(i) is delayed until U commits or
aborts. Now consider allowing T’s x := read(i) to use U’s tentative version immediately. Then consider the
situation in which T asks to commit and U subsequently aborts. Note that T’s commit request is delayed until
the outcome of U is known, so the situation is recoverable, but T has performed a ‘dirty read’ and must be
aborted. Cascading aborts can now arise because some other transactions may have observed T’s tentative
objects.

12.23 What are the advantages and drawbacks of multiversion timestamp ordering in comparison with
ordinary timestamp ordering?

12.23 Ans.

The algorithm allows more concurrency than single version timestamp ordering but incurs additional storage
costs.

Advantages:

The presence of multiple committed versions allows late read operations to succeed.

write operations are allowed to proceed immediately unless they will invalidate earlier reads (a write by a
transaction with timestamp Ti is rejected if a transaction with timestamp Tj has read a data item with write
timestamp Tk and Tk < Ti < Tj).

Drawbacks:

The algorithm requires storage for multiple versions of each committed objects and for information about the
read and write timestamps of each version to be used in carrying out the read and write rules. In the case that
a version is deleted, read operations will have to be rejected and transactions aborted.

Exercise 13.15 shows that the algorithm can provide yet more concurrency, at the risk of cascading aborts, by
allowing read operations to proceed immediately. In this case, to ensure recoverability, requests to commit
must be delayed until any the completion (commitment or abortion) of any transaction whose tentative objects
have been observed.

Distributed Systems, Edition 3: Chapter 12 Solutions 15
Last updated: 21 July 2000 11:43 am ©George Coulouris, Jean Dollimore and Tim Kindberg 2000

12.24 Make a comparison of the sequences of operations of the transactions T and U of Exercise 12.8
that are possible under two-phase locking (Exercise 12.9) and under optimistic concurrency
control (Exercise 12.16).

12.24 Ans.

The order of interleavings allowed with two-phase locking depends on the order in which T and U access ai.
If T is first we get (b) and if U is first we get (c) in Exercise 12.9.

The ordering of 12.9b for two-phase locking is the same as 12.9 (i) optimistic concurrency control.

The ordering of 12.9c for two-phase locking is the same as 12.9 (ii) optimistic concurrency control if we allow
transaction T to restart after aborting.

