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Chapter 16 Exercise Solutions

 

16.1 Explain in which respects DSM is suitable or unsuitable for client-server systems.

 

16.1 Ans.

 

DSM is unsuitable for client-server systems in that it is not conducive to heterogeneous working. Furthermore,
for security we would need a shared region per client, which would be expensive.

DSM may be suitable for client-server systems in some application domains, e.g. where a set of clients share
server responses.

16.2 Discuss whether message passing or DSM is preferable for fault-tolerant applications.

 

16.2 Ans.

 

Consider two processes executing at failure-independent computers. In a message passing system, if one
process has a bug that leads it to send spurious messages, the other may protect itself to a certain extent by
validating the messages it receives. If a process fails part-way through a multi-message operation, then
transactional techniques can be used to ensure that data are left in a consistent state.

Now consider that the processes share memory, whether it is physically shared memory or page-based DSM.
Then one of them may adversely affect the other if it fails, because now one process may update a shared variable
without the knowledge of the other. For example, it could incorrectly update shared variables due to a bug. It
could fail after starting but not completing an update to several variables.

If processes use middleware-based DSM, then it may have some protection against aberrant processes. For
example, processes using the Linda programming primitives must explicitly request items (tuples) from the
shared memory. They can validate these, just as a process may validate messages.

16.3 How would you deal with the problem of differing data representations for a middleware-based implementation
of DSM on heterogeneous computers? How would you tackle the problem in a page-based implementation?
Does your solution extend to pointers?

 

16.3 Ans.

 

The middleware calls can include marshalling and unmarshalling procedures. In a page-based implementation,
pages would have to be marshalled and unmarshalled by the kernels that send and receive them. This implies
maintaining a description of the layout and types of the data, in the DSM segment, which can be converted to
and from the local representation.

A machine that takes a page fault needs to describe which page it needs in a way that is independent of the
machine architecture. Different page sizes will create problems here, as will data items that straddle page
boundaries, or items that straddle page boundaries when unmarshalled. 

A solution would be to use a ‘virtual page’ as the unit of transfer, whose size is the maximum of the page sizes
of all the architectures supported. Data items would be laid out so that the same set of items occurs in each
virtual page for all architectures. Pointers can also be marshalled, as long as the kernels know the layout of
data, and can express pointers as pointing to an object with a description of the form “Offset o in data item i”,
where o and i are expressed symbolically, rather than physically.

This activity implies huge overheads.

16.4 Why should we want to implement page-based DSM largely at user-level, and what is required to achieve this?
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16.4 Ans.

 

A user-level DSM implementation facilitates application-specific memory (consistency) models and protocol
options.

We require the kernel to export interfaces for (a) handling page faults from user level (in UNIX, as a signal) and
(b) setting page protections from user level (see the UNIX 

 

mmap

 

 system call).

16.5 How would you implement a semaphore using a tuple space?

 

16.5 Ans.

 

We implement a semaphore with standard 

 

wait

 

 and 

 

signal

 

 operations; the style of semaphore that counts the
number of blocked processes if its count is negative;

The implementation uses a tuple <“count”, int> to maintain the semaphore’s integer value; and tuples
<“blocked”, int> and <“unblocked”, int> for each process that is blocked on the semaphore. 

The 

 

wait

 

 operation is implemented as follows:
<“count”, count> = ts.take(<“count”, int>);
if (count > 0)

count := count - 1;
else
{

// Use ts.read(<“blocked”, int>) to find the smallest b such that <“blocked”, b> is not in ts
ts.write(<“blocked”, b>);

}
ts.write(<“count”, count>);
ts.take(<“unblocked”, b>; // blocks until a corresponding tuple enters ts

The 

 

signal

 

 operation is implemented as follows:
<“count”, count> = ts.take(<“count”, int>);
if (there exists any b such that <“blocked”, b> is in ts)
{

ts.take(<“blocked”, b>);
ts.write(“unblocked”, b>); // unblocks a process

}
else

count := count + 1;
ts.write(“count”, count>);

16.6 Is the memory underlying the following execution of two processes sequentially consistent (assuming that,
initially, all variables are set to zero)?
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16.6 Ans.

P1

 

 reads the value of 

 

x

 

 to be 2 before setting 

 

y

 

 to be 1. But 

 

P2

 

 sets 

 

x

 

 to be 2 only after it has read 

 

y

 

 to be 1 (

 

y

 

was previously zero). Therefore these two executions are incompatible, and the memory is not sequentially
consistent.

16.7 Using the 

 

R

 

(), 

 

W

 

() notation, give an example of an execution on a memory that is coherent but not sequentially
consistent. Can a memory be sequentially consistent but not coherent?

 

16.7 Ans.

 

The execution of Exercise 16.6 is coherent – the reads and writes for each variable are consistent with both
program orders – but it is not sequentially consistent, as we showed.

A sequentially consistent memory is consistent with program order; therefore the sub-sequences of operations
on each individual variable are consistent with program order – the memory is coherent. 

16.8 In write-update, show that sequential consistency could be broken if each update were to be made locally before
asynchronously multicasting it to other replica managers, even though the multicast is totally ordered. Discuss
whether an asynchronous multicast can be used to achieve sequential consistency. (Hint: consider whether to
block subsequent operations.)
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16.8 Ans.

P1

 

:

 

W

 

(

 

x

 

)1; // 

 

x

 

 is updated immediately at 

 

P1

 

, and multicast elsewhere

 

R

 

(

 

x

 

)1;

 

R

 

(

 

y

 

)0; // the multicast from 

 

P2

 

 has not arrived yet

 

P2

 

:

 

W

 

(

 

y

 

)1;

 

R

 

(

 

x

 

)0; // the multicast from 

 

P1

 

 has not arrived yet

 

R

 

(

 

y

 

)1; // 

 

y

 

 was updated immediately and multicast to 

 

P1

P1

 

 would say that 

 

x

 

 was updated before 

 

y

 

; 

 

P2

 

 would say that 

 

y

 

 was updated before 

 

x

 

. So the memory is not
sequentially consistent when we use an asynchronous totally ordered multicast, and if we update the local value
immediately.

If the multicast was synchronous (that is, a writer is blocked until the update has been delivered everywhere)
and totally ordered, then it is easy to see that all processes would agree on a serialization of their updates (and
therefore of all memory operations).

We could allow the totally-ordered multicast to be asynchronous, if we block any subsequent read operation
until all outstanding updates made by the process have been assigned their total order (that is, the corresponding
multicast messages have been delivered locally). This would allow writes to be pipelined, up to the next read.

16.9 Sequentially consistent memory can be implemented using a write-update protocol employing a synchronous,
totally ordered multicast. Discuss what multicast ordering requirements would be necessary to implement
coherent memory.

 

16.9 Ans.

 

One could implement a coherent memory by using a multicast that totally ordered writes to each individual
location, but which did not order writes to different locations. For example, one could use different sequencers
for different location. Updates for a location are sequenced (totally ordered) by the corresponding sequencer; but
updates to different locations could arrive in different orders at different locations.

16.10 Explain why, under a write-update protocol, care is needed to propagate only those words within a data item
that have been updated locally.

Devise an algorithm for representing the differences between a page and an updated version of it. Discuss the
performance of this algorithm.

 

16.10 Ans.

 

Assume that two processes update different words within a shared page, and that the whole page is sent when
delivering the update to other processes (that is, they falsely share the page). There is a danger that the
unmodified words in one process’s updated page will overwrite another’s modifications to the falsely shared
words.

To get around this problem, each process sends only the differences it has made to the page (see the discussion
of Munin’s write-shared data items on page 540). That way, updates to falsely shared words will be applied
only to the affected words, and will not conflict. To implement this, it is necessary for each process to keep a
copy of the page before it updates it. 

A simple encoding of the differences between the page before and after it was modified is to create a series of
tuples:

<

 

pageOffset

 

, 

 

size

 

, 

 

changedBytes

 

>

– which store in 

 

changedBytes

 

 a run of 

 

size

 

 bytes to change, starting at 

 

pageOffset

 

. The list of tuples is created
by comparing the pages byte-for-byte. Starting at the beginning, when a difference is encountered, we create a
new tuple and record the byte’s offset. We then copy the bytes from the modified page into 

 

changedBytes

 

, until
we reach a run of bytes that are the same in both pages and whose length is greater than a certain minimum
value 

 

M

 

. The encoding procedure then continues until the whole page has been encoded. 

In judging such an algorithm, we are mindful of the processing time and the storage space taken up by the
encoded differences. The minimum length 

 

M

 

 is chosen so that the processing time and storage space taken up
by creating a new tuple is justified against the overhead of copying bytes that have not been modified. It is
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likely, for example, that it is cheaper to store and copy a run of four unmodified bytes than to create an extra
tuple.

The reader may care to improve further upon this algorithm.

16.11 Explain why granularity is an important issue in DSM systems. Compare the issue of granularity between
object-oriented and byte-oriented DSM systems, bearing in mind their implementations.

Why is granularity relevant to tuple spaces, which contain immutable data?

What is false sharing? Can it lead to incorrect executions?

 

16.11 Ans.

 

We refer the reader to the discussion of granularity on pages 648-649.

In a page-based implementation, the minimum granularity is fixed by the hardware. In Exercise 16.10 we have
seen a way of updating smaller quantities of data than a page, but the expense of this technique makes it not
generally applicable. 

In middleware-based DSM, the granularity is up to the implementation, and may be as small as one byte. If a
process updates one field in a data structure, then the implementation may choose to send just the field or the
whole data structure in its update.

Consider a DSM such as Linda’s Tuple Space, which consists of immutable data items. Suppose a process
needs to update one element in a tuple containing a million-element array. Since tuples are immutable the
process must extract the tuple, copying the whole array into its local variables; then it modifies the element;
then it writes the new tuple back into Tuple Space. Far more data has been transferred than was needed for the
modification. If the data had been stored as separate tuples, each containing one array element, then the update
would have been much cheaper. On the other hand, a process wishing to access the whole array would have to
make a million accesses to tuple space. Because of latency, this would be far more expensive than accessing
the whole array in one tuple.

False sharing is described on pages 648-649. It does not of itself lead to incorrect executions, but it lowers the
efficiency of a DSM system.

16.12 What are the implications of DSM for page replacement policies (that is, the choice of which page to purge
from main memory in order to bring a new page in)?

 

16.12 Ans.

 

When a kernel wishes to replace a page belonging to a DSM segment, it can choose between pages that are
read-only, pages that are read-only but which the kernel owns, and pages that the kernel has write access to (and
has modified). Of these options, the least cost is associated with deleting the unowned read-only page (which
the kernel can always obtain again if necessary); if the kernel deletes a read-only page that it owns, then it has
lost a potential advantage if write access is soon required; and if it deletes the modified page then it must first
transfer it elsewhere over the network or onto a local disk. So the kernel would prefer to delete pages in the
order given. Of course it can discriminate between pages with equal status by choosing, for example, the least
recently accessed.

16.13 Prove that Ivy’s write-invalidate protocol guarantees sequential consistency.

 

16.13 Ans.

 

A memory is not sequentially consistent if (and only if) there is an execution in which two processes disagree
about the order in which two or more updates were made. In a write-invalidate protocol, updates to any particular
page are self-evidently serialised (only one process may update it at a time, and readers are meanwhile excluded).
So we may assume that the updates are to different variables, residing in different pages.

Suppose the variables are 

 

x

 

 and 

 

y

 

, with initial values (without loss of generality) 6 and 7. Let us suppose,
further that 

 

x

 

 is incremented to 16, and 

 

y

 

 is incremented to 17. We suppose again, without loss of generality,
that two processes’ histories contain the following evidence of disorder:

 

P1

 

:

 

R

 

/

 

W

 

(

 

x

 

)16; ...; 

 

R

 

(

 

y

 

)7; .. // 

 

x

 

 was incremented first

 

P2

 

:

 

R

 

/

 

W

 

(

 

y

 

)17; ...; 

 

R

 

(

 

x

 

)6; ..// 

 

y

 

 was incremented first

Since the write-invalidate protocol was used, 

 

P1

 

 obtained access to 

 

x

 

’s page, where it either read 

 

x

 

 or wrote 

 

x

 

as 16. Subsequently, 

 

P1

 

 obtained access to 

 

y

 

’s page, where it read 

 

y

 

 to be 7. For 

 

P2

 

 to have read or written 

 

y

 

with the value 17, it must have obtained access to 

 

y

 

’s page after 

 

P1

 

 finished with it. Later still, it obtained
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access to 

 

x

 

’s page and found that 

 

x

 

 had the value 6. By 

 

reductio ad absurdum

 

, we may assume that our
hypothesis was false: no such executions can exist, and the memory is sequentially consistent.

Lamport [1979] gives a more general argument, that a memory is sequentially consistent if the following two
conditions apply:

R1: Each processor (process) issues memory requests in the order specified by its program.

R2: Memory requests from all processors issued to an individual memory module are serviced from a single
FIFO queue. Issuing a memory request consists of entering the request on this queue.

Write-invalidation satisfies these conditions, where we substitute ‘page’ for ‘memory module’.

The reader is invited to generalise the argument we have given, to obtain Lamport’s result. You will need to
construct a partial order between memory requests, based upon the order of issue by a single process, and the
order of request servicing at the pages.

16.14 In Ivy’s dynamic distributed manager algorithm, what steps are taken to minimize the number of lookups
necessary to find a page? 

 

16.14 Ans.

We refer the reader to the discussion on page 655.

16.15 Why is thrashing an important issue in DSM systems and what methods are available for dealing with it?
16.15 Ans.

Thrashing and the Mirage approach to it are discussed on page 657. The discussion on Munin (pages 661-663)
describes how sharing annotations may be used to aid the DSM run-time in preventing thrashing. For example,
migratory data items are always given read-and-write access, even if the first access is a read access. This is done
in the expectation that a read is typically followed closely by a write. The producer-consumer annotation causes
the run-time to use a write-update protocol, instead of an invalidation protocol. This is more appropriate, in
that it avoids continually transferring access to the data item between the writer (producer) and readers
(consumers).

16.16 Discuss how condition RC2 for release consistency could be relaxed. Hence distinguish between eager and lazy
release consistency.

16.16 Ans.

Consider a process P that updates variables within a critical section. It may not be strictly necessary for another
process to observe P’s updates until it enters the critical section, whereas RC2 stipulates that the updates should
occur on P’s release operation. (Neither of these semantics is absolutely ‘right’ or ‘wrong’; but the programmer
has to be made aware of which is used.)

Implementations of eager release consistency propagate updates or invalidations upon the release operation;
lazy ones propagate them when another process enters the critical section (issues an acquire operation).

16.17 A sensor process writes the current temperature into a variable t stored in a release-consistent DSM.
Periodically, a monitor process reads t. Explain the need for synchronization to propagate the updates to t, even
though none is otherwise needed at the application level. Which of these processes needs to perform
synchronization operations?

16.17 Ans.

A release-consistent DSM implementation is free never to propagate an update in the absence of
synchronisation. To guarantee that the monitor process sees new values of the variable t, synchronisation
operations must be used. Using the definition of release consistency on p. 660, only the sensor process needs
to issue acquire and release operations. 

16.18 Show that the following history is not causally consistent:

P1: W(a)0; W(a)1

P2: R(a)1; W(b)2

P3: R(b)2; R(a)0
16.18 Ans.

In the following, we use subscripts to denote which process issued an operation.

W2(b)2 writes-into R3(b)2

Taking this together with P3’s execution order implies the following order:
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W2(b)2; R3(b)2; R3(a)0; W1(a)1;

But W1(a)1 is causally before W2(b)2 – so no causally consistent serialisation exists.

16.19 What advantage can a DSM implementation obtain from knowing the association between data items and
synchronization objects? What is the disadvantage of making the association explicit?

16.19 Ans.

The DSM implementation can use the association to determine which variables’ updates/invalidations need to
be propagated with a lock (there may be multiple critical sections, used for different sets of variables).

The disadvantage of making the association explicit is the work that this represents to the programmer (who,
moreover, may make inaccurate associations).


