UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE INFORMÁTICA E DE ESTATÍSTICA

PLANO DE ENSINO

1. IDENTIFICAÇÃO DA DISCIPLINA:

Código: INE5366 **Nome:** Arquitetura de Computadores I

Semestre: 2007.2

Horas/Aula: Teóricas: 72 **Práticas**: 0 **Total**: 72 **Código do pré-requisito**: EEL-5310 **Nome**: Sistemas Digitais

Professor: Luiz Cláudio V. dos Santos

2. OBJETIVOS:

2.1-**Gerais**: 1. Descrever o suporte de hardware necessário à execução de programas. 2. Apresentar a interação entre hardware e software, delineando a interface entre o hardware, o compilador e o sistema operacional. 3. Introduzir noções quantitativas quanto ao impacto do hardware no desempenho de programas.

2.2-**Específicos**: 1. Apresentar os conceitos fundamentais de um computador em termos de seus componentes básicos (processador, sistema de memória e dispositivos de entrada e saída) abstraindo-se da implementação física. 2. Mostrar ao aluno exemplos reais e contemporâneos desses componentes básicos.

3.PROCEDIMENTOS DIDÁTICOS: AEX=Aula Expositiva

TÓPICOS	PROC. DIDÁTICO	HORAS		
Parte I – Noções de tecnologia e desempenho				
1. Visão geral da organização de um computador. Componentes	AEX	04		
básicos de um computador. O papel da tecnologia de circuitos				
integrados no projeto de um computador. Tendências tecnológicas na				
construção de computadores.				
2. Noções gerais de desempenho em um computador. Medida e	AEX	06		
métrica de desempenho. Programas para avaliação de desempenho				
("benchmarks"). Formas de comparação de desempenho. Exemplo				
real: desempenho de CPUs Intel medido com benchmarks SPEC.				

Parte II – A interface com o compilador				
3. O conjunto de instruções de um computador. Suporte para	AEX	12		
operações em HW. Suporte para operandos em HW. Representação				
de instruções. Instruções aritméticas e lógicas. Instruções para				
tomadas de decisão. Suporte para procedimentos. Modos de				
endereçamento. Noções gerais sobre os papéis do compilador,				
assembler, ligador e carregador. Exemplos de tradução de linguagem				
de alto nível em assembly. Exemplo real: instruções IA-32.				
4. Revisão de aritmética inteira. Representação em ponto fixo.	AEX	02		
Adição e subtração. Overflow e extensão de sinal.				
5. O processador: unidades de processamento e controle. A	AEX	12		
construção de uma unidade de processamento (UP). Exemplo de				
implementação mono-ciclo de uma UP. Exemplo de implementação				
de uma UP com múltiplos ciclos. Unidade de controle (UC)				
microprogramada. Tratamento de exceções. Exemplo real:				
organização de CPUs Pentium recentes.				
6. Aceleração com técnicas de "pipelining". Noções básicas de	AEX	10		
"pipelining". Hazards estruturais, de dados e de controle. Impacto				
dos hazards no desempenho. Organização de uma UP com pipeline e				
respectiva unidade de controle. Introdução a técnicas avançadas de				
pipelining: despacho múltiplo, especulação, escalonamento dinâmico				
Exemplo real: o pipeline do Pentium 4.				
Parte III – A interface com o sistema operacional				
7. Gerenciamento de memória . A estrutura hierárquica de memória.	AEX	10		
Memórias cache. Aceleração de memórias cache: associatividade e				
múltiplos níveis.				
8. Dispositivos de entrada e saída (E/S). Tipos e características de	AEX	08		
dispositivos de E/S. Conexão de dispositivos de E/S com				
processador e memória. Interfaceamento de dispositivos de E/S com				
a memória, o processador e o sistema operacional (polling, via				
interrupção, DMA). Exemplo real: uma câmera digital				
Horas de aula		64		
Horas dedicadas a avaliação		08		
Total		72		

4. AVALIAÇÃO DA APRENDIZAGEM:

Tópico Avaliado:	Forma	
Itens 1 a 4	Prova 1	(P1)
Itens 5 e 6	Prova 2	(P2)
Itens 6 a 8	Prova 3	(P3)
Todos os itens (recuperação)	Prova 4	(P4)

5-SISTEMA DE AVALIAÇÃO

5.1-Critério para Aprovação:

- a) O aluno que não comparecer a no mínimo 75% das aulas será considerado **reprovado por freqüência insuficiente**, de acordo com o artigo 73, do Capítulo I, Seção IX do Regimento Geral da UFSC. Neste caso, a nota final será NF = 0,0.
- b) O critério de aprovação baseia-se na média aritmética simples MF das notas obtidas nas 3 primeiras provas, ou seja: MF = (P1 + P2 + P3)/3
- c) Será considerado **aprovado** o aluno com freqüência suficiente com $MF \ge 6,0$. Neste caso, a nota final atribuída ao aluno aprovado será: NF = MF.
- d) Será considerado **reprovado** o aluno com freqüência suficiente com MF < 3. Neste caso, a nota final atribuída ao aluno reprovado será: NF = MF.
- e) Somente os alunos com freqüência suficiente e com 3,0 ≤ MF < 6,0 terão direito a fazer a prova P4, a título de **recuperação**. Neste caso, a nota final NF será calculada como a média aritmética simples das três maiores notas do conjunto ⟨P1, P2, P3, P4⟩. O aluno estará aprovado se NF ≥ 6.

5.2-Recuperação de provas perdidas

Se o(a) aluno(a) faltar a alguma das três primeiras provas por motivo justificável, devidamente comprovado, deverá requerer junto ao Departamento, no prazo de 48 horas, a autorização para recuperar a prova. Decorrido o prazo sem qualquer requerimento, será atribuída nota zero à prova perdida. Se a justificativa for julgada procedente pelo Departamento, o(a) aluno(a) fica automaticamente convocado(a) a fazer a prova P4. Neste caso, será atribuída à prova(s) perdida(s) a mesma nota obtida em P4. A nota final NF será calculada como a média aritmética simples das três maiores notas do conjunto $\{P1, P2, P3, P4\}$. O aluno estará aprovado se NF ≥ 6 .

6.BIBLIOGRAFIA

Livro-texto:

[1] David A. Patterson and John L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", **3rd edition**, Morgan Kaufmann Publishers, San Francisco, California, USA, 2005. (ISBN 1-55860-604-1)

Leitura complementar:

[2] John L. Hennessy and David A. Patterson, "Computer Architecture: A Quantitative Approach", 3rd edition, Morgan Kaufmann Publishers, San Francisco, California, 2003. (ISBN 1-55860-724-2)

7.OBSERVAÇÕES:

Data das provas: Ficam designadas as provas para as seguintes datas:

P1: Terça-feira, dia 11/09/2007

P2: Quinta-feira, dia 18/10/2007

P3: Terça-feira, dia 27/11/2007

P4: Terça-feira, dia 04/12/2007

As provas serão realizadas sempre no horário das 10:10 às 11:50.